This application claims priority to PCT/EP2005/050135, filed Jan. 13, 2005 and German Utility Model 20 2004 002 878.6, filed Feb. 25, 2004.
The present invention relates to a screw comprising a threaded shank with a force application location for transmitting torque and a screw. The threaded shank of the screw being composed of a shank core and an automatically thread-forming (i.e. seof-tapping) thread, and the thread being formed as an elevation which extends helically over the shank core. The thread is delimited by two flanks which converge in an outer thread edge and has a height measured radially between the shank core and the thread edge, the thread having, seen in profile, at the thread edge a specific apex angle formed between the flanks.
A screw of the general type mentioned above is described in DE 33 35 092 A1. It has proven very successful in practice, because a high unscrewing torque is achieved with a low screwing-in torque. In the case of this known screw, at least in a partial region of the thread, the outer thread edge extends in a wave form in the radial direction with a specific amplitude between wave crests with the thread height and wave troughs with a height reduced by the amplitude. In this case, the thread has, at least in the region of one of its flanks, in the region of the wave troughs of the thread edge indentations which interrupt the surface of the flank and the outer delimitation of which is the thread edge. In the regions of the wave crests of the thread edge that are not interrupted by indentations, a first apex angle is formed between the flanks extending in a straight line between the lowest point of the thread on the core and the thread edge, while a second, greater apex angle is formed in the lowest regions of the wave troughs. The thread extends up to the end of the screw tip, it being configured with the indentations and the waved thread edge from the screw tip, at least over the first adjoining turn of the thread. As a result, the tip acts as a kind of abrasive tool, the thread forming taking place directly at the tip of the screw, so that reliable centering and engagement with the workpiece are provided immediately when the screw is applied. In the case of this known screw, the indentations are formed symmetrically in relation to the center line of the waved thread edge as symmetrical paraboloids.
EP 0 394 719 B1 describes a similar thread-forming screw, in which however indentations on the flanks are formed asymmetrically in such a way that their front flank faces, in the screwing-in direction, extend more steeply than the rear flank faces, in the screwing-in direction. As a result, a further reduction of the screwing-in torque is achieved with at the same time an increase in the unscrewing torque. When screwing in, the resistance is less as result of the flatter configuration of the rear parabola parts in the screwing-in direction, whereas the unscrewing of the screw is made more difficult on account of the steeper arrangement of the parabola faces lying at the front in the screwing-in direction.
The present invention is based on the object of improving a screw of the generic type described above in such a way that the screwing-in torque is further reduced. At the same time, the screw is intended to be designed universally for screwing into various materials including softer materials, such as wood and the like, without pre-drilling and consequently automatically forming a hole, and harder materials, for example plastics and metals, into a pre-drilled hole.
The screw of this invention includes at least one of the two flanks of the thread being formed concavely in the region between the shank core and the thread edge, seen in radial profile, in such a way that the apex angle is less than a flank angle enclosed between imaginary straight flank lines defined in each case by a lowest point of the thread and the thread edge. Consequently, according to the invention, the apex angle is smaller than in the prior art, resulting in a more slender thread profile, so that the tapping torque when screwing in is favorably induced, in that the thread more easily forms a counter-thread in the respective material with material displacement, i.e. substantially without chips being formed. However, in spite of the slenderness of the thread profile, good mechanical strength is ensured by the thread profile according to the invention, because the lowest point of the thread is configured with a relatively great width.
In an advantageous configuration of the invention, the thread may be formed (in a way corresponding to the aforementioned prior art) with a waved thread edge and indentations on at least one flank, a more slender, second apex angle also being formed in the region of the wave troughs. In this case, an angular difference between the first and second apex angles should be as small as possible or even zero, i.e. the second apex angle in the region of the wave troughs and the indentations should also be as small as possible, in order to keep the tapping torque low by the slender profile shape. A continuous transition, virtually without any edge, between the thread flanks and the indentations is also advantageous here.
In addition or as an alternative to the configuration described above, it is envisaged to vary the size of the amplitude of the waved thread edge in dependence on different intended uses of the screw. For use for screwing into softer materials, such as wood or other fibrous materials and composite materials, the amplitude of the waved thread edge is approximately 0.2 to 0.4 times the thread height. The softer or more yielding the material is, the greater the amplitude can be (and vice versa). For use for screwing into harder materials, in particular plastics or metals, it is provided that the amplitude of the thread edge is approximately 0.05 to 0.15 times the thread height. The harder and more resistant the material is, the smaller the amplitude should be (and vice versa). Furthermore, for use as a “universal screw” for use with soft and hard materials, the amplitude may also be approximately 0.1 to 0.3 times the thread height.
In the screws of this invention, a further advantageous measure relates to the radially measured depth of the indentations. For use for screwing into softer materials, the depth of the indentations is preferably equal to our greater than 0.8 time the thread height. This factor may advantageously be approximately 0.8, but also may tend toward 1.0. For harder materials, the radial depth of the indentations is preferably approximately 0.2 to 0.3 times the thread height. For universal use, the depth may also be approximately 0.3 to 0.8 times the thread height.
The number of wave crests and wave troughs per turn of the thread, i.e. the circumferential angular spacing or pitch angle of the wave crests, also has a further influence on the properties of the screw of this invention. For use for screwing into softer materials, the pitch angle should lie in the range from 30° to 45°, resulting in a number n of 8 to 12 wave crests or wave troughs per turn of the thread (360°). For use in the case of harder materials, the pitch angle preferably lies in the range from 15° to 24°, resulting in a number n of 15 to 24 wave crests or troughs. For a design as a “universal screw” for soft and hard materials, the pitch angle may lie in the range from 20° to 35° (n=10 to 18).
In particular in conjunction with one or more of the features explained, it is advantageous if the thread, configured in practice as a one-start thread, has a lead which is approximately 0.5 times the outer thread diameter (nominal screw diameter). This achieves an increased thrust for quicker screwing in. Nevertheless, a high unscrewing torque is ensured for durable screwing prestress.
Further advantageous configurations of the invention are contained in further claims and the description which follows.
It should be noted at this point that all the features and measures described here can be used independently of one another or else in any possible or meaningful combination with one another.
The invention is to be explained more precisely on the basis of several exemplary embodiments that are illustrated in the drawing, in which:
In the various figures of the drawing, the same parts are always provided with the same reference numerals and are therefore generally also only described once in each case.
As can be seen initially from
As revealed in particular by
According to the invention, it is provided here that at least one of the two flanks 15, 16 of the thread 12 is formed concavely in the region between the shank core 10 and the thread edge 14, seen in profile or radial cross section, in such a way that the apex angle α formed in the region of the thread edge 14 by the adjacent flanks 15, 16 is in any event less than a so-called flank angle αF, which is defined between imaginary straight flank lines FG extending in each case through a lowest point GF of the thread and the thread edge 14.
In the preferred exemplary embodiments, both flanks 15 and 16 are correspondingly concavely formed, to be precise preferably in the same manner, i.e. symmetrically in relation to a profile center plane.
In the case of the embodiment according to
In the case of the configurational variant according to
In both configurations, the flanks 15, 16 can substantially extend virtually in a straight line in an outer partial region adjoining the thread edge 14, seen in profile.
Preferably, the apex angle α that is reduced with respect to the flank angle αF lies approximately in the range from 25° to a maximum of 35°.
As revealed by
In the case of a type of configuration that is not represented, the surfaces of the indentations 24 may extend substantially in a straight line, seen in the radial direction. This would have the result that the second apex angle α′ is in any event greater than the first apex angle α; the second apex angle α′ should then be approximately 30° to a maximum of 58°, but in the interests of a low tapping torque should be as small as possible.
In the case of the advantageous embodiments represented, however, the surfaces of the indentations 24 are in each case concave in the radial direction, at least over part of the radial extent, which is indicated in
A further important aspect is the size of the amplitude U of the waved thread edge 14. For a design of the screw 1 for use for screwing into softer materials, such as wood or the like, the amplitude U should be approximately 0.2 to 0.4 times the thread height H. This can be mathematically expressed by the relationship U=Y·H, where Y=0.2 to 0.4. In this respect, reference is made to the configurations illustrated in
By contrast, the amplitude U for use of the screw 1 for screwing into harder and more resistant materials, in particular plastics or metals, is approximately 0.05 to 0.15 times the height H, i.e., in the stated relationship U=Y·H, we have Y=0.05 to 0.15. In this respect, reference is made to the configurations according to
In a configuration of the screw 1 that is not represented by a Figure, for universal use in the case of various types of materials, the amplitude U of the thread edge 14 may be approximately 0.1 to 0.3 times the thread height H.
As further revealed by the figures of the drawing, in particular
According to a further aspect of the invention, this depth Z of the indentations 24 is likewise designed to match the use of the screw 1. For softer materials, the depth Z of the indentations 24 is to be at least 0.8 times the thread height H; this gives Z=X·H with X≧0.8. In this case, Z may also tend toward H, cf. the configurations according to
In the case of configurations for harder materials, compare
For universal use in the case of various materials, the radial depth Z of the indentations 24 may also be approximately 0.3 to 0.8 times the thread height H.
Yet a further important aspect relates to the number of wave crests 20 or wave troughs 22 per turn of the thread of 360°. The wave crests 20 (correspondingly of course also the wave troughs 22) are spaced apart from one another in the circumferential direction in each case by a pitch angle δ. Here it is then provided according to the invention that, for use for softer materials, the pitch angle δ lies in the range from 30° to 45°. According to the relationship n=360°/δ, n=8 to 12 is obtained for the number of wave crests or wave troughs for softer materials. For a design of the screw 1 for use in the case of harder materials, the pitch angle δ lies in the range from 15° to 24°, so that there is a number n of 15 to 24 wave crests 20 or wave troughs 22 per turn of the thread. For universal use of the screw 1, a configuration in which the pitch angle δ lies approximately in the range from 20° to 35° may be provided. This would result in a number n of approximately 10 to 18 wave crests 20 or wave troughs 22 per turn of the thread.
The indentations 24 are in each case delimited from the adjacent face of the respective flank 15, 16 by a limiting line 26. In this case, this limiting line 26 has substantially the form of a parabola with lateral, approximately V-shaped limiting portions. This contour has the effect that a thread portion 30 with complete flanks 15, 16 is respectively formed between two neighboring indentations 24 in the region of the wave crests 20. The limiting portions 28 of the neighboring indentations 24 that lie on both sides of each such complete thread portion 30 here enclose an angle γ, which should lie in the range from 30° to 90°, the limiting portions 28 merging with one another in the region of each wave crest 20 over a rounding with a radius r=(0.1 to 0.3)·H.
In the case of the configurations according to
By contrast, in the case of the configurations according to
In an advantageous configuration of the screw 1 according to the invention, the thread 12, which according to
As also revealed by
Finally, it should be noted that deviations from the ideal configurational features described and represented here may arise in practice, in particular for production reasons. This applies in particular to the course of the thread edge 14 and/or the limiting lines 26, which, as a departure from the sinusoidal representation, may also be created e.g. with approximately straight portions in the region of the wave troughs and/or with an irregular course. Furthermore, instead of being formed with a sharp tip, like a knife edge, the thread edge 14 may also be formed between the flanks with a narrow surface or with a small radius of curvature.
While the above description constitutes the preferred embodiment of the present invention, it will be appreciated that the invention is susceptible to modification, variation, and change without departing from the proper scope and fair meaning of the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
20 2004 002 878 U | Feb 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2005/050135 | 1/13/2005 | WO | 00 | 5/17/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/080801 | 9/1/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
113006 | Whiteman | Mar 1871 | A |
1229560 | Bidwell | Jun 1917 | A |
4527932 | Onasch et al. | Jul 1985 | A |
4536117 | Yamashiro | Aug 1985 | A |
5544993 | Harle | Aug 1996 | A |
5704750 | Bartos et al. | Jan 1998 | A |
5800107 | Giannuzzi et al. | Sep 1998 | A |
6158939 | Grossberndt et al. | Dec 2000 | A |
Number | Date | Country |
---|---|---|
84 09 108 | Jul 1984 | DE |
33 35 092 | Aug 1985 | DE |
0 394 719 | Sep 1992 | EP |
0893 611 | Jan 1999 | EP |
Number | Date | Country | |
---|---|---|---|
20080019796 A1 | Jan 2008 | US |