Thread cutter

Information

  • Patent Grant
  • 6516735
  • Patent Number
    6,516,735
  • Date Filed
    Tuesday, November 6, 2001
    23 years ago
  • Date Issued
    Tuesday, February 11, 2003
    21 years ago
Abstract
A thread cutter for use in a sewing machine with a rotating hook (12) has a surface cam (60) which, together with a cam follower (58), controls the movement path of a pivotable thread catcher lever (26), which grasps the thread with a thread catcher (30, 36) and severs it at a cutter (82). With known solutions the surface cam is seated on the main shaft of the machine, which results in space-consuming structures with a large amount of parts. It is therefore proposed to connect the surface cam (60) in a torsion-proof manner with the hook (12) and to provide arresting means (38) which, only during a revolution of the hook (12) with the needle raised, maintain the thread catcher lever (26) radially outside the engagement range of the surface cam (60) and only with definite triggering release the thread catcher lever (26) with a cam follower (58) for contact with the surface cam (60). The thread cutter therefore has only very few parts and can be housed without problems in the free arm of a sewing machine in a space-saving manner. Preassembly and pre-setting of the thread cutter, which constitutes one unit with the hook, is also possible.
Description




FIELD OF THE INVENTION




The invention relates to a thread cutter for a sewing machine with a rotating hook, wherein a surface cam is provided which, together with a cam follower, controls the movement path of a pivotable thread catcher lever, which grasps the thread with a thread catcher and severs it with a cutter.




BACKGROUND OF THE INVENTION




A thread cutter of the type described above is known from DE 23 38 473 C2. However, with the thread cutter described there, two cams arranged on the main shaft of the sewing machine are provided which actuate the thread catcher lever and a separate thread draw-off finger at different times during the rotation of the hook. A large number of mechanical parts and a considerable requirement for installation space result from this, so that difficulties can arise in the course of housing the trigger and drive of the thread cutter in the front free arm of a machine. The adjustment of the sewing machine is also elaborate, because the rotating hook and the two cams on the main shaft must be separately set in respect to the angle of rotation position after the final assembly of the machine.




A further thread cutter for a post-bed sewing machine is known from U.S. Pt. No. 4,138,958, wherein a pin, which puts the thread cutter into motion in a translatory manner, is moved in the axial direction in a control cam of the hook shaft. The construction is the result of the structural uniqueness of a post-bed sewing machine, so that the thread cutter described in this publication cannot be structurally transferred to the shape customary with household sewing machines.




OBJECT AND SUMMARY OF THE INVENTION




It is the object of the present invention to provide a thread cutter for a sewing machine, which can be housed in a particularly space-saving manner in the front free arm.




In accordance with the invention, this object is attained in that the surface cam is connected in a torsion-proof manner with the hook and that arresting means are provided which, in their blocking position, maintain the cam follower which is coupled with the thread catcher lever radially outside the engagement range of the surface cam and, with manual or program-controlled triggering, only release the cam follower for contact with the surface cam during one revolution of the hook, during which the needle is outside of the pivot range of the thread catcher.




The main advantage of the thread cutter in accordance with the invention lies in that it consists of only a few mechanical parts, which can be housed without problems in the front free arm of a sewing machine. It is also advantageous that a pre-setting of the unit is possible because of a preferred arrangement of the surface cam on the hook shaft, so that a subsequent adjustment of the thread cutter after the sewing machine has been assembled is no longer required.




Further preferred measures, which aid in a further reduction of the requirement for structural space, are the placement of the cam follower directly on the thread catcher lever and/or the placement of the surface cam axially directly next to the hook, preferably on the back of the hook body.




It is furthermore particularly preferred to seat the thread catcher lever pivotably on the hook frame, because in that case the whole unit of hook and thread cutter can be pre-assembled and set.




In a preferred further embodiment of the invention the arresting means have a movable detent element, which in the blocking position maintains the thread catcher lever, which is pre-biased by a spring in the direction of pivoting-in, in a radial outer position in which the cam and the cam follower are out of engagement, wherein it is particularly preferred to disengage the detent element against the force of a restoring spring with the aid of an electromagnet, so that the cam follower of the thread catcher lever comes to rest against the surface cam because of the force of the spring. Besides the compact construction of such a solution, the simple control of the arresting means with the aid of the electromagnet should be stressed. The spring-loaded restoring spring offers the advantage that an automatic detent, and therefore blocking of the detent element, is possible by means of the appropriate pivoting of the thread catcher lever to the outside, wherein in a further preferred embodiment of the invention the control cam of the surface cam has a short cam section, which has the greatest radius of the control cam and with the aid of which the thread catcher lever can be conveyed into the blocking position in which it is locked together with the detent element.




To prevent a collision of the thread catcher lever it is important, because of the hook which revolves twice per needle lift, to permit pivoting-in of the thread catcher lever only when the needle is not in the pivot range of the thread catcher. For example, this can be achieved already in that the arresting means can only be unblocked at defined times and manual triggering is performed for example with a time delay until the needle has left the engagement range.




It is advantageous to provide an additional mechanical safety in that the arresting means preferably have an additional bolt which arrests the thread catcher lever in the radially outward position during the revolution of the hook shaft during which the needle is in the engagement range of the thread catcher lever. Erroneous triggering is dependably prevented by the additional bolt, wherein preferably the additional bolt is coupled with a cam follower, which acts together with a cam which essentially extends over 180 degree on the main shaft in the base of the sewing machine. Such a mechanical solution makes a pivoting-in movement of the thread catcher lever impossible and offers additional operational dependability in respect to an additional bolt, for example operated electromagnetically.




With a winding shaft which extends vertically in respect to the main shaft, in a further preferred embodiment the cam provided on the main shaft is designed as an axial cam, and the cam follower is coupled with a toothed rack as the additional bolt which is in contact with teeth around a pivot shaft of the thread catcher lever. Thus, only a linear guide with only one movable, possibly multi-part element, for the additional bolt is required, so that the additional mechanical safety can be provided simply and in a space-saving manner. With this solution the return of the additional bolt takes place interlockingly by means of the return movement of the thread catcher lever into its locked position.




A particularly preferred embodiment of the present invention provides that a catch is arranged on the hook shaft, which takes the thread catcher lever along in an interlocked manner over at least a partial distance during the pivoting-in movement when the latter is disengaged. The interlocked take-along movement, which can be provided, for example, by at least one toothed cam on the hook shaft, which acts together with teeth on the thread catcher lever, permits an interlocked taking along in addition to the frictionally connected pivoting-in of the thread catcher lever by means of a spring, so that the actual performance of a cutting process following the triggering of the arresting means is assured. Otherwise it would be possible under unfavorable circumstances, for example if using an unsuitable thread, which is caught between the cutter and the thread catcher and therefore blocks the thread catcher lever, that a delayed, uncontrolled pivoting-in movement of the thread catcher lever occurs, wherein the latter can no longer meet the thread loop, for example.




To prevent the thread, which has already been grasped by the thread catcher lever in the course of the movement of the thread catcher to upper dead center and the subsequent sliding out of the hook path, from jumping out of the eye of the thread catcher lever, it is provided in a preferred further development of the invention that the control cam of the surface cam has a holding area which, prior to the cutting of the thread, moves the thread catcher into a position in which the lateral entry opening of the eye for receiving a thread is covered by a stationary element, for example the cutter.




To obtain a sufficient length of the needle thread for re-sewing after cutting, it is provided in a further preferred embodiment of the invention that a holding edge in the area of the entry opening of the thread eye and a pressure edge at the front end of the thread eye for pressing the thread against the cutter are placed at a defined distance from each other wherein, as a further measure, the thread eye is designed as an elongated hole and is divided by a transverse strip forming the holding edge, which has a longitudinal slit for receiving the thread. By means of this it is possible without problems to achieve the required length of the needle thread of approximately 25 to 30 mm without additional means, such as a thread puller or the like. It is further practical to design the control cam of the surface cam in such a way that the severing of the thread only takes place shortly before upper dead center of the thread catcher lever has been reached.




A further preferred design of the invention relates to the thread tension which prior to the cutting process can preferably be set to zero, for example by triggering the electromagnet for disengaging the thread catcher lever simultaneously with the triggering of a step motor for reducing the thread tension. The reduction of the thread tension prior to severing the thread prevents that, following severing, the thread slides out of the needle eye under its inherent tension and must again be threaded in a cumbersome way.




An exemplary embodiment of the invention will be discussed in detail in what follows by means of the attached drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic oblique view of a preassembled unit of the hook and the thread cutter,





FIG. 2

is an oblique view from above on the unit in FIG.


1


.





FIG. 3

is a plan view of the control cam of the surface cam of the unit in

FIG. 1

,





FIG. 4

is a view from above on the unit in

FIG. 1

without the bevel wheel of the main shaft.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




A thread cutter


10


is represented in

FIG. 1

, which is embodied as a preassembled unit together with a rotating hook


12


of a sewing machine. Here, a hook shaft


16


with the hook


12


arranged in a torque-proof manner thereon, as well as a main shaft


18


, arranged at right angles to the hook shaft


16


for a connection with the drive mechanism of the sewing machine, are seated in a hook frame


14


. The power transfer between the main shaft


18


and the hook shaft


16


is provided via a bevel wheel stage


20


, wherein the driving first bevel wheel


22


of the main shaft


18


has twice the number of teeth as the driven second bevel wheel


24


of the hook shaft, i.e. the hook shaft rotates at twice the number of revolutions of the main shaft


18


.




A thread catcher lever


26


is moreover pivotably seated on the hook frame (see FIG.


2


), which is biased in a pivoting direction toward the hook shaft


16


by means of a torsion spring


28


. A thread catcher


30


is arranged on the thread catcher lever


26


, whose tip


32


is flush in the circumferential direction with the tip


34


of the hook


12


(also see FIG.


4


). The thread catcher


30


has a thread eye


36


for receiving the thread, whose exact shape will be discussed at a later time.




During normal sewing the thread catcher lever


26


is maintained in a radially outer position by a detent element


38


, which works together with a corresponding detent protrusion (not visible) on the thread catcher lever


26


. A tension spring


40


here biases the detent element


38


in the direction of its blocking position. The detent element


38


is provided with an unlocking lever


42


, which can be moved by an electromagnet


44


, also attached to the hook frame


14


, in such a way that the detent element


38


is pivoted into a position in which it releases the thread catcher lever


26


.




An additional bolt


46


is furthermore provided, which is connected with a cam follower


48


acting as a stop and has teeth


50


, which are in engagement with a circumferential tooth arrangement


52


on the thread catcher lever


26


. The additional bolt


46


is guided, linearly displaceable, on the hook frame


14


.




The cam follower


48


acts together with a cam front face


54


extending on the main shaft over approximately 180 degree in the area of the first bevel wheel


22


. A cutout


56


of the front cam, which correspondingly extends over the remainder of the circumference, permits an axial displacement of the cam follower


48


only during the one revolution of the hook


12


during which the needle of the sewing machine cannot collide with the thread catcher


36


. If displacement becomes possible and the detent element


38


is unlocked, the additional bolt


46


is taken along by the circumferential tooth arrangement


52


of the thread catcher lever


26


via the teeth


50


by means of the action of the torsion spring


28


.




Following the unlocking of the thread catcher lever


26


by unblocking the detent element


38


and with the additional bolt


46


released, because of the pivot movement of the thread catcher lever


26


a pin-shaped cam follower


58


attached to the thread catcher lever


36


comes into contact with a surface cam


60


and follows a control cam


62


of said surface cam


60


during the subsequent revolution of the hook


12


. The surface cam


60


is seated in a space-saving manner directly on the hook shaft at the rear of the hook body


63


for receiving the thread roll of the underthread.




The shape of the control cam


62


is shown in greater detail in FIG.


3


. The direction of rotation during the operation takes place in a counterclockwise direction in the view of the representation. The control cam


62


is divided into a first section


64


extending at a constant radius over approximately 180 degree, a following second section


66


with a radius which is greatly reduced and then increased again, a following third section


68


of a smaller radius than the first section


64


, and a final fourth section


70


, which has the largest radius and is capable of displacing the thread catcher lever


26


via the cam follower


58


into a position in which the detent element


38


again locks the cam followers


58


by snapping in.




Further, a toothed cam


72


is shown in

FIG. 3

, which is provided directly next to the surface cam


60


and which, when the cam follower is in contact with the first section


64


, comes into engagement with a toothed cam (not visible) provided on the thread catcher lever


26


, when the second section


66


has been reached and, aiding the torsion spring


28


, interlockingly takes along the thread catcher lever in the pivoting-in direction over at least a portion of the area of the first half of the second section


66


with decreasing radius. In this case the two toothed cams are designed in such a way that they cannot come into engagement with each other when the thread catcher lever


26


is locked.




The design of the thread eye


36


of the thread catcher


30


can be seen in detail in FIG.


4


. The thread eye


36


has a shape like an elongated hole with a lateral entry opening for the thread at the end remote from the tip


32


. The eye


36


has a transverse strip


76


approximately in the center, on whose top surface a thread slit


78


is formed, so that severing of the thread only takes place when the end


80


facing the tip


32


and designed as a pressure edge pushes the thread against a cutter


82


attached in a fixed manner to the hook frame


14


. The spatially distant position of the cutting edge from the needle penetrating point, together with the distance between the transverse strip


76


and the pressure end


80


of the eye, assures that a sufficient length of thread is provided for re-sewing after the cutting.




The cutting process is triggered manually or program-controlled, wherein program-control can mean, for example, that the thread cutter is automatically switched in by the electronic control device after defined sewing operations in order to sever the sewing threads at the end of the sewing process.




With manual actuation the machine is initially started at a reduced number of positioning revolutions of, for example, 60 rpm. Shortly after the thread loop has been picked up by the hook


12


, the electromagnet


44


is charged and releases the thread catcher lever


26


via the unlocked detent element


38


, so that the cam follower


58


can come into contact with the first section


64


of the control cam


62


. As already mentioned, the additional bolt


46


is released and cannot block the thread catcher lever


26


.




After the hook


12


has continued the turn by approximately 180 degree, wherein the thread triangle is optimally widenend, the toothed cam


72


comes into engagement with the associated toothed cam of the thread catcher lever


26


, and the second section


66


allows the pivoting of the thread catcher


30


into the thread triangle, so that the thread can get into the thread eye


36


. At the latest when the thread catcher lever


26


has reached the reversing point, i.e. has reached the point at the second section


66


with the smallest radius, the toothed cams


72


get out of engagement, so that the thread catcher


30


is moved by the control cam into an intermediate position in which the cam follower


48


rests against the third section


68


of the control cam


62


. In this position, approximately 30 degree before the thread leaves the hook path, the cutter


82


covers the rear area of the thread eye


36


with the entry opening


74


, wherein the thread slit


78


prevents the severing of the thread already in this position.




Prior to this and simultaneously with the triggering of the electromagnet


44


, for example by means of a step motor setting, the thread tension has been reduced to zero, so that a sufficient length of thread for subsequent re-sewing is provided by the return movement of the thread catcher


30


and the upward movement of the thread catcher lever in the upper arm of the sewing machine. Thereafter, the thread leaves the hook path, wherein it cannot jump out of the eye


36


because of the covered entry opening


74


.




Finally, the cam follower


59


moves into the fourth section


70


of the control cam


62


, so that the pressure edge of the end


80


of the thread eye


36


severs the thread at the cutter


82


. At the same time the thread catcher lever


26


is locked together with the detent element


38


and, after the thread catcher lever has reached top dead center in the upper arm of the machine, the machine is stopped. In the meantime the thread-tensioning step motor again operates at the set voltage value, so that the sewing machine is prepared for a subsequent sewing operation.




The reduction of the thread tension preferably to zero mainly has the purpose of preventing the thread from slipping out of the needle eye during the cutting of the thread because of its inherent tension. Therefore the thread tension must be zero no later than the time of cutting, however, the drawing off of the thread during the pivot movement of the thread catcher


30


is made easier when the thread tension is already reduced prior to the severing of the thread, so that a reduction even at the time of triggering the electromagnet


44


is also practical.




The unit of the hook and thread cutter shown in

FIGS. 1 and 2

can be preassembled as a whole and adjusted, and during final assembly of the sewing machine only needs to be fastened on the body of the latter and connected with the main shaft


18


. In this case the arrangement of all elements of the thread cutter on the hook frame


14


assures a particularly space-saving construction, which makes its housing in the lower free arm of the sewing machine easier.



Claims
  • 1. A thread cutter for a sewing machine with a rotating hook (12), wherein a surface cam (60) is provided which, together with a cam follower (58), controls the movement path of a pivotable thread catcher lever (26), which grasps the thread with a thread catcher (30, 36) and severs it with a cutter (82), characterized in that the surface cam (60) is connected in a torsion-proof manner with the hook (12), and that arresting means (38) are provided which, in their blocking position, maintain the cam follower (58), which is coupled with the thread catcher lever (26), radially outside the engagement range of the surface cam (60) and, with manual or program-controlled triggering, only release the cam follower (58) for contact with the surface cam (60) during one revolution of the hook, during which the needle is outside of the pivot range of the thread catcher (30).
  • 2. The thread cutter in accordance with claim 1, characterized in that the cam follower (58) is arranged directly on the thread catcher lever (26), and/or the surface cam (60) axially directly next to the hook (12).
  • 3. The thread cutter in accordance with claim 1, characterized in that the arresting means have a movable detent element (38), which in the blocking position maintains the thread catcher lever (26), which is pre-biased by a spring (28) in the direction of pivoting in, in a radial outer position in which the surface cam (60) and the cam follower (58) are out of engagement.
  • 4. The thread cutter in accordance with claim 3, characterized in that the detent element (38) is releasable against the force of a restoring spring (40) with the aid of an electromagnet (44), so that the cam follower (58) of the thread catcher lever comes to rest against the surface cam 60) because of the force of the spring (28).
  • 5. The thread cutter in accordance with claim 3, characterized in that a control cam (62) of the surface cam (60) has a cam section (70), which has the greatest radius of the control cam (62) and with the aid of which the thread catcher lever (26) can be conveyed into the blocking position in which it is locked together with the detent element (38).
  • 6. The thread cutter in accordance with claim 1, characterized in that the arresting means have an additional bolt (46) which arrests the thread catcher lever (26) in the radially outward position during the revolution of the hook shaft (16), during which the needle moves downward into the engagement range of the thread catcher lever (30).
  • 7. The thread cutter in accordance with claim 6, characterized in that the additional bolt (46) is coupled with a cam follower (48), which acts together with a cam (54, 56) which essentially extends over 180 degree on the main shaft (18) in the base of the sewing machine.
  • 8. The thread cutter in accordance with claim 7, characterized in that the cam (54, 56) provided on the main shaft (18) is designed as an axial cam, and the cam follower (48) is coupled with a toothed rack (46, 50) as the additional bolt, which is in contact with teeth (52) around the pivot shaft of a thread catcher lever (26).
  • 9. The thread cutter in accordance with claim 1, characterized in that a catch (72) is arranged on a hook shaft (16), which takes the thread catcher lever (26) along in an interlocked manner over at least a partial distance during the pivoting-in movement when the latter is disengaged.
  • 10. The thread cutter in accordance with claim 9, characterized in that at least one toothed cam (72) is provided on the hook shaft, which acts together with teeth on the thread catcher lever (26).
  • 11. The thread cutter in accordance with one of the preceding claims, characterized in that the control cam (62) of the surface cam (60) has a holding area (68) which, prior to the cutting of the thread, moves the thread catcher (30) into a position in which the lateral entry opening (74) of a thread eye (36) for receiving the thread is covered by a stationary element, for example the cutter (82).
  • 12. The thread cutter in accordance with claim 5, characterized in that the control cam (62) of the surface cam (60) has a holding area (68) which, prior to the cutting of the thread, moves the thread catcher (30) into a position in which the lateral entry opening (74) of a thread eye (36) for receiving the thread is covered by a stationary element, for example the cutter (82).
  • 13. The thread cutter in accordance with claim 12, characterized in that the thread eye (36), designed as an elongated hole, is divided by a strip (76) forming the holding edge, which has a longitudinal slit (78) for receiving the thread on its side facing the cutter (82).
  • 14. The thread cutter in accordance with claim 1, characterized in that the thread tension can be set to zero prior to severing the thread.
  • 15. The thread cutter in accordance with claim 14, characterized in that triggering of an electromagnet (44) for disengaging the thread catcher lever (26) takes place simultaneously with the triggering of a step motor for reducing the thread tension.
  • 16. The thread cutter in accordance with claim 5, characterized in that the control cam (62) of the surface cam is embodied in such a way that the severing of the thread only takes place shortly before upper dead center of the thread catcher has been reached.
  • 17. The thread cutter in accordance with claim 9, characterized in that the thread catcher lever (26) is pivotably seated on a hook frame (14) for seating the hook shaft (16).
Priority Claims (1)
Number Date Country Kind
100 55 258 Nov 2000 DE
US Referenced Citations (6)
Number Name Date Kind
3443540 Hannemann et al. May 1969 A
3728978 Honda et al. Apr 1973 A
3935827 Winter Feb 1976 A
4455957 Vollmar Jun 1984 A
4589362 Dusch May 1986 A
5009177 Sato et al. Apr 1991 A