Thread rolling die and method of making same

Information

  • Patent Grant
  • 9643236
  • Patent Number
    9,643,236
  • Date Filed
    Wednesday, November 11, 2009
    14 years ago
  • Date Issued
    Tuesday, May 9, 2017
    7 years ago
Abstract
A thread rolling die includes a thread rolling region comprising a working surface including a thread form. The thread rolling region of the thread rolling die comprises a sintered cemented carbide material having a hardness in the range of 78 HRA to 89 HRA. In certain embodiments, the thread rolling die may further include at least one non-cemented carbide piece metallurgically bonded to the thread rolling region in an area of the thread rolling region that does not prevent a workpiece from contacting the working surface, and wherein the non-cemented carbide piece comprises at least one of a metallic region and a metal matrix composite region. Methods of forming a thread rolling die as embodied herein are also disclosed.
Description
BACKGROUND OF THE TECHNOLOGY

Field of the Technology


The present disclosure is directed to thread rolling dies used for producing threads on one machine component in order to fasten it to another machine component, and to methods of manufacturing thread rolling dies. More specifically, the disclosure is directed to thread rolling dies comprising sintered cemented carbide thread rolling regions, and to methods of making the thread rolling dies.


Description of the Background of the Technology


Threads are commonly used as a means of fastening one machine component to another. Machining techniques such as turning, using single point or form tools, and grinding, using single contact or form wheels, are employed as metal removal methods to create the desired thread geometry in a workpiece. These methods are commonly referred to as thread cutting methods.


Thread cutting techniques suffer from some inherent disadvantages. Thread cutting techniques are generally slow and costly, and require the use of expensive machine tools, including special tooling. The thread cutting techniques are not cost-effective for processing large production batches. Because thread cutting involves machining a blank, waste material in the form of cut chips is produced. Additionally, the finish of cut threads may be less than desirable.


An alternative method of forming threads in machine components involves the use of “chipless” metal forming techniques, i.e., thread forming techniques in which the workpiece is not cut and chips are not formed. An example of a chipless thread forming technique is the thread rolling technique. The thread rolling technique involves rolling threads onto a cylindrical metal component positioned between two or more thread rolling dies including a working surface having a mirror-image of the desired thread geometry. Traditionally, thread rolling dies may be circular or flat. The thread geometry is created on a workpiece as it is compressed between the dies and the dies move relative to one another. Circular thread rolling dies are rotated relative to one another. Flat thread rolling dies are moved in a linear or reciprocating fashion relative to one another. Thread rolling is therefore a method of cold forming, or moving rather than removing the workpiece material to form the threads. This is illustrated schematically in FIGS. 1A and 1B. FIG. 1A schematically illustrates a thread rolling die positioned on a side surface of a cylindrical blank, and FIG. 1(b) schematically illustrates the final product produced by rotating the blank relative to the die. As indicated in FIGS. 1A and 1B, the process of moving the material of the blank upward and outward to form the threads results in a major thread diameter (FIG. 1A) that is greater than the blank diameter (FIG. 1B).


Thread rolling offers several advantages over machining or cutting techniques for forming threads on a workpiece. For example, a significant amount of material may be saved from becoming waste because of the “chipless” nature of the thread rolling technique. Also, because thread rolling forms the threads by flowing the material upward and outward, the blank may be smaller than that required for when forming the threads by thread cutting, resulting in additional material savings. In addition, thread rolling can produce threads and related forms at high threading speeds and with longer comparable tool life. Therefore, thread rolling is a viable technique for high volume production. Thread rolling also is cold forming technique in which there is no abrasive wear, and the thread rolling dies can operate throughout their useful life without the need for periodic sizing.


Thread rolling also results in a significant increase in the hardness and yield strength of the material in the thread region of the workpiece due to work hardening caused by the compressive forces exerted during the thread rolling operation. Thread rolling can produce threads that are, for example, up to 20% stronger than cut threads. Rolled threads also exhibit reduced notch sensitivity and improved fatigue resistance. Thread rolling, which is a cold forming technique, also typically results in threads having excellent microstructure, a smooth mirror surface finish, and improved grain structure for higher strength.


Advantages of thread rolling over thread cutting are illustrated schematically in FIGS. 2A and 2B. FIG. 2A schematically shows microstructural flow lines in a thread region of a workpiece resulting from thread cutting. FIG. 2B schematically shows microstructural flow lines in a thread region of a workpiece resulting from thread rolling. The figures suggest that no material waste is produced by thread rolling, which relies on movement of the workpiece material to produce the threads. The flow lines shown in FIG. 2B also suggest the hardness improvement and strength increase produced by flowing of material in thread rolling.


Conventional thread rolling dies are typically made from high speed steels as well as other tool steels. Thread rolling dies made from steels have several limitations. The compressive strength of high speed steels and tool steels may not be significantly higher than the compressive strength of common workpiece materials such as alloy steels and other structural alloys. In fact, the compressive strength of conventional thread rolling die materials may be lower than the compressive strength of high strength workpiece materials such as, for example, nickel-base and titanium-base aerospace alloys and certain corrosion resistant alloys. In general, the compressive yield strength of tool steels used to make thread rolling dies falls bellow about 275,000 psi. When the compressive strength of the thread rolling die material does not substantially exceed the compressive strength of the workpiece material, the die is subject to excessive plastic deformation and premature failure.


In addition to having relatively high compressive strength, thread rolling die materials should possess substantially greater stiffness than the workpiece material. In general, however, the high speed steels and tool steels that are currently used in thread rolling dies do not possess stiffness that is higher than common workpiece materials. The stiffness (i.e., Young's Modulus) of these tool steels falls below about 32×106 psi. Thread rolling dies made from these high speed steels and tool steels may undergo excessive elastic deformation during the thread rolling process, making it difficult to hold close tolerances on the thread geometry.


In addition, thread rolling dies made from high speed steels and tool steels can be expected to exhibit only modestly higher wear resistance compared to many common workpiece materials. For example, the abrasion wear volume of certain tool steels used in thread rolling dies, measured as per ASTM G65-04, “Standard Test Method for Measuring Abrasion Using the Dry Sand/Rubber Wheel Apparatus”, is about 100 mm3. Therefore, die lifetime may be limited due to excessive wear.


Accordingly, there is a need for thread rolling dies made from materials that exhibit superior combinations of strength, particularly compressive strength, stiffness, and wear resistance compared to high speed and other tool steels conventionally used in thread rolling dies. Such materials would provide increased die service life and also may allow the dies to be used to produce threads on workpiece materials that cannot readily be processed using conventional dies.


SUMMARY

In a non-limiting embodiment according to the present disclosure, a thread rolling die comprises a thread rolling region including a working surface comprising a thread form. The thread rolling region comprises a sintered cemented carbide material having a hardness in the range of 78 HRA to 89 HRA.


In another non-limiting embodiment according to the present disclosure, a thread rolling die comprises a thread rolling region including a working surface comprising a thread form, wherein the thread rolling region includes a sintered cemented carbide material having at least one of a compressive yield strength of at least 400,000 psi; a Young's modulus in the range of 50×106 psi to 80×106 psi; an abrasion wear volume in the range of 5 mm3 to 30 mm3 evaluated according to ASTM G65-04; a fracture toughness of at least 15 ksi·in1/2; and a transverse rupture strength of at least 300 ksi.


In yet another non-limiting embodiment according to this disclosure, a thread rolling die comprises a thread rolling region including a working surface comprising a thread form, wherein at least the working surface of the thread rolling region comprises a sintered cemented carbide material. In certain non-limiting embodiments, the thread rolling die includes at least one non-cemented carbide piece metallurgically bonded to the thread rolling region in an area of the thread rolling region that does not prevent the working surface from contacting a workpiece. In certain non-limiting embodiments, the non-cemented carbide piece comprises at least one of a metallic region and a metal matrix composite region.


In yet another non-limiting embodiment according to the present disclosure, a thread rolling die comprises a thread rolling region including a working surface comprising a thread form, and a non-cemented carbide piece metallurgically bonded to the thread rolling region, wherein at least the working surface of the thread rolling region comprises a sintered cemented carbide material having at least one of a compressive yield strength of at least 400,000 psi; a Young's modulus in the range of 50×106 psi to 80×106 psi; an abrasion wear volume in the range of 5 mm3 to 30 mm3 evaluated according to ASTM G65-04; a hardness in the range of 78 HRA to 89 HRA; a fracture toughness of at least 15 ksi·in1/2; and a transverse rupture strength of at least 300 ksi.





BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of articles and methods described herein may be better understood by reference to the accompanying drawings in which:



FIGS. 1A and 1B are schematic representations showing certain aspects of a conventional thread rolling process;



FIGS. 2A and 2B are schematic representations of the microstructural flow lines of the workpiece material in a thread form region of a workpiece formed by r thread cutting and thread rolling, respectively;



FIG. 3 is a schematic representation of one non-limiting embodiment of a circular thread rolling die according to the present disclosure, wherein the die includes a non-cemented carbide region and a sintered cemented carbide working surface having a hardness in the range of 78 HRA to 89 HRA (Rockwell Hardness Scale “A”);



FIG. 4 is a schematic representation of one non-limiting embodiment of a flat thread rolling die according to the present disclosure, wherein the die includes a non-cemented carbide region and a sintered cemented carbide working surface having a hardness in the range of 78 HRA to 89 HRA;



FIG. 5 is a schematic representation of an additional non-limiting embodiment of a flat thread rolling die according to the present disclosure, wherein the die includes two non-cemented carbide regions and a sintered cemented carbide working surface having a hardness in the range of 78 HRA to 89 HRA;



FIG. 6 is a schematic representation an additional non-limiting embodiment of a circular thread rolling die according to the present disclosure, wherein the die includes a sintered cemented carbide region having a layered or gradient construction and a sintered cemented carbide working surface; and



FIG. 7 is photograph of one non-limiting embodiment of a circular thread rolling die according to the present disclosure comprising a sintered cemented carbide material having a hardness in the range of 78 HRA to 89 HRA.





The reader will appreciate the foregoing details, as well as others, upon considering the following detailed description of certain non-limiting embodiments according to the present disclosure.


DETAILED DESCRIPTION OF CERTAIN NON-LIMITING EMBODIMENTS

In the present description of non-limiting embodiments, other than in the operating examples or where otherwise indicated, all numbers expressing quantities or characteristics are to be understood as being modified in all instances by the term “about”. Accordingly, unless indicated to the contrary, any numerical parameters set forth in the following description are approximations that may vary depending on the desired properties one seeks to obtain in the articles and methods according to the present disclosure. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter described in the present description should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.


Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein is only incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.


One non-limiting embodiment of a circular thread rolling die 10 according to the present disclosure is depicted in FIG. 3. Non-limiting embodiments of a flat thread rolling die 30 according to the present disclosure are depicted in FIGS. 4 and 5. It will be understood that although the specific embodiments of novel and inventive thread rolling dies depicted and described herein are circular or flat thread rolling dies, the present invention also encompasses additional thread rolling die configurations, whether known now or hereinafter to a person of ordinary skill in the art. Each of thread rolling dies 10, 30 include a thread rolling region 12 comprising a working surface 14, which is the surface of the thread rolling die that contacts a workpiece and forms threads thereon. As such, the working surface 14 includes a thread form 16. The thread rolling region 12 of each of dies 10, 30 comprises a sintered cemented carbide material. According to certain embodiments, the sintered cemented carbide has a hardness in the range of 78 HRA to 89 HRA.


In a non-limiting embodiment, the sintered cemented carbide material of the thread rolling region 12 may have a compressive yield strength of at least 400,000 psi. In another non-limiting embodiment, the sintered cemented carbide material of the thread rolling region 12 may have a Young's modulus of at least 50×106 psi. A non-limiting embodiment of the thread rolling die 10 comprises a sintered cemented carbide thread rolling region 12, wherein the sintered cemented carbide material has a Young's modulus in the range of 50×106 psi to 80×106 psi. In still another non-limiting embodiment, the sintered cemented carbide material of the thread rolling region 12 may have an abrasion wear volume no greater than 30 mm3 as evaluated according to ASTM G65-04. In one non-limiting embodiment, the sintered cemented carbide material of the thread rolling region 12 has an abrasion wear volume in the range of 5 mm3 to 30 mm3 as evaluated according to ASTM G65-04.


According to one non-limiting embodiment of a thread rolling die 10, 30 according to the present disclosure, the sintered cemented carbide material of the thread rolling region 12 may have a combination of properties including a compressive yield strength of at least 400,000 psi; a Young's modulus of at least 50×106 psi; and an abrasion wear volume no greater than 30 mm3 evaluated according to ASTM G65-04. In another non-limiting embodiment, the sintered cemented carbide material of the thread rolling region 12 may have a fracture toughness of at least 15 ksi·in1/2. In still another non-limiting embodiment, the sintered cemented carbide material of the thread rolling region 12 may have a transverse rupture strength of at least 300 ksi.


According to certain other non-limiting embodiments, the sintered cemented carbide material of the thread rolling region 12 of thread rolling dies 10, 30 has one or more of a compressive yield strength of at least 400,000 psi; a Young's modulus in the range of 50×106 psi to 80×106 psi; an abrasion wear volume in the range of 5 mm3 to 30 mm3 as evaluated according to ASTM G65-04; a hardness in the range of 78 HRA to 89 HRA; a fracture toughness of at least 15 ksi·in1/2; and a transverse rupture strength of at least 300 ksi.


According to certain non-limiting embodiments according to the present disclosure, the thread form 16 of the working surface 14 of thread rolling dies 10, 30 may include one of V-type threads, Acme threads, Knuckle threads, and Buttress threads. It will be understood, however, that such thread form patterns are not exhaustive and that any suitable thread form known now or here hereafter to a person skilled in the art may be included on a thread rolling die according to the present disclosure.


In certain non-limiting embodiments, sintered cemented carbide included in the thread rolling region and, optionally, sintered cemented carbide material included in other regions of the thread rolling dies according to the present disclosure are made using conventional powder metallurgy techniques. Such techniques include, for example: mechanically or isostatically pressing a blend of metal powders to form a “green” part having a desired shape and size; optionally, heat treating or “presintering” the green part at a temperature in the range of 400° C. to 1200° C. to provide a “brown” part; optionally, machining the part in the green or brown state to impart certain desired shape features; and heating the part at a sintering temperature, for example, in the range of 1350° C. to 1600° C. Other techniques and sequences of steps for providing sintered cemented carbide material will be evident to those having ordinary skill in the art. In appropriate circumstances, one or more of such other techniques may be used to provide sintered cemented carbide material included in thread rolling dies according to the present disclosure, and it will become evident to those having ordinary skill, upon reading the present disclosure, how to adapt such one or more techniques for use in providing the present thread rolling dies.


In certain non-limiting embodiments of thread rolling dies according to the present disclosure, sintered cemented carbide material included in the thread rolling dies according to the present disclosure may be finish-machined using operations such, for example, turning, milling, grinding, and electro-discharge machining. Also, in certain non-limiting embodiments of thread rolling dies according to the present disclosure, finish-machined material included in the thread rolling dies may be coated with materials providing wear resistance and/or other advantageous characteristics. Such coatings may be applied using conventional coating techniques such as, for example, chemical vapor deposition (CVD) and/or physical vapor deposition (PVD). Non-limiting examples of wear resistant materials that may be provided as a coating on all or a region of cemented carbide materials included in thread rolling dies according to the present disclosure include Al2O3, TiC, Ti(C,N), either in single layers or in combinations of multiple layers. Other possible materials that may be provided as coatings on cemented carbide materials, either as a single-layer or as part of a multiple-layer coating, included in thread rolling dies according to the present disclosure will be known to those having ordinary skill and are encompassed herein.


In certain non-limiting embodiments, cemented carbide material included in the thread rolling region of thread rolling dies according to the present disclosure includes a discontinuous, dispersed phase and a continuous binder phase. The discontinuous, dispersed phase includes hard particles of a carbide compound of at least one metal selected from Groups IVB, a Group VB, or a Group VIB of the Periodic Table. Such metals include, for example, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, and tungsten. The continuous binder phase comprises one or more of cobalt, a cobalt alloy, nickel, a nickel alloy, iron, and an iron alloy. In certain non-limiting embodiments, the sintered cemented carbide material included in the thread rolling region comprises 60 weight percent up to 98 weight percent of the dispersed phase and 2 weight percent to 40 weight percent of the continuous binder phase. According to certain non-limiting embodiment, hard carbide particles of the dispersed phase have an average grain size in the range of 0.3 μm to 20 μm.


In a non-limiting embodiment, the continuous binder phase of sintered cemented carbide material included in the thread rolling region of a thread rolling die according to the present disclosure comprises at least one additive selected from tungsten, chromium, titanium, vanadium, niobium and carbon in a concentration up to the solubility limit of the additive in the continuous binder phase. In certain non-limiting embodiments, the continuous binder phase of sintered cemented carbide material in the thread rolling region comprises at least one additive selected from silicon, boron, aluminum copper, ruthenium, and manganese in a total concentration of up to 5% by weight, based on the total weight of the continuous binder phase.


In certain non-limiting embodiments of thread rolling dies according to the present disclosure, the working surface of the thread rolling region comprises sintered cemented carbide material having a surface hardness in the range of 78 HRA to 89 HRA. Grades of sintered cemented having this particular surface hardness include, but are not limited to, grades including a dispersed, discontinuous phase including tungsten carbide particles and a continuous binder phase comprising cobalt. Various commercially available powder blends used to produce grades of sintered cemented carbide materials are known to those of ordinary skill and may be obtained from various sources such as, for example, ATI Engineered Products, Grant, Ala., USA. Non-limiting examples of commercially available cemented carbide grades that may be used in various embodiments of thread rolling dies according to the present disclosure include ATI Firth Grades FL10, FL15, FL20, FL25, FL30, FL35, H20, H25, ND20, ND25, ND30, H71, R52, and R61. The various cemented carbide grades typically differ in one or more of carbide particle composition, carbide particle grain size, binder phase volume fraction, and binder phase composition, and these variations influence the final physical and mechanical properties of the sintered cemented carbide material.



FIGS. 3-6 schematically illustrate certain non-limiting embodiments of thread rolling dies according to the present disclosure. Each of thread rolling dies 10, 30, 40 includes a thread rolling region 12, 42 comprising a working surface 14, 44 which, in turn, includes a thread form 16 (not shown in FIG. 6). Each of thread rolling dies 10, 30, 40 also includes a non-working region 18 that supports the thread rolling region 12. With reference to the thread rolling die 40 of FIG. 6, in certain embodiments, the non-working region 18 comprises the same sintered cemented carbide material as the thread rolling region 42 or may comprise one or more layers, such as layers 46, 48, 50, and 52, of other grades of cemented carbide material. In certain other non-limiting die embodiments, the non-working region 18 may comprise at least one cemented carbide material that differs in at least one characteristic from sintered cemented carbide material included in the thread rolling region of the die. The at least one characteristic that differs may be selected from, for example, composition and a physical or mechanical property. Physical and/or mechanical properties that may differ include, but are not limited to, compressive yield strength, Young's modulus, hardness, toughness, wear resistance, and transverse rupture strength. In certain embodiments of a thread rolling die according to the present disclosure, the die may include different grades of cemented carbide material in different regions of the thread rolling die, selected to provide desired properties such as, for example, compressive yield strength, Young's modulus, hardness, toughness, wear resistance, and transverse rupture strength, in particular regions of the die.


Again referring to the schematic illustration of FIG. 6, a non-limiting example of a circular thread rolling die according to the present disclosure may include several regions of different grades of sintered cemented carbide material. Thread rolling die 40 comprises a thread rolling region 42 that includes a working surface 44. The thread rolling region 42 may comprise a cemented carbide grade having mechanical properties suitable for forming threads on workpieces for which the die 40 is intended. In a non-limiting embodiment, the working surface 44 of the thread rolling region 42 has a surface hardness in the range of 78 HRA to 89 HRA, a compressive yield strength greater than 400,000 psi, a stiffness (Young's modulus) greater than 50×106 psi, and a wear volume (as evaluated by ASTM G65-04) of less than 30 mm3. The non-working region 18 includes a second layer 46 of sintered cemented carbide material adjacent to the thread rolling region 44. The non-working region 18 also includes subsequent layers 48, 50, and 52 having at least one mechanical property or characteristic that differs from the cemented carbide material of the thread rolling region 44 and from one another. Examples of characteristics that may differ between the several layers 46, 48, 50, 52 and the thread rolling region 44 may be one or more of average hard particle size, hard particle composition, hard particle concentration, binder phase composition, and binder phase concentration. Physical and/or mechanical properties that may differ between the several layers 46, 48, 50, 52 and the thread rolling region include, but are not limited to, compressive yield strength, Young's modulus, hardness, toughness, wear resistance, and transverse rupture strength.


In a non-limiting embodiment of thread rolling die 40, the second layer 46 may comprise a cemented carbide grade with hardness less than the hardness of the working surface 44 layer in order to better transfer stresses experienced during the thread rolling operation, and minimize cracking of the sintered cemented carbide material at the working surface 44 and in the thread rolling region 42. Sintered cemented carbide layers 48, 50, 52 progressively decrease in hardness in order to transfer stresses from the relatively harder working surface 44, and thus avoid cracking of the sintered cemented carbide at the working surface 44 and in the thread rolling region 42. In is noted that in the non-limiting embodiment of a circular thread rolling die depicted in FIG. 6, the innermost layer 52 defines a mounting hole 54, which facilitates mounting the thread rolling die to a thread rolling machine (not shown). The innermost layer 52 comprises cemented carbide material having reduced hardness relative to the cemented carbide material of the thread rolling region 42, and this arrangement may better absorb stresses generated during the thread rolling operation and increase the service life of the thread rolling die 40. It will be apparent to those having ordinary skill, upon reading the present disclosure, that a mechanical property other than or in addition to hardness may be varied among the layers of the multi-layer cemented carbide thread rolling die illustrated in FIG. 6. Variation of such other mechanical properties among the layers of a multi-layer thread rolling die such a die 40 are also encompassed within the scope of embodiments of this disclosure.


In a non-limiting embodiment of a thread rolling die comprising a plurality of different grades of cemented carbide arranged in a layered fashion as depicted in FIG. 6, the desired thickness of the thread rolling region 42, the second layer 46, and subsequent layers 48, 50, 52 may be determined by a person of ordinary skill in the art to provide and/or optimize desired properties. A non-limiting example of a minimum thickness range for the thread rolling region 42 may be from 10 mm to 12 mm. Further, while FIG. 6 depicts a thread rolling die comprising five discrete layers 42, 46, 48, 50, 52 of different sintered cemented carbide materials, it is recognized that a thread rolling die of this disclosure may comprise more or less than five layers and/or grades of sintered cemented carbide material depending on the final properties desired. In yet another non-limiting embodiment, instead of comprising discrete layers 42, 46, 48, 50, 52 of sintered cemented carbide material, the layers may be so thin as to provide a substantially continuous gradient of the desired one or more properties from the working surface 44 of the thread rolling region 42 to the innermost layer 52, providing greater stress transferring efficiencies. It will be understood that the foregoing description of possible arrangements and characteristics of thread rolling dies according to the present disclosure including a multi-layered or gradient structure of cemented carbide materials may be applied to circular thread rolling dies, flat thread rolling dies, and thread rolling dies having other configurations.


Certain non-limiting methods for producing articles comprising areas of sintered ceramic carbide materials having differing properties is described in U.S. Pat. No. 6,511,265, which is hereby incorporated by reference herein in its entirety. One such method includes placing a first metallurgical powder blend comprising hard particles and binder particles into a first region of a void of a mold. The mold may be, for example, a dry-bag rubber mold. A second metallurgical powder blend having a different composition comprising hard particles and binder particles is placed into a second region of the void of the mold. Depending on the number of regions of different cemented carbide materials desired in the thread rolling die, the mold may be partitioned into additional regions in which particular metallurgical powder blends are disposed. The mold may be segregated into such regions, for example, by placing physical partitions in the void of the mold to define the several regions. In certain embodiments the physical partition may be a fugitive partition, such as paper, that the partition decomposes and dissipates during the subsequent sintering step. The metallurgical powder blends are chosen to achieve the desired properties in the corresponding regions of the thread rolling die as described above. In certain embodiments, a portion of at least the first region and the second region and any other adjacent regions partitioned in the void of the mold are brought into contact with each other, and the materials within the mold are then isostatically compressed to densify the metallurgical powder blends and form a green compact of consolidated powders. The compact is then sintered to further densify the compact and to form an autogenous bond between the first, second, and, if present, any other regions. The sintered compact provides a blank that may be machined to particular desired thread rolling die geometry. Such geometries are known to those having ordinary skill in the art and are not specifically described herein.


In one non-limiting embodiment of a thread rolling die having a construction as depicted in FIG. 6, one or more of the sintered cemented carbide thread rolling region 42, second layer 46, and additional layers 48, 50, 52 may be comprised of hybrid cemented carbide material. As known to those having ordinary skill, a hybrid cemented carbide comprises a discontinuous phase of a first cemented carbide grade dispersed throughout and embedded in a continuous binder phase of a second cemented carbide grade. As such, a hybrid cemented carbide may be thought of as a composite of different cemented carbides.


In one non-limiting embodiment of a thread rolling die according to the present disclosure, the thread rolling die includes a hybrid cemented carbide in which the binder concentration of the dispersed phase of the hybrid cemented carbide is 2 to 15 weight percent of the dispersed phase, and the binder concentration of the continuous binder phase of the hybrid cemented carbide is 6 to 30 weight percent of the continuous binder phase.


Hybrid cemented carbides included in certain non-limiting embodiments of articles according to the present disclosure may have relatively low contiguity ratios, thereby improving certain properties of the hybrid cemented carbides relative to other cemented carbides. Non-limiting examples of hybrid cemented carbides that may be used in embodiments of thread rolling dies according to the present disclosure are described in U.S. Pat. No. 7,384,443, which is hereby incorporated by reference herein in its entirety. Certain embodiments of hybrid cemented carbide composites that may be included in articles herein have a contiguity ratio of the dispersed phase that is no greater than 0.48. In some embodiments, the contiguity ratio of the dispersed phase of the hybrid cemented carbide may be less than 0.4, or less than 0.2. Methods of forming hybrid cemented carbides having relatively low contiguity ratios include, for example: partially or fully sintering granules of the dispersed grade of cemented carbide; blending these “presintered” granules with the unsintered or “green” second grade of cemented carbide powder; compacting the blend; and sintering the blend. Details of such a method are detailed in the incorporated U.S. Pat. No. 7,384,443 and, therefore, will be known to those having ordinary skill. A metallographic technique for measuring contiguity ratios is also detailed in the incorporated U.S. Pat. No. 7,384,443 and will be known to those having ordinary skill.


Referring now to FIGS. 3-5, according to another aspect of the present disclosure, a thread rolling die 10, 30 according to the present disclosure may include one or more non-cemented carbide regions in non-working regions 18 of the thread rolling die. The non-working regions 18 comprising non-cemented carbide materials may be metallurgically bonded to the thread rolling region 12, which do comprise cemented carbide material, and are positioned so as not to prevent the working surface 14 from contacting the workpiece that is to be threaded. In one non-limiting embodiment, the non-cemented carbide materials in non-working regions comprise at least one of a metal or metal alloy, and a metal matrix composite. In certain non-limiting embodiments, a non-cemented carbide material in the non-working region 18 included in thread rolling die 10,30 may be a solid metallic material selected from iron, iron alloys, nickel, nickel alloys, cobalt, cobalt alloys, copper, copper alloys, aluminum, aluminum alloys, titanium, titanium alloys, tungsten, and tungsten alloys.


In yet another non-limiting embodiment of a thread rolling die according to the present disclosure, the metal matrix composite of the non-cemented carbide piece comprises at least one of hard particles and metallic particles bound together by a metallic matrix material, wherein the melting temperature of the metallic matrix material is less than a melting temperature of the hard particles and/or the metallic particles of the metal matrix composite.


In certain other non-limiting embodiments, a non-cemented carbide piece included in a non-working region 18 of a thread rolling die 10, 30 is a composite material including metal or metallic alloy grains, particles, and/or powder dispersed in a continuous metal or metallic alloy matrix composite. In certain non-limiting embodiments, a non-cemented carbide piece in a non-working region 18 comprises a composite material including particles or grains of a metallic material selected from tungsten, a tungsten alloy, tantalum, a tantalum alloy, molybdenum, a molybdenum alloy, niobium, a niobium alloy, titanium, a titanium alloy, nickel, a nickel alloy, cobalt, a cobalt alloy, iron, and an iron alloy. In one particular non-limiting embodiment, a non-cemented carbide piece in a non-working region 18 included in a thread rolling die 10, 30 according to the present disclosure comprises tungsten grains dispersed in a matrix of a metal or a metallic alloy.


Another non-limiting embodiment of a thread rolling die according to the present disclosure includes a metal matrix composite piece comprising hard particles. A non-limiting embodiment includes a non-cemented carbide piece comprising hard particles of at least one carbide of a metal selected from Groups IVB, VB, and VIB of the Periodic Table. In one non-limiting embodiment, the hard particles of the metal matrix composite comprise particles of at least one of carbides, oxides, nitrides, borides and silicides.


According to one non-limiting embodiment, the metal matrix material includes at least one of copper, a copper alloy, aluminum, an aluminum alloy, iron, an iron alloy, nickel, a nickel alloy, cobalt, a cobalt alloy, titanium, a titanium alloy, a bronze alloy, and a brass alloy. In one non-limiting embodiment, the metal matrix material is a bronze alloy consisting essentially of 78 weight percent copper, 10 weight percent nickel, 6 weight percent manganese, 6 weight percent tin, and incidental impurities. In another non-limiting embodiment, the metal matrix material consists essentially of 53 weight percent copper, 24 weight percent manganese, 15 weight percent nickel, 8 weight percent zinc, and incidental impurities. In non-limiting embodiments, the metal matrix material may include up to 10 weight percent of an element that will reduce the melting point of the metal matrix material, such as, but not limited to, at least one of boron, silicon, and chromium.


In certain embodiments, a non-cemented carbide piece included in a thread rolling die 10, 30 may be machined to include threads or other features so that the thread rolling die 10, 30 may be mechanically attached to a thread rolling machine (not shown).


As depicted in FIGS. 3 and 4, in a non-limiting embodiment, at least one non-cemented carbide piece in a non-working region 18 may be metallurgically bonded to the thread rolling region 12 on an opposite side 56 of the thread rolling region 12, i.e., opposite the working surface 14 of the thread rolling region 12. In other embodiments, as depicted in FIG. 5, at least one non-cemented carbide piece in a non-working region 18 may be metallurgically bonded to the thread rolling region 12 on an adjacent side 58 of the thread rolling region 12, i.e., laterally adjacent to the working surface 14 of the thread rolling region 12. It is recognized that a non-cemented carbide piece can be metallurgically bonded to the sintered cemented carbide thread rolling region 12 at any position that does not prevent the working surface 14 containing the thread form 16 to contact the workpiece.


According to one aspect of the present disclosure, a non-limiting method for forming a sintered cemented carbide thread rolling die that comprises a non-cemented carbide piece or region includes providing a sintered cemented carbide thread rolling region or sintered cemented carbide thread rolling die. Optionally, one or more non-cemented carbide pieces comprising a metal or metal alloy, as disclosed hereinabove may be placed adjacent to a non-working area of the sintered cemented carbide thread rolling region or sintered cemented carbide thread rolling die in a void of a mold. The space between the sintered ceramic thread rolling region or thread rolling die and the optional solid metal or metal alloy pieces defines an unoccupied space. A plurality of inorganic particles are added to at least a portion of the unoccupied space. The inorganic particles may comprise one or more of hard particles, metal grains, particles, and powders The remaining void space between the plurality of inorganic particles and the sintered cemented carbide thread rolling region or thread rolling die and the optional solid metallic pieces defines a remainder space. The remainder space is at least partially filled by infiltration with a molten metal or metal alloy matrix material that has a lower melting temperature than any of the inorganic particles which, together with the inorganic particles, forms a metal matrix composite material. Upon cooling, the metal of the metal matrix composite material bonds together the inorganic particles and the sintered cemented carbide thread rolling die and, if present, any non-cemented carbide metal or metal alloy pieces. Upon removal from the mold, the sintered cemented carbide thread rolling die with a non-cemented carbide piece comprising at least one of a metal or metal alloy region and a metal matrix composite region may be machined and finished to a desired shape. This infiltration process is disclosed in U.S. patent application Ser. No. 12/196,815, which is hereby incorporated herein by reference in its entirety.


Still another non-limiting embodiment of a thread rolling die encompassed by this disclosure comprises a thread rolling region comprising a working surface having a thread form, wherein at least the working surface of the thread rolling region comprises a sintered cemented carbide material, and at least one non-cemented carbide piece is metallurgically bonded to the thread rolling region in an area of the thread rolling region that does not prevent access of a workpiece to the working surface. The non-cemented carbide piece comprises at least one of a metallic region and a metal matrix composite region. The non-cemented carbide piece may be machinable in order to facilitate, for example, mounting of the sintered ceramic thread rolling die to a thread rolling machine.


In a non-limiting embodiment, the sintered cemented carbide of the thread rolling region has a compressive yield strength of at least 400,000 psi, a Young's modulus in the range of 50×106 psi to 80×106 psi, an abrasion wear volume in the range of 5 mm3 to 30 mm3 evaluated according to ASTM G65-04, a hardness in the range of 78 HRA to 89 HRA, a fracture toughness of at least 15 ksi·in1/2, and a transverse rupture strength of at least 300 ksi.


EXAMPLE 1


FIG. 7 is a photograph of a thread rolling die made of sintered cemented carbide as embodied in this disclosure. The die consists of a cylindrical sintered cemented carbide ring with the desired thread form on the working surface of the die. A sintered cemented carbide cylindrical part was first made using conventional powder metallurgy techniques by compacting Firth Grade ND-25 metallurgical powder (obtained from ATI Engineered Products, Grant, Ala.) in a hydraulic press using a pressure of 20,000 psi to form a cylindrical blank. High temperature sintering of the cylindrical blank was carried out at 1350° C. in an over-pressure furnace to provide a sintered cemented carbide material including 25% by weight of a continuous binder phase of cobalt and 75% by weight of dispersed tungsten carbide particles. The cylindrical cemented carbide material blank was machined to provide the desired thread form illustrated in FIG. 7 using conventional machine tools and machining practices.


The properties of the thread rolling die illustrated in FIG. 7 include a hardness of 83.0 HRA, a compressive strength of 450,000 psi, a Young's Modulus of 68×106 psi, and a wear volume of 23 mm3 as measured by ASTM G65-04.


EXAMPLE 2

A circular sintered cemented carbide thread rolling die is prepared as described in Example 1 and is placed in a graphite mold. Powdered tungsten is added to the mold to cover the thread rolling die. An infiltrant powder blend consisting essentially of 78 weight percent copper, 10 weight percent nickel, 6 weight percent manganese, 6 weight percent tin, and incidental impurities is placed in a funnel positioned above the graphite mold. The assembly is placed in a vacuum furnace at a temperature of 1350° C., which is greater than the melting point of the infiltrant powder blend. The molten material formed on melting the infiltrant powder blend infiltrates the space between the tungsten powder and the thread rolling die. As the molten material cools and solidifies, it binds tungsten carbide particles formed from the powdered tungsten to the die and forms a non-cemented carbide non-working portion. Subsequently, the rolling die is machined to form a sintered ceramic thread rolling die comprising a non-cemented carbide non-working region 18 as schematically depicted in FIG. 3. The non-cemented carbide non-working region is machined to facilitate mounting of the thread rolling die onto a thread rolling machine.


It will be understood that the present description illustrates those aspects of the invention relevant to a clear understanding of thread rolling dies according to the present disclosure. Certain aspects that would be apparent to those of ordinary skill in the art and that, therefore, would not facilitate a better understanding of the subject matter herein have not been presented in order to simplify the present description. Although only a limited number of embodiments are necessarily described herein, one of ordinary skill in the art will, upon considering the foregoing description, recognize that many modifications and variations may be employed. All such variations and modifications are intended to be covered by the foregoing description and the following claims.

Claims
  • 1. A thread rolling die comprising: a thread rolling region comprising a working surface including a thread form, wherein the thread rolling region comprises a sintered cemented carbide material having a hardness in the range of 78 HRA to 89 HRA,a non-working region comprising one of a layered and a gradient structure comprising at least two different grades of sintered cemented carbide materials,wherein each of the sintered cemented carbide materials in the thread rolling region and non-working region individually comprise hard particles of at least one carbide dispersed in a continuous binder comprising at least one of cobalt, a cobalt alloy, nickel, a nickel alloy, iron, and an iron alloy.
  • 2. The thread rolling die of claim 1, wherein the sintered cemented carbide material of the thread rolling region has a compressive yield strength of at least 400,000 psi.
  • 3. The thread rolling die of claim 1, wherein the sintered cemented carbide material of the thread rolling region has a Young's modulus of at least 50×106 psi.
  • 4. The thread rolling die of claim 1, wherein the sintered cemented carbide material of the thread rolling region has an abrasion wear volume no greater than 30 mm3 evaluated according to ASTM 065-04.
  • 5. The thread rolling die of claim 1, wherein the sintered cemented carbide material of the thread rolling region has a compressive yield strength of at least 400,000 psi; a Young's modulus of at least 50×106 psi; and an abrasion wear volume no greater than 30 mm3 evaluated according to ASTM G65-04.
  • 6. The thread rolling die of claim 1, wherein the Young's modulus of the sintered cemented carbide material of the thread rolling region is in the range of 50×106 psi to 80×106 psi.
  • 7. The thread rolling die of claim 1, wherein the abrasion wear volume of the sintered cemented carbide material of the thread rolling region is in the range of 5 mm3 to 30 mm3 evaluated according to ASTM G65-04.
  • 8. The thread rolling die of claim 1, wherein the sintered cemented carbide material of the thread rolling region has a fracture toughness of at least 15 ksi-in1/2.
  • 9. The thread rolling die of claim 1, wherein the sintered cemented carbide material of the thread rolling region has a transverse rupture strength of at least 300 ksi.
  • 10. The thread rolling die of claim 1, wherein the sintered cemented carbide material of the thread rolling region has a compressive yield strength of at least 400,000 psi; a Young's modulus in the range of 50×106 psi to 80×106 psi; an abrasion wear volume in the range of 5 mm3 to 30 mm3 evaluated according to ASTM G65-04; a fracture toughness of at least 15 ksi-in1/2; and a transverse rupture strength of at least 300 ksi.
  • 11. The thread rolling die of claim 1, wherein the thread rolling die is selected from the group consisting of a flat thread rolling die and a cylindrical thread rolling die.
  • 12. The thread rolling die of claim 1, wherein the sintered cemented carbide materials of the thread rolling region and non-working region individually comprise hard particles of at least one carbide of a metal selected from Groups IVB, VB, and VIB of the Periodic Table dispersed in a continuous binder comprising at least one of cobalt, a cobalt alloy, nickel, a nickel alloy, iron, and an iron alloy.
  • 13. The thread rolling die of claim 12, wherein the sintered cemented carbide material of the thread rolling region and non-working region individually comprise 60 weight percent up to 98 weight percent of the hard particles and 2 weight percent to 40 weight percent of the continuous binder.
  • 14. The thread rolling die of claim 12, wherein the binder of the sintered cemented carbide materials of the thread rolling region and non-working region individually further comprise at least one additive individually selected from tungsten, chromium, titanium, vanadium, niobium and carbon in a concentration up to the solubility limit of the additive in the binder.
  • 15. The thread rolling die of claim 12, wherein the binder of the sintered cemented carbide materials of the thread rolling region and non-working region further comprise up to 5% by weight of at least one additive individually selected from silicon, boron, aluminum copper, ruthenium, and manganese.
  • 16. The thread rolling die of claim 12, wherein the hard particles have an average grain size in the range of 0.3 μm to 20 μm.
  • 17. The thread rolling die of claim 1, wherein at least the working surface of the thread rolling region comprises a hybrid cemented carbide.
  • 18. The thread rolling die of claim 17, wherein a dispersed phase of the hybrid cemented carbide has a contiguity ratio of less than 0.48.
  • 19. The thread rolling die of claim 1, wherein the thread rolling region comprises one of a layered and a gradient structure comprising different grades of sintered cemented carbide materials.
  • 20. The thread rolling die of claim 1, further comprising at least one non-cemented carbide piece metallurgically bonded to the thread rolling region on a side of the thread rolling region opposite the working surface of the thread rollin region.
  • 21. The thread rolling die of claim 20, wherein the at least one non-cemented carbide piece comprises at least one of a metal or metal alloy region and a metal matrix composite region.
  • 22. The thread rolling die of claim 21, wherein the metal or metal alloy region of the non-cemented carbide piece comprises at least one of nickel, a nickel alloy, cobalt, a cobalt alloy, iron, an iron alloy, titanium, a titanium alloy, copper, a copper alloy, aluminum, and an aluminum alloy.
  • 23. The thread rolling die of claim 21, wherein the metal matrix composite of the non-cemented carbide piece comprises at least one of hard particles and metallic particles bound together by a matrix metal, and wherein a melting temperature of the matrix metal is less than a melting temperature of any of the hard particles and the metallic particles of the metal matrix composite.
  • 24. The thread rolling die of claim 23, wherein the hard particles of the metal matrix composite comprise at least one carbide of a metal selected from Groups IVB, VB, and VIB of the Periodic Table.
  • 25. The thread rolling die of claim 23, wherein the hard particles of the metal matrix composite comprise particles of at least one of carbides, oxides, nitrides, borides and silicides.
  • 26. The thread rolling die of claim 23, wherein the metallic particles of the metal matrix composite comprise grains of at least one of tungsten, a tungsten alloy, tantalum, a tantalum alloy, molybdenum, a molybdenum alloy, niobium, a niobium alloy, titanium, a titanium alloy, nickel, a nickel alloy, cobalt, a cobalt alloy, iron and an iron alloy.
  • 27. The thread rolling die of claim 20, wherein the at least one non-cemented carbide piece is machinable.
  • 28. The thread rolling die of claim 23, wherein the matrix metal comprises at least one of nickel, a nickel alloy, cobalt, a cobalt alloy, iron, an iron alloy, copper, a copper alloy, aluminum, an aluminum alloy, titanium, a titanium alloy, a bronze, and a brass.
  • 29. The thread rolling die of claim 23, wherein the matrix metal comprises a bronze consisting essentially of 78 weight percent copper, 10 weight percent nickel, 6 weight percent manganese, 6 weight percent tin, and incidental impurities.
  • 30. The thread rolling die of claim 1, wherein the thread form comprises at least one of V-type threads, Acme threads, Knuckle threads, and Buttress threads.
  • 31. A thread rolling die, comprising: a non-working region, and a thread rolling region comprising a working surface including a thread form, wherein the non-working region and the working surface of the thread rolling region individually comprise a sintered cemented carbide material, wherein the sintered cemented carbide material comprises hard particles of at least one carbide of a metal selected from Groups IVB, VB, and VIS of the Periodic Table dispersed in a continuous binder comprising at least one of cobalt, a cobalt alloy, nickel, a nickel alloy, iron, and an iron alloy; andat least one non-cemented carbide piece metallurgically bonded to the thread rolling region in an area of the thread rolling region that does not prevent a workpiece from contacting the working surface, wherein the non-cemented carbide piece comprises a composite material including metal or metallic alloy grains, particles, and/or powder dispersed in a continuous metal or metallic alloy matrix composite.
  • 32. The thread rolling die of claim 31, wherein the sintered cemented carbide of the working surface has a compressive yield strength of at least 400,000 psi, a Young's modulus in the range of 50×106 psi to 80×106 psi, an abrasion wear volume in the range of 5 mm3 to 30 mm3 evaluated according to ASTM 065-04, a hardness in the range of 78 HRA to 89 HRA, a fracture toughness of at least 15 ksi-in1/2, and a transverse rupture strength of at least 300 ksi.
  • 33. The thread rolling die of claim 20, wherein the at least one non-cemented carbide piece metallurgically bonded to the thread rolling region comprises threads or other features to mechanically attach the thread rolling die to a thread rolling machine.
  • 34. The thread rolling die of claim 31, wherein the at least one non-cemented carbide piece metallurgically bonded to the thread rolling region comprises threads or other features to mechanically attach the thread rolling die to a thread rolling machine.
  • 35. The thread rolling die of claim 1, wherein the sintered cemented carbide material of the thread rolling region has at least one mechanical property or characteristic that differs from the sintered cemented carbide materials of the nonworking region.
  • 36. The thread rolling die of claim 35, wherein the sintered cemented carbide materials of the non-working region have a hardness less than a hardness of the sintered cemented carbide material of the thread rolling region.
  • 37. The thread rolling die of claim 1, wherein one of the at least two different grades of sintered cemented carbide materials of the non-working region have at least one mechanical property or characteristic that differs from the other of the at least two different grades of sintered cemented carbide materials of the non-working region.
  • 38. The thread rolling die of claim 37, wherein the at least one characteristic comprises at least one of average hard particle size, hard particle composition, hard particle concentration, binder phase composition, and binder phase concentration.
  • 39. The thread rolling die of claim 37, wherein the at least one mechanical property comprises at least one of compressive yield strength, Young's modulus, hardness, toughness, wear resistance, and transverse rupture strength.
US Referenced Citations (519)
Number Name Date Kind
1509438 Miller Sep 1924 A
1530293 Breitenstein Mar 1925 A
1808136 Hogg et al. Jun 1931 A
1811802 Newman Jun 1931 A
1912298 Newman May 1933 A
2054026 Benninghoff Sep 1936 A
2093507 Bartek Sep 1937 A
2093742 Staples Sep 1937 A
2093986 Staples Sep 1937 A
2240840 Fischer May 1941 A
2246237 Benninghoff Jun 1941 A
2283280 Nell May 1942 A
2299207 Bevillard Oct 1942 A
2351827 McAllister Jun 1944 A
2422994 Taylor Jun 1947 A
2819958 Abkowitz et al. Jan 1958 A
2819959 Abkowitz et al. Jan 1958 A
2906654 Abkowitz Sep 1959 A
2954570 Couch Oct 1960 A
3041641 Hradek et al. Jul 1962 A
3093850 Kelso Jun 1963 A
3368881 Abkowitz et al. Feb 1968 A
3471921 Feenstra Oct 1969 A
3482295 Trent Dec 1969 A
3490901 Hachisuka et al. Jan 1970 A
3581835 Stebley Jun 1971 A
3629887 Urbanic Dec 1971 A
3660050 Iler et al. May 1972 A
3757879 Wilder et al. Sep 1973 A
3762882 Grutza Oct 1973 A
3776655 Urbanic Dec 1973 A
3782848 Pfeifer Jan 1974 A
3806270 Tanner et al. Apr 1974 A
3812548 Theuerkaue May 1974 A
3852992 Yamamoto Dec 1974 A
3889516 Yankee et al. Jun 1975 A
RE28645 Aoki et al. Dec 1975 E
3936295 Cromwell et al. Feb 1976 A
3942954 Frehn Mar 1976 A
3980549 Grutza Sep 1976 A
3987859 Lichte Oct 1976 A
4009027 Naidich et al. Feb 1977 A
4017480 Baum Apr 1977 A
4047828 Makely Sep 1977 A
4094709 Rozmus Jun 1978 A
4097180 Kwieraga Jun 1978 A
4097275 Horvath Jun 1978 A
4105049 Anderson Aug 1978 A
4106382 Salje et al. Aug 1978 A
4126652 Oohara et al. Nov 1978 A
4128136 Generoux Dec 1978 A
4170499 Thomas et al. Oct 1979 A
4181505 De Vries et al. Jan 1980 A
4198233 Frehn Apr 1980 A
4221270 Vezirian Sep 1980 A
4229638 Lichte Oct 1980 A
4233720 Rozmus Nov 1980 A
4255165 Dennis et al. Mar 1981 A
4270952 Kobayashi Jun 1981 A
4276788 van Nederveen Jul 1981 A
4277106 Sahley Jul 1981 A
4277108 Wallace Jul 1981 A
4306139 Shinozaki et al. Dec 1981 A
4311490 Bovenkerk et al. Jan 1982 A
4325994 Kitashima et al. Apr 1982 A
4327156 Dillon et al. Apr 1982 A
4331741 Wilson May 1982 A
4340327 Martins Jul 1982 A
4341557 Lizenby Jul 1982 A
4351401 Fielder Sep 1982 A
4376793 Jackson Mar 1983 A
4396321 Holmes Aug 1983 A
4398952 Drake Aug 1983 A
4423646 Berhardt Jan 1984 A
4478297 Radtke Oct 1984 A
4497358 Gnadig et al. Feb 1985 A
4499048 Hanejko Feb 1985 A
4499795 Radtke Feb 1985 A
4520882 van Nederveen Jun 1985 A
4526748 Rozmus Jul 1985 A
4547104 Holmes Oct 1985 A
4547337 Rozmus Oct 1985 A
4550532 Fletcher, Jr. et al. Nov 1985 A
4552232 Frear Nov 1985 A
4553615 Grainger Nov 1985 A
4554130 Ecer Nov 1985 A
4562990 Rose Jan 1986 A
4574011 Bonjour et al. Mar 1986 A
4579713 Lueth Apr 1986 A
4587174 Yoshimura et al. May 1986 A
4592685 Beere Jun 1986 A
4596694 Rozmus Jun 1986 A
4597730 Rozmus Jul 1986 A
4604106 Hall Aug 1986 A
4604781 Rankin, III Aug 1986 A
4605343 Hibbs, Jr. et al. Aug 1986 A
4609577 Long Sep 1986 A
4630693 Goodfellow Dec 1986 A
4642003 Yoshimura Feb 1987 A
4649086 Johnson Mar 1987 A
4656002 Lizenby et al. Apr 1987 A
4662461 Garrett May 1987 A
4667756 King et al. May 1987 A
4686080 Hara et al. Aug 1987 A
4686156 Baldoni, II et al. Aug 1987 A
4694919 Barr Sep 1987 A
4708542 Emanuelli Nov 1987 A
4722405 Langford Feb 1988 A
4729789 Ide et al. Mar 1988 A
4743515 Fischer et al. May 1988 A
4744943 Timm May 1988 A
4749053 Hollingshead Jun 1988 A
4752159 Howlett Jun 1988 A
4752164 Leonard, Jr. Jun 1988 A
4761844 Turchan Aug 1988 A
4779440 Cleve et al. Oct 1988 A
4780274 Barr Oct 1988 A
4804049 Barr Feb 1989 A
4809903 Eylon et al. Mar 1989 A
4813823 Bieneck Mar 1989 A
4831674 Bergstrom et al. May 1989 A
4838366 Jones Jun 1989 A
4861350 Phaal et al. Aug 1989 A
4871377 Frushour Oct 1989 A
4881431 Bieneck Nov 1989 A
4884477 Smith et al. Dec 1989 A
4889017 Fuller et al. Dec 1989 A
4899838 Sullivan et al. Feb 1990 A
4919013 Smith et al. Apr 1990 A
4923512 Timm et al. May 1990 A
4934040 Turchan Jun 1990 A
4943191 Schmidtt Jul 1990 A
4956012 Jacobs et al. Sep 1990 A
4968348 Abkowitz et al. Nov 1990 A
4971485 Nomura et al. Nov 1990 A
4991670 Fuller et al. Feb 1991 A
5000273 Horton et al. Mar 1991 A
5010945 Burke Apr 1991 A
5030598 Hsieh Jul 1991 A
5032352 Meeks et al. Jul 1991 A
5041261 Buljan et al. Aug 1991 A
5049450 Dorfman et al. Sep 1991 A
RE33753 Vacchiano et al. Nov 1991 E
5067860 Kobayashi et al. Nov 1991 A
5075315 Rasmussen Dec 1991 A
5075316 Hubele Dec 1991 A
5080538 Schmidtt Jan 1992 A
5090491 Tibbitts et al. Feb 1992 A
5092412 Walk Mar 1992 A
5094571 Ekerot Mar 1992 A
5096465 Chen et al. Mar 1992 A
5098232 Benson Mar 1992 A
5110687 Abe et al. May 1992 A
5112162 Hartford et al. May 1992 A
5112168 Glimpel May 1992 A
5116659 Glatzle et al. May 1992 A
5126206 Garg et al. Jun 1992 A
5127776 Glimpel Jul 1992 A
5135801 Nyström et al. Aug 1992 A
5161898 Drake Nov 1992 A
5174700 Sgarbi et al. Dec 1992 A
5179772 Braun et al. Jan 1993 A
5186739 Isobe et al. Feb 1993 A
5203513 Keller et al. Apr 1993 A
5203932 Kato et al. Apr 1993 A
5217081 Waldenström et al. Jun 1993 A
5232522 Doktycz et al. Aug 1993 A
5250355 Newman et al. Oct 1993 A
5266415 Newkirk et al. Nov 1993 A
5273380 Musacchia Dec 1993 A
5281260 Kumar et al. Jan 1994 A
5286685 Schoennahl et al. Feb 1994 A
5305840 Liang et al. Apr 1994 A
5311958 Isbell et al. May 1994 A
5326196 Noll Jul 1994 A
5333520 Fischer et al. Aug 1994 A
5335738 Waldenström et al. Aug 1994 A
5338135 Noguchi et al. Aug 1994 A
5346316 Okada et al. Sep 1994 A
5348806 Kojo et al. Sep 1994 A
5354155 Adams Oct 1994 A
5359772 Carlsson et al. Nov 1994 A
5373907 Weaver Dec 1994 A
5376329 Morgan et al. Dec 1994 A
5413438 Turchan May 1995 A
5423899 Krall et al. Jun 1995 A
5429459 Palm Jul 1995 A
5438108 Umemura et al. Aug 1995 A
5438858 Friedrichs Aug 1995 A
5443337 Katayama Aug 1995 A
5447549 Yoshimura Sep 1995 A
5452771 Blackman et al. Sep 1995 A
5467669 Stroud Nov 1995 A
5474407 Rodel et al. Dec 1995 A
5479997 Scott et al. Jan 1996 A
5480272 Jorgensen et al. Jan 1996 A
5482670 Hong Jan 1996 A
5484468 Östlund et al. Jan 1996 A
5487626 Von Holst et al. Jan 1996 A
5492186 Overstreet et al. Feb 1996 A
5496137 Ochayon et al. Mar 1996 A
5498142 Mills Mar 1996 A
5505748 Tank et al. Apr 1996 A
5506055 Dorfman et al. Apr 1996 A
5518077 Blackman et al. May 1996 A
5525134 Mehrotra et al. Jun 1996 A
5541006 Conley Jul 1996 A
5543235 Mirchandani et al. Aug 1996 A
5544550 Smith Aug 1996 A
5560238 Allebach et al. Oct 1996 A
5560440 Tibbitts Oct 1996 A
5570978 Rees et al. Nov 1996 A
5580666 Dubensky et al. Dec 1996 A
5586612 Isbell et al. Dec 1996 A
5590729 Cooley et al. Jan 1997 A
5593474 Keshavan et al. Jan 1997 A
5601857 Friedrichs Feb 1997 A
5603075 Stoll et al. Feb 1997 A
5609286 Anthon Mar 1997 A
5609447 Britzke et al. Mar 1997 A
5611251 Katayama Mar 1997 A
5612264 Nilsson et al. Mar 1997 A
5628837 Britzke et al. May 1997 A
RE35538 Akesson et al. Jun 1997 E
5641251 Leins et al. Jun 1997 A
5641921 Dennis et al. Jun 1997 A
5662183 Fang Sep 1997 A
5666864 Tibbitts Sep 1997 A
5672382 Lux Sep 1997 A
5677042 Massa et al. Oct 1997 A
5679445 Massa et al. Oct 1997 A
5686119 McNaughton, Jr. Nov 1997 A
5697042 Massa et al. Dec 1997 A
5697046 Conley Dec 1997 A
5697462 Grimes et al. Dec 1997 A
5704736 Giannetti Jan 1998 A
5712030 Goto et al. Jan 1998 A
5718948 Ederyd et al. Feb 1998 A
5732783 Truax et al. Mar 1998 A
5733078 Matsushita et al. Mar 1998 A
5733649 Kelley et al. Mar 1998 A
5733664 Kelley et al. Mar 1998 A
5750247 Bryant et al. May 1998 A
5753160 Takeuchi et al. May 1998 A
5755033 Günter et al. May 1998 A
5755298 Langford, Jr. et al. May 1998 A
5762843 Massa et al. Jun 1998 A
5765095 Flak et al. Jun 1998 A
5776593 Massa et al. Jul 1998 A
5778301 Hong Jul 1998 A
5789686 Massa et al. Aug 1998 A
5791833 Niebauer Aug 1998 A
5792403 Massa et al. Aug 1998 A
5803152 Dolman et al. Sep 1998 A
5806934 Massa et al. Sep 1998 A
5830256 Northrop et al. Nov 1998 A
5851094 Stand et al. Dec 1998 A
5856626 Fischer et al. Jan 1999 A
5865571 Tankala et al. Feb 1999 A
5873684 Flolo Feb 1999 A
5880382 Fang et al. Mar 1999 A
5890852 Gress Apr 1999 A
5893204 Symonds Apr 1999 A
5897830 Abkowitz et al. Apr 1999 A
5899257 Alleweireldt et al. May 1999 A
5947660 Karlsson et al. Sep 1999 A
5957006 Smith Sep 1999 A
5963775 Fang Oct 1999 A
5964555 Strand Oct 1999 A
5967249 Butcher Oct 1999 A
5971670 Pantzar et al. Oct 1999 A
5976707 Grab et al. Nov 1999 A
5988953 Berglund et al. Nov 1999 A
6007909 Rolander et al. Dec 1999 A
6012882 Turchan Jan 2000 A
6022175 Heinrich et al. Feb 2000 A
6029544 Katayama Feb 2000 A
6051171 Takeuchi et al. Apr 2000 A
6063333 Dennis May 2000 A
6068070 Scott May 2000 A
6073518 Chow et al. Jun 2000 A
6076999 Hedberg et al. Jun 2000 A
6086003 Günter et al. Jul 2000 A
6086980 Foster et al. Jul 2000 A
6089123 Chow et al. Jul 2000 A
6109377 Massa et al. Aug 2000 A
6109677 Anthony Aug 2000 A
6117493 North Sep 2000 A
6135218 Deane et al. Oct 2000 A
6148936 Evans et al. Nov 2000 A
6200514 Meister Mar 2001 B1
6209420 Butcher et al. Apr 2001 B1
6214134 Eylon et al. Apr 2001 B1
6214287 Waldenström Apr 2001 B1
6220117 Butcher Apr 2001 B1
6227188 Tankala et al. May 2001 B1
6228134 Erickson May 2001 B1
6228139 Oskarrson May 2001 B1
6234261 Evans et al. May 2001 B1
6241036 Lovato et al. Jun 2001 B1
6248277 Friedrichs Jun 2001 B1
6254658 Taniuchi et al. Jul 2001 B1
6287360 Kembaiyan et al. Sep 2001 B1
6290438 Papajewski Sep 2001 B1
6293986 Rödiger et al. Sep 2001 B1
6299658 Moriguchi et al. Oct 2001 B1
6302224 Sherwood, Jr. Oct 2001 B1
6326582 North Dec 2001 B1
6345941 Fang et al. Feb 2002 B1
6353771 Southland Mar 2002 B1
6372346 Toth Apr 2002 B1
6374932 Brady Apr 2002 B1
6375706 Kembaiyan et al. Apr 2002 B2
6386954 Sawabe et al. May 2002 B2
6394711 Brosius May 2002 B1
6395108 Eberle et al. May 2002 B2
6402439 Puide et al. Jun 2002 B1
6425716 Cook Jul 2002 B1
6450739 Puide et al. Sep 2002 B1
6453899 Tselesin Sep 2002 B1
6454025 Runquist et al. Sep 2002 B1
6454028 Evans Sep 2002 B1
6454030 Findley et al. Sep 2002 B1
6458471 Lovato et al. Oct 2002 B2
6461401 Kembaiyan et al. Oct 2002 B1
6474425 Truax et al. Nov 2002 B1
6475647 Mendez Acevedo et al. Nov 2002 B1
6499917 Parker et al. Dec 2002 B1
6499920 Sawabe Dec 2002 B2
6500226 Dennis Dec 2002 B1
6502623 Schmitt Jan 2003 B1
6511265 Mirchandani et al. Jan 2003 B1
6544308 Griffin et al. Apr 2003 B2
6546991 Dworog et al. Apr 2003 B2
6551035 Bruhn et al. Apr 2003 B1
6562462 Griffin et al. May 2003 B2
6576182 Ravagni et al. Jun 2003 B1
6582126 North Jun 2003 B2
6585064 Griffin et al. Jul 2003 B2
6585864 Fisher et al. Jul 2003 B1
6589640 Griffin et al. Jul 2003 B2
6599467 Yamaguchi et al. Jul 2003 B1
6607693 Saito et al. Aug 2003 B1
6607835 Fang et al. Aug 2003 B2
6637528 Nishiyama et al. Oct 2003 B2
6648068 Dewey et al. Nov 2003 B2
6649682 Breton et al. Nov 2003 B1
6651757 Belnap et al. Nov 2003 B2
6655481 Findley et al. Dec 2003 B2
6655882 Heinrich et al. Dec 2003 B2
6676863 Christiaens et al. Jan 2004 B2
6682780 Tzatzov et al. Jan 2004 B2
6685880 Engström et al. Feb 2004 B2
6688988 McClure Feb 2004 B2
6695551 Silver Feb 2004 B2
6706327 Blomstedt et al. Mar 2004 B2
6716388 Bruhn et al. Apr 2004 B2
6719074 Tsuda et al. Apr 2004 B2
6725953 Truax et al. Apr 2004 B2
6737178 Ota et al. May 2004 B2
6742608 Murdoch Jun 2004 B2
6742611 Illerhaus et al. Jun 2004 B1
6756009 Sim et al. Jun 2004 B2
6764555 Hiramatsu et al. Jul 2004 B2
6766870 Overstreet Jul 2004 B2
6767505 Witherspoon et al. Jul 2004 B2
6772849 Oldham et al. Aug 2004 B2
6782958 Liang et al. Aug 2004 B2
6799648 Brandenberg et al. Oct 2004 B2
6808821 Fujita et al. Oct 2004 B2
6844085 Takayama et al. Jan 2005 B2
6848521 Lockstedt et al. Feb 2005 B2
6849231 Kojima et al. Feb 2005 B2
6899495 Hansson et al. May 2005 B2
6918942 Hatta et al. Jul 2005 B2
6932172 Dvorachek Aug 2005 B2
6933049 Wan et al. Aug 2005 B2
6948890 Svensson et al. Sep 2005 B2
6949148 Sugiyama et al. Sep 2005 B2
6955233 Crowe et al. Oct 2005 B2
6958099 Nakamura et al. Oct 2005 B2
7014719 Suzuki et al. Mar 2006 B2
7014720 Iseda Mar 2006 B2
7017677 Keshavan et al. Mar 2006 B2
7036611 Radford et al. May 2006 B2
7044243 Kembaiyan et al. May 2006 B2
7048081 Smith et al. May 2006 B2
7070666 Druschitz et al. Jul 2006 B2
7080998 Hall et al. Jul 2006 B2
7090731 Kashima et al. Aug 2006 B2
7101128 Hansson Sep 2006 B2
7101446 Takeda et al. Sep 2006 B2
7112143 Muller Sep 2006 B2
7125207 Craig et al. Oct 2006 B2
7128773 Liang et al. Oct 2006 B2
7147413 Henderer et al. Dec 2006 B2
7152701 Butland et al. Dec 2006 B2
7159429 Takemasu Jan 2007 B2
7172142 Taylor et al. Feb 2007 B2
7175404 Kondo et al. Feb 2007 B2
7192660 Ruppi Mar 2007 B2
7204117 Friedrichs Apr 2007 B2
7207401 Dewey et al. Apr 2007 B2
7216727 Wardley May 2007 B2
7231984 Jaensch Jun 2007 B2
7234541 Scott et al. Jun 2007 B2
7234550 Azar et al. Jun 2007 B2
7235211 Griffo et al. Jun 2007 B2
7238414 Benitsch et al. Jul 2007 B2
7244519 Festeau et al. Jul 2007 B2
7250069 Kembaiyan et al. Jul 2007 B2
7261782 Hwang et al. Aug 2007 B2
7267187 Kembaiyan Sep 2007 B2
7267543 Freidhoff et al. Sep 2007 B2
7270679 Istephanous et al. Sep 2007 B2
7296497 Kugelberg et al. Nov 2007 B2
7350599 Lockwood et al. Apr 2008 B2
7381283 Lee et al. Jun 2008 B2
7384413 Gross et al. Jun 2008 B2
7384443 Mirchandani et al. Jun 2008 B2
7395882 Oldham et al. Jul 2008 B2
7410610 Woodfield et al. Aug 2008 B2
7487849 Radtke Feb 2009 B2
7494507 Dixon Feb 2009 B2
7497280 Brackin et al. Mar 2009 B2
7497396 Splinter et al. Mar 2009 B2
7513320 Mirchandani et al. Apr 2009 B2
7524351 Hua et al. Apr 2009 B2
7556668 Eason et al. Jul 2009 B2
7575620 Terry et al. Aug 2009 B2
7625157 Prichard et al. Dec 2009 B2
7632323 Ganguly et al. Dec 2009 B2
7661491 Kembaiyan et al. Feb 2010 B2
7687156 Fang Mar 2010 B2
7703555 Overstreet Apr 2010 B2
7810588 McClain et al. Oct 2010 B2
7832456 Calnan et al. Nov 2010 B2
7832457 Calnan et al. Nov 2010 B2
7846551 Fang et al. Dec 2010 B2
7887747 Iwasaki et al. Feb 2011 B2
7954569 Mirchandani et al. Jun 2011 B2
8025112 Mirchandani et al. Sep 2011 B2
8087324 Mirchandani et al. Jan 2012 B2
8109177 Kembaiyan et al. Feb 2012 B2
8137816 Fang et al. Mar 2012 B2
8141665 Ganz Mar 2012 B2
8225886 Mirchandani et al. Jul 2012 B2
20020004105 Kunze et al. Jan 2002 A1
20030010409 Kunze et al. Jan 2003 A1
20030041922 Hirose et al. Mar 2003 A1
20030219605 Molian et al. Nov 2003 A1
20040013558 Kondoh et al. Jan 2004 A1
20040105730 Nakajima Jun 2004 A1
20040129403 Liu et al. Jul 2004 A1
20040228695 Clauson Nov 2004 A1
20040234820 Majagi Nov 2004 A1
20040244540 Oldham et al. Dec 2004 A1
20040245022 Izaguirre et al. Dec 2004 A1
20040245024 Kembaiyan Dec 2004 A1
20050008524 Testani Jan 2005 A1
20050019114 Sung Jan 2005 A1
20050025928 Annanolli et al. Feb 2005 A1
20050084407 Myrick Apr 2005 A1
20050103404 Hsieh et al. May 2005 A1
20050117984 Eason et al. Jun 2005 A1
20050194073 Hamano et al. Sep 2005 A1
20050211475 Mirchandani et al. Sep 2005 A1
20050247491 Mirchandani et al. Nov 2005 A1
20050268746 Abkowitz et al. Dec 2005 A1
20060016521 Hanusiak et al. Jan 2006 A1
20060032677 Azar et al. Feb 2006 A1
20060043648 Takeuchi et al. Mar 2006 A1
20060060392 Eyre Mar 2006 A1
20060185773 Chiovelli Aug 2006 A1
20060286410 Ahlgren et al. Dec 2006 A1
20060288820 Mirchandani et al. Dec 2006 A1
20070082229 Mirchandani et al. Apr 2007 A1
20070102198 Oxford et al. May 2007 A1
20070102199 Smith et al. May 2007 A1
20070102200 Choe et al. May 2007 A1
20070102202 Choe et al. May 2007 A1
20070108650 Mirchandani et al. May 2007 A1
20070110607 Iwasaki et al. May 2007 A1
20070126334 Nakamura et al. Jun 2007 A1
20070163679 Fujisawa et al. Jul 2007 A1
20070193782 Fang et al. Aug 2007 A1
20080011519 Smith et al. Jan 2008 A1
20080101977 Eason et al. May 2008 A1
20080145686 Mirchandani et al. Jun 2008 A1
20080163723 Mirchandani et al. Jul 2008 A1
20080196318 Bost et al. Aug 2008 A1
20080302576 Mirchandani et al. Dec 2008 A1
20090032501 Swingley et al. Feb 2009 A1
20090041612 Fang et al. Feb 2009 A1
20090136308 Newitt May 2009 A1
20090180915 Mirchandani et al. Jul 2009 A1
20090293672 Mirchandani et al. Dec 2009 A1
20090301788 Stevens et al. Dec 2009 A1
20100044114 Mirchandani et al. Feb 2010 A1
20100044115 Mirchandani et al. Feb 2010 A1
20100278603 Fang et al. Nov 2010 A1
20100290849 Mirchandani et al. Nov 2010 A1
20100323213 Aitchison et al. Dec 2010 A1
20110011965 Mirchandani et al. Jan 2011 A1
20110265623 Mirchandani et al. Nov 2011 A1
20110284179 Stevens et al. Nov 2011 A1
20110287238 Stevens et al. Nov 2011 A1
20110287924 Stevens Nov 2011 A1
20120285293 Mirchandani et al. Nov 2012 A1
20120321498 Mirchandani Dec 2012 A1
20130025127 Mirchandani et al. Jan 2013 A1
20130025813 Mirchandani et al. Jan 2013 A1
20130026274 Mirchandani et al. Jan 2013 A1
20130028672 Mirchandani et al. Jan 2013 A1
20130036872 Mirchandani et al. Feb 2013 A1
20130037985 Mirchandani Feb 2013 A1
20130043615 Mirchandani et al. Feb 2013 A1
20130048701 Mirchandani et al. Feb 2013 A1
20130075165 Coleman et al. Mar 2013 A1
Foreign Referenced Citations (138)
Number Date Country
695583 Feb 1998 AU
1018474 Oct 1977 CA
1158073 Dec 1983 CA
1250156 Feb 1989 CA
2022065 Feb 1991 CA
2120332 Jun 1993 CA
2107004 May 1996 CA
2228398 Feb 1997 CA
2198985 Sep 1998 CA
2108274 Jul 2000 CA
2212197 Oct 2000 CA
2201969 Feb 2003 CA
2213169 Mar 2005 CA
2498073 Aug 2006 CA
2556132 Feb 2007 CA
2570937 Jun 2007 CA
2357407 Jan 2008 CA
101263236 Sep 2008 CN
19634314 Jan 1998 DE
10300283 Jun 2004 DE
102006030661 Jan 2008 DE
0157625 Oct 1985 EP
0264674 Apr 1988 EP
0453428 Oct 1991 EP
0641620 Feb 1998 EP
0995876 Apr 2000 EP
1065021 Jan 2001 EP
1066901 Jan 2001 EP
1106706 Jun 2001 EP
0759480 Jan 2002 EP
1244531 Oct 2004 EP
1686193 Aug 2006 EP
2627541 Aug 1989 FR
622041 Apr 1949 GB
945227 Dec 1963 GB
1309634 Mar 1973 GB
1420906 Jan 1976 GB
1491044 Nov 1977 GB
2064619 Jun 1981 GB
2158744 Nov 1985 GB
1082568 Sep 1987 GB
2218931 Nov 1989 GB
2315452 Feb 1998 GB
2324752 Nov 1998 GB
2352727 Feb 2001 GB
2364745 Aug 2003 GB
2385350 Aug 2003 GB
2393449 Mar 2004 GB
2397832 Aug 2004 GB
2435476 Aug 2007 GB
51-124876 Oct 1976 JP
56-52604 May 1981 JP
59-54510 Mar 1984 JP
59-56501 Apr 1984 JP
59-67333 Apr 1984 JP
59-169707 Sep 1984 JP
59-175912 Oct 1984 JP
60-48207 Mar 1985 JP
60-172403 Sep 1985 JP
61-226231 Oct 1986 JP
61-243103 Oct 1986 JP
61057123 Dec 1986 JP
63-34710 Feb 1987 JP
62-063005 Mar 1987 JP
62-278250 Mar 1987 JP
62-218010 Sep 1987 JP
1-171725 Jul 1989 JP
2-95506 Apr 1990 JP
2-269515 Nov 1990 JP
3-43112 Feb 1991 JP
3-73210 Mar 1991 JP
5-50314 Mar 1993 JP
5-92329 Apr 1993 JP
H05-64288 Aug 1993 JP
H03-119090 Jun 1995 JP
7-276105 Oct 1995 JP
8-120308 May 1996 JP
H8-209284 Aug 1996 JP
8-294805 Nov 1996 JP
9-11005 Jan 1997 JP
9-192930 Jul 1997 JP
9-253779 Sep 1997 JP
10-138033 May 1998 JP
10219385 Aug 1998 JP
H10-511740 Nov 1998 JP
11-10409 Jan 1999 JP
11-300516 Nov 1999 JP
2000-237910 Sep 2000 JP
2000-296403 Oct 2000 JP
2000-355725 Dec 2000 JP
2002-097885 Apr 2002 JP
2002-166326 Jun 2002 JP
2002-317596 Oct 2002 JP
2003-306739 Oct 2003 JP
2004-514065 May 2004 JP
2004-160591 Jun 2004 JP
2004-181604 Jul 2004 JP
2004-190034 Jul 2004 JP
2005-111581 Apr 2005 JP
20050055268 Jun 2005 KR
2135328 Aug 1999 RU
2173241 Feb 2000 RU
2167262 May 2001 RU
967786 Oct 1982 SU
975369 Nov 1982 SU
990423 Jan 1983 SU
1269922 Nov 1986 SU
1292917 Feb 1987 SU
1350322 Nov 1987 SU
6742 Dec 1994 UA
63469 Jan 2006 UA
23749 Jun 2007 UA
WO 9205009 Apr 1992 WO
WO 9222390 Dec 1992 WO
WO 9734726 Sep 1997 WO
WO 9828455 Jul 1998 WO
WO 9913121 Mar 1999 WO
WO 0043628 Jul 2000 WO
WO 0052217 Sep 2000 WO
WO 0143899 Jun 2001 WO
WO 03010350 Feb 2003 WO
WO 03011508 Feb 2003 WO
WO 03049889 Jun 2003 WO
WO 2004053197 Jun 2004 WO
WO 2005045082 May 2005 WO
WO 2005054530 Jun 2005 WO
WO 2005061746 Jul 2005 WO
WO 2005106183 Nov 2005 WO
WO 2006071192 Jul 2006 WO
WO 2006104001 Oct 2006 WO
WO 2007001870 Jan 2007 WO
WO 2007022336 Feb 2007 WO
WO 2007030707 Mar 2007 WO
WO 2007044791 Apr 2007 WO
WO 2007127680 Nov 2007 WO
WO 2008098636 Jun 2008 WO
WO 2008115703 Sep 2008 WO
WO 2011008439 Jan 2011 WO
Non-Patent Literature Citations (176)
Entry
US 4,966,627, 10/1990, Keshavan et al. (withdrawn)
ASTM G65-04 Publish Date from http://infostore.saiglobal.com.
Advisory Action mailed Jun. 29, 2009 in U.S. Appl. No. 10/903,198.
ASM Materials Engineering Dictionary, J. R. Davis, Ed., ASM International, Fifth printing (Jan. 2006), p. 98.
Coyle, T.W. and A. Bahrami, “Structure and Adhesion of Ni and Ni—WC Plasma Spray Coatings,” Thermal Spray, Surface Engineering via Applied Research, Proceedings of the 1st International Thermal Spray Conference, May 8-11, 2000, Montreal, Quebec, Canada, 2000, pp. 251-254.
Deng, X. et al., “Mechanical Properties of a Hybrid Cemented Carbide Composite,” International Journal of Refractory Metals and Hard Materials, Elsevier Science Ltd., vol. 19, 2001, pp. 547-552.
Gurland, J. Quantitative Microscopy, R.T. DeHoff and F.N. Rhines, eds., McGraw-Hill Book Company, New York, 1968, pp. 279-290.
Gurland, Joseph, “Application of Quantitative Microscopy to Cemented Carbides,” Practical Applications of Quantitative Matellography, ASTM Special Technical Publication 839, ASTM 1984, pp. 65-84.
Hayden, Matthew and Lyndon Scott Stephens, “Experimental Results for a Heat-Sink Mechanical Seal,” Tribology Transactions, 48, 2005, pp. 352-361.
Metals Handbook, vol. 16 Machining, “Tapping” (ASM International 1989), pp. 255-267.
Notice of Allowance issued on Jan. 27, 2009 in U.S. Appl. No. 11/116,752.
Notice of Allowance mailed Oct. 21, 2002 in U.S. Appl. No. 09/460,540.
Notice of Allowance issued on Nov. 13, 2008 in U.S. Appl. No. 11/206,368.
Notice of Allowance issued on Nov. 26, 2008 in U.S. Appl. No. 11/013,842.
Notice of Allowance issued on Nov. 30, 2009 in U.S. Appl. No. 11/206,368.
Notice of Allowance issued on Jan. 26, 2010 in U.S. Appl. No. 11/116,752.
Office Action (Advisory Action) mailed Mar. 15, 2002 in U.S. Appl. No. 09/460,540.
Office Action (final) mailed Dec. 1, 2001 in U.S. Appl. No. 09/460,540.
Office Action (non-final) mailed Jun. 1, 2001 in U.S. Appl. No. 09/460,540.
Office Action (non-final) mailed Jun. 18, 2002 in U.S. Appl. No. 09/460,540.
Office Action issued on Aug. 12, 2008 in U.S. Appl. No. 11/116,752.
Office Action issued on Jul. 9, 2009 in U.S. Appl. No. 11/116,752.
Office Action issued on Aug. 31, 2007 in U.S. Appl. No. 11/206,368.
Office Action issued on Feb. 28, 2008 in U.S. Appl. No. 11/206,368.
Office Action issued on Jan. 15, 2008 in U.S. Appl. No. 11/116,752.
Office Action issued on Jan. 16, 2007 in U.S. Appl. No. 11/013,842.
Office Action issued on Jan. 24, 2008 in U.S. Appl. No. 10/848,437.
Office Action issued on Jul. 16, 2008 in U.S. Appl. No. 11/013,842.
Office Action issued on Jul. 30, 2007 in U.S. Appl. No. 11/013,842.
Office Action mailed Apr. 30, 2009 in U.S. Appl. No. 11/206,368.
Office Action mailed Oct. 31, 2008 in U.S. Appl. No. 10/903,198.
Office Action mailed Apr. 17, 2009 in U.S. Appl. No. 10/903,198.
Peterman, Walter, “Heat-Sink Compound Protects the Unprotected,” Welding Design and Fabrication, Sep. 2003, pp. 20-22.
Pre-Appeal Brief Conference Decision issued on May 14, 2008 in U.S. Appl. No. 10/848,437.
Pre-Appeal Conference Decision issued on Jun. 19, 2008 in U.S. Appl. No. 11/206,368.
Restriction Requirement issued on Sep. 8, 2006 in U.S. Appl. No. 10/848,437.
Sriram, et al., “Effect of Cerium Addition on Microstructures of Carbon-Alloyed Iron Aluminides,” Bull. Mater. Sci., vol. 28, No. 6, Oct. 2005, pp. 547-554.
Tracey et al., “Development of Tungsten Carbide-Cobalt—Ruthenium Cutting Tools for Machining Steels” Proceedings Annual Microprogramming Workshop, vol. 14, 1981, pp. 281-292.
Underwood, Quantitative Stereology, pp. 23-108 (1970).
U.S. Appl. No. 12/464,607, filed May 12, 2009.
U.S. Appl. No. 12/502,277, filed Jul. 14, 2009.
Office Action mailed Mar. 12, 2009 in U.S. Appl. No. 11/585,408.
Office Action mailed Sep. 22, 2009 in U.S. Appl. No. 11/585,408.
Office Action mailed Sep. 7, 2010 in U.S. Appl. No. 11/585,408.
Office Action mailed Feb. 16, 2011 in U.S. Appl. No. 11/585,408.
Advisory Action mailed May 3, 2011 in U.S. Appl. No. 11/585,408.
Office Action mailed Aug. 17, 2011 in U.S. Appl. No. 11/585,408.
Notice of Allowance mailed May 9, 2012 in U.S. Appl. No. 11/585,408.
Restriction Requirement mailed Jul. 24, 2008 in U.S. Appl. No. 11/167,811.
Office Action mailed Oct. 21, 2008 in U.S. Appl. No. 11/167,811.
Final Office Action mailed Jun. 12, 2009 in U.S. Appl. No. 11/167,811.
Office Action mailed Aug. 28, 2009 in U.S. Appl. No. 11/167,811.
Office Action mailed Mar. 2, 2010 in U.S. Appl. No. 11/167,811.
Office Action mailed Aug. 19, 2010 in U.S. Appl. No. 11/167,811.
Advisory Action Before the Filing of an Appeal Brief mailed May 12, 2010 in U.S. Appl. No. 11/167,811.
Office Action mailed Feb. 3, 2011 in U.S. Appl. No. 11/167,811.
Advisory Action mailed May 11, 2011 in U.S. Appl. No. 11/167,811.
Office Action mailed Jul. 22, 2011 in U.S. Appl. No. 11/167,811.
Office Action mailed Mar. 28, 2012 in U.S. Appl. No. 11/167,811.
Office Action mailed Mar. 19, 2009 in U.S. Appl. No. 11/737,993.
Office Action mailed Jun. 3, 2009 in U.S. Appl. No. 11/737,993.
Office Action mailed Dec. 9, 2009 in U.S. Appl. No. 11/737,993.
Office Action mailed Feb. 24, 2010 in U.S. Appl. No. 11/737,993.
Office Action mailed Jun. 29, 2010 in U.S. Appl. No. 11/737,993.
Advisory Action Before the Filing of an Appeal Brief mailed Sep. 9, 2010 in U.S. Appl. No. 11/737,993.
Pre-Brief Appeal Conference Decision mailed Nov. 22, 2010 in U.S. Appl. No. 11/737,993.
Office Action mailed Apr. 20, 2011 in U.S. Appl. No. 11/737,993.
Office Action mailed Aug. 3, 2011 in U.S. Appl. No. 11/737,993.
Office Action mailed Oct. 11, 2011 in U.S. Appl. No. 11/737,993.
Office Action mailed Jan. 6, 2012 in U.S. Appl. No. 11/737,993.
Advisory Action Before the Filing of an Appeal Brief mailed Mar. 22, 2012 in U.S. Appl. No. 11/737,993.
Restriction Requirement mailed Sep. 17, 2010 in U.S. Appl. No. 12/397,597.
Office Action mailed Nov. 15, 2010 in U.S. Appl. No. 12/397,597.
Office Action mailed Jun. 7, 2011 in U.S. Appl. No. 12/397,597.
Advisory Action Before the Filing of an Appeal Brief mailed Aug. 31, 2011 in U.S. Appl. No. 12/397,597.
Office Action mailed Nov. 17, 2011 in U.S. Appl. No. 12/397,597.
Advisory Action mailed Jan. 26, 2012 in U.S. Appl. No. 12/397,597.
Office Action mailed Apr. 13, 2012 in U.S. Appl. No. 12/397,597.
Office Action mailed Dec. 29, 2005 in U.S. Appl. No. 10/903,198.
Office Action mailed Sep. 29, 2006 in U.S. Appl. No. 10/903,198.
Office Action mailed Mar. 27, 2007 in U.S. Appl. No. 10/903,198.
Office Action mailed Sep. 26, 2007 in U.S. Appl. No. 10/903,198.
Examiner's Answer mailed Aug. 17, 2010 in U.S. Appl. No. 10/903,198.
Office Action mailed Apr. 22, 2010 in U.S. Appl. No. 12/196,951.
Office Action mailed Oct. 29, 2010 in U.S. Appl. No. 12/196,951.
Office Action mailed Apr. 12, 2011 in U.S. Appl. No. 12/196,951.
Office Action mailed Oct. 19, 2011 in U.S. Appl. No. 12/196,951.
Office Action mailed Mar. 19, 2012 in U.S. Appl. No. 12/196,951.
Office Action mailed Oct. 13, 2011 in U.S. Appl. No. 12/179,999.
Notice of Allowance mailed Apr. 30, 2012 in U.S. Appl. No. 12/179,999.
Office Action mailed Aug. 29, 2011 in U.S. Appl. No. 12/476,738.
Office Action mailed Dec. 21, 2011 in U.S. Appl. No. 12/476,736.
Notice of Allowance mailed Apr. 17, 2012 in U.S. Appl. No. 12/476,738.
Office Action mailed Nov. 14, 2011 in U.S. Appl. No. 12/502,277.
Office Action mailed Jan. 20, 2012 in U.S. Appl. No. 12/502,277.
Office Action mailed Mar. 15, 2012 in U.S. Appl. No. 12/464,607.
Notice of Allowance mailed Apr. 9, 2012 in U.S. Appl. No. 12/464,607.
Office Action mailed Oct. 31, 2011 in U.S. Appl. No. 13/207,478.
Office Action mailed Mar. 2, 2012 in U.S. Appl. No. 13/207,478.
Notice of Allowance mailed Apr. 13, 2012 in U.S. Appl. No. 13/207,478.
Office Action mailed Dec. 5, 2011 in U.S. Appl. No. 13/182,474.
Office Actton mailed Apr. 27, 2012 in U.S. Appl. No. 13/182,474.
Office Action mailed May 14, 2009 in U.S. Appl. No. 11/687,343.
Office Action mailed Jan. 21, 2010 in U.S. Appl. No. 11/687,343.
Notice of Allowance mailed May 18, 2010 in U.S. Appl. No. 11/687,343.
Restriction Requirement mailed Aug. 4, 2010 in U.S. Appl. No. 12/198,815.
Office Action mailed Oct. 27, 2010 in U.S. Appl. No. 12/196,815.
Office Action mailed Nov. 17, 2010 in U.S. Appl. No. 12/196,815.
Notice of Allowance mailed Jan. 27, 2011 in U.S. Appl. No. 12/196,815.
Notice of Allowance mailed May 16, 2011 in U.S. Appl. No. 12/196,815.
Office Action mailed Sep. 2, 2011 in U.S. Appl. No. 12/850,003.
Notice of Allowance mailed Nov. 15, 2011 in U.S. Appl. No. 12/850,003.
Office Action mailed May 3, 2010 in U.S. Appl. No. 11/924,273.
Office Action mailed Oct. 14, 2010 in U.S. Appl. No. 11/924,273.
Office Action mailed Feb. 2, 2011 in U.S. Appl. No 11/924,273.
Interview Summary mailed Feb. 16, 2011 in U.S. Appl. No. 11/924,273.
Interview Summary mailed May 9, 2011 in U.S. Appl. No. 11/924,273.
Notice of Allowance mailed Jun. 24, 2011 in U.S. Appl. No. 11/924,273.
Metals Handbook, vol. 16 Machining, “Cemented Carbides” (ASM International 1989), pp. 71-89.
Shi et al., “Composite Ductility—The Role of Reinforcement and Matrix”, TMS Meeting, Las Vegas, NV, Feb. 12-16, 1995, 10 pages.
Vander Vort. “Introduction to Quantitative Metallography”, Tech Notes, vol. 1, Issue 5, published by Buehler, Ltd. 1997, 6 pages.
You Tube, “The Story Behind Kennemetal's Beyond Blast”, dated Sep. 14, 2010, http://www.youtube.com/watch?v=8—A-bYVwmU8 (3 pages) accessed on Oct. 14, 2010.
Kennametal press release on Jun. 10, 2010, http://news.thomasnet.com/companystory/Kennametal-Launches-Beyond-BLAST-TM-at-IMTS-2010-Booth-W-1522-833445 (2 pages) accessed on Oct. 14, 2010.
Pages from Kennametal site, https://www.kennametal.com/en-US/promotions/Beyond—Blast.jhtml (7 pages) accessed on Oct. 14, 2010.
Childs et al., “Metal Machining”, 2000, Elsevier, p. 111.
Brookes, Kenneth J. A., “World Directory and Handbook of Hardmetals and Hard Materials”, International Carbide Data, U.K. 1996, Sixth Edition, p. 42.
Firth Sterling grade chart, Allegheny Technologies, attached to Declaration of Prakash Mirchandani, Ph.D. as filed in U.S. Appl. No. 11/737,993 on Sep. 9, 2009.
Metals Handbook Desk Edition, definition of ‘wear’, 2nd Ed., J.R. Davis, Editor, ASM International 1998, p. 62.
McGraw-Hill Dictionary of Scientific and Technical Terms, 5th Edition, Sybil P. Parker, Editor in Chief, 1993, pp. 799, 800, 1933, and 2047.
ProKon Version 8.6, The Calculation Companion, Properties for W, Ti, Mo, Co, Ni and Fe, Copyright 1997-1998, 6 pages.
TIBTECH Innovations, “Properties table of stainless steel, metals and other conductive materials”, printed from http://www.tibtech.com/conductivity.php on Aug. 19, 2011, 1 page.
“Material: Tungsten Carbide (WC), bulk”, MEMSnet, printed from http://www.memsnet.org/material/tungstencarbidewcbulk/ on Aug. 19, 2001, 1 page.
Williams, Wendell S., “The Thermal Conductivity of Metallic Ceramics”, JOM, Jun. 1998, pp. 62-66.
Brookes, Kenneth J. A., “World Directory and Handbook of Hardmetals and Hard Materials”, International Carbide Data, U.K. 1996, Sixth Edition, pp. D182-D184.
Thermal Conductivity of Metals, The Engineering ToolBox, printed from http://www.engineeringtoolbox.com/thermal-conductivity-metals-d—858.html on Oct. 27, 2011, 3 pages.
The Thermal Conductivity of Some Common Materials and Gases, The Engineering ToolBox, printed from http://www.engineeringtoolbox.com/thermal-conductivity-d—429.html on Dec. 15, 2011, 4 pages.
Tool and Manufacturing Engineers Handbook, Fourth Edition, vol. 1, Machining, Society of Manufacturing Engineers, Chapter 12, vol. 1, 1983, pp. 12-110-12-114.
Beard, T. “The INS and OUTS of Thread Milling: Emphasis: Hole Making, Interview”, Modern Machine Shop, Gardner Publications. Inc. 1991, vol. 64, No. 1, 5 pages.
Koelsch, J., “Thread Milling Takes on Tapping”, Manufacturing Engineering, 1995, vol. 115, No. 4, 6 pages.
Johnson, M. “Tapping”, Traditional Machining Processes, 1997, pp. 255-265.
“Thread Milling”, Traditional Machining Processes 1997, pp. 268-269.
Scientific Cutting Tools, “The Cutting Edge”, 1998, printed on Feb. 1, 2000, 15 pages.
Helical Carbide Thread Mills, Schmarje Tool Company, 1998, 2 pages.
Office Action mailed Jan. 16, 2008 in U.S. Appl. No. 10/903,198.
Notice of Allowance mailed Jul. 16, 2012 in U.S. Appl. No. 12/484,607.
Pyrotek, Zyp Zircwash, www.pyrotek.info, Feb. 2003, 1 page.
Sims et al., “Casting Engineering”, Superalloys II, Aug. 1987, pp. 420-426.
Sikkenga, “Cobalt and Cobalt Alloy Castings”, Casting, vol. 15, ASM Handbook, ASM International, 2008, pp. 1114-1118.
Starck, H.C., Surface Technology, Powders for PTA-Welding, Lasercladding and other Wear Protective Welding Applcations, Jan. 2011, 4 pages.
Office Action mailed Feb. 27, 2013 in U.S. Appl. No. 13/550,690.
Office Action mailed Jan. 23, 2013 in U.S. Appl. No. 13/652,508.
Office Action mailed Feb. 5, 2013 in U.S. Appl. No. 13/652,503.
Office Action mailed Apr. 5, 2013 in U.S. Appl. No. 13/632,177.
Restriction Requirement mailed Jan. 3, 2013 in U.S. Appl. No. 13/632,178.
Office Action mailed Mar. 6, 2013 in U.S. Appl. No. 13/632,178.
Office Action mailed Oct. 4, 2012 in U.S. Appl. No. 13/491,638.
Notice of Allowance mailed Mar. 6, 2013 in U.S. Appl. No. 13/491,638.
Office Action mailed Jun. 28, 2012 in U.S. Appl. No. 13/222,324.
Office Action mailed Jul. 11, 2012 in U.S. Appl. No. 13/222,324.
Office Action mailed Nov. 6, 2012 in U.S. Appl. No. 13/222,324.
Corrected Notice of Allowability mailed Jun. 21, 2012 in U.S. Appl. No. 12/476,738.
Notice of Allowance mailed Jul. 18, 2012 in U.S. Appl. No. 13/182,474.
Notice of Reopening of Prosecution Due to Consideration of an Information Disclosure Statement Filed After Mailing of a Notice of Allowance mailed Oct. 10, 2012 in U.S. Appl. No. 13/182,474.
Notice of Allowance mailed Jul. 16, 2012 in U.S. Appl. No. 12/464,607.
Supplemental Notice of Allowability mailed Jun. 29, 2012 in U.S. Appl. No. 13/207,478.
Notice of Allowance mailed Jul. 20, 2012 in U.S. Appl. No. 11/585,408.
Corrected Notice of Allowability mailed Oct. 18, 2012 in U.S. Appl. No. 11/585,408.
Notice of Allowance mailed Jul. 25, 2012 in U.S. Appl. No. 11/737,993.
Notice of Allowance mailed Jul. 31, 2012 in U.S. Appl. No. 12/196,951.
Notice of Allowance mailed Jul. 10, 2012 in U.S. Appl. No. 12/502,277.
Supplemental Notice of Allowability mailed Jul. 20, 2012 in U.S. Appl. No. 12/502,277.
Wang, Jicai et al., “Research and Development Status of Particulate Reinforced Metal Matrix Composites,” Cemented Carbide, vol. 20 (1).
K-4543USMX1 Office Action dated Jun. 16, 2014.
K-4543USCN1 Office Action dated Dec. 18, 2013 with attached Search Report.
Mexican Patent Appln. MX/a/2012/004858—Non Final Rejection.
Society of Manufacturing Engineers (SME); Tool and Manufacturing Engineers Handbook; 1983; Chapter 2—pp. 48, 49, 54, 81-83, 108-110, 114, 115 and 126-133; vol. 1—Machining.
Related Publications (1)
Number Date Country
20110107811 A1 May 2011 US