This disclosure relates in general to submersible well pump assemblies and in particular to a threaded coupling between modules that has upper and lower sets of threads that differ from each other.
Submersible well pump assemblies (ESP) are commonly used to pump well fluid from oil wells. A typical ESP includes a pump and an electrical motor. The pump may be a centrifugal motor having a large number of stages, each stage comprising an impeller and a diffuser. Alternately, the pump may be another type, such as a progressing cavity pump. An ESP includes a pressure equalizer that couples to the motor to reduce a pressure difference between dielectric lubricant in the motor and the hydrostatic pressure of the well fluid. The ESP may include other components, such as a gas separator and additional motors and pumps in tandem. The various components are normally brought to a well site in separate modules, then secured together.
Generally the modules of the ESP are connected together by bolts that secure mating flanges. In some wells, a vertical section leads around a bend to an inclined or horizontal section. Inserting a lengthy ESP around the bend can cause stresses to the bolts.
It has been proposed instead of bolted flanges to employ threaded collars that are rotated to secure the various modules of the ESP. An example of a threaded collar arrangement is shown in U.S. Pat. No. 6,557,905. The threaded collar fits around a neck of an adapter of one of the modules and engages threads on the adapter of the other module.
In this disclosure a submersible pump assembly has a plurality of modules including a pump, a motor, and a pressure equalizer for reducing a pressure differential between lubricant in the motor and hydrostatic pressure of well fluid. A first one of the modules has a first drive shaft rotatably mounted therein, the first drive shaft extending along a longitudinal axis and having a splined end. A second one of the modules has a second drive shaft rotatably mounted therein, the second drive shaft having a splined end. A first adapter is secured to the first one of the modules, the first adapter having a set of first adapter threads. A second adapter is secured to the second one of the modules, the second adapter having a set of second adapter threads. A collar has a set of collar first threads that engage the first adapter threads, and a set of collar second threads that engage the second adapter threads. The collar first and second threads differ from each other, such that rotation of the collar relative to the first and second modules in a single direction pulls the first and second modules toward each other and positions the splined ends of first and second drive shafts in full engagement with each other.
In one embodiment, the collar first threads and the collar second threads have different pitches. The collar first threads and the collar second threads may both turn in a same direction but have different pitches. For example, the pitch of the collar first threads may be twice the pitch of the collar second threads. An axial length of the collar first threads may be greater than an axial length of the collar second threads by at least an amount proportional to the difference in pitch.
In another embodiment, the collar first threads turn in an opposite direction to the collar second threads. In that embodiment, the collar first threads may have an axial length greater than the collar second threads.
Mating load shoulders on the first and second adapters engage each other when the collar is fully made up. Mating anti-rotation members on the first and second adapters, which may be part of the load shoulders, engage each other when the collar is fully made up to prevent rotation of the first and second adapters relative to each other after full make up.
So that the manner in which the features, advantages and objects of the disclosure, as well as others which will become apparent, are attained and can be understood in more detail, more particular description of the disclosure briefly summarized above may be had by reference to the embodiment thereof which is illustrated in the appended drawings, which drawings form a part of this specification. It is to be noted, however, that the drawings illustrate only a preferred embodiment of the disclosure and is therefore not to be considered limiting of its scope as the disclosure may admit to other equally effective embodiments.
The methods and systems of the present disclosure will now be described more fully hereinafter with reference to the accompanying drawings in which embodiments are shown. The methods and systems of the present disclosure may be in many different forms and should not be construed as limited to the illustrated embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey its scope to those skilled in the art. Like numbers refer to like elements throughout.
It is to be further understood that the scope of the present disclosure is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. In the drawings and specification, there have been disclosed illustrative embodiments and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation.
Referring to
A pump 23 having an intake 25 connects to seal section 21. Pump 23 is normally a rotary pump, such as a centrifugal or progressing cavity pump. However, pump 23 could be a reciprocating pump. An optional gas separator could be connected between pump 23 and seal section 21. In addition to a gas separator, motor 19 could be connected in tandem to another motor, and pump 23 could be connected in tandem to another pump, adding additional modules to pump assembly 15.
Submersible well pump assemblies usually have bolted flange connections between the modules. In wells having an inclined section, during installation, the well pump assembly may be pushed through a bend between the vertical and inclined sections. The sharper the bend, the more stress is put on the joints of the pump assembly. High stress can cause the bolts to stretch, causing premature system failure.
In this disclosure, at least one or all of the connections or between the modules of pump assembly 15 comprises a threaded connection 27. Referring to the first embodiment of
Upper module 29 has a cylindrical housing 31 with a rotatable drive shaft 33 extending concentrically within housing 31. Radial bearings (not shown) may be employed to center and maintain drive shaft 33 on a longitudinal axis of housing 31. Shaft 33 has a splined lower end 35. An upper adapter 37 inserts into the lower end of housing 31 and is secured by housing internal threads 39 in housing 31. Upper adapter 37 has a circumferential external band or stop 41 that abuts the lower end of housing 31. Upper adapter 37 has a set of external threads 43 and a cylindrical nose section 45 extending downward from external threads 43. Nose section 45 has a smaller outer diameter than external threads 43, defining a downward-facing torque shoulder 47.
A cylindrical sleeve or collar 48 has a set of upper internal threads 49 that mate with upper adapter external threads 43. Collar 48 has a set of lower internal threads 50 located below and spaced axially from upper internal threads 49. Upper internal threads 49 have a pitch that differs from lower internal threads 50. In this embodiment, the pitch of upper internal threads 49 is smaller than the pitch of lower internal threads 50. In one example, the pitch of lower internal threads 50 is twice that of upper internal threads 49. The axial length of upper internal threads 49 is proportionately greater than the axial length of the lower internal threads 50. With a pitch one-half that of lower internal threads 50, preferably, the axial dimension or length of upper internal threads 49 is at least twice that of lower internal threads 50. In this embodiment, both threads 49, 50 turn in the same direction; that is both are either right-hand or left-hand threads.
A second or lower module 51 also may be any one of the modules of the pump assembly 15. Lower module 51 has a cylindrical housing 53 and a rotatable drive shaft 55 concentrically mounted within. Drive shaft 55 has a splined upper end that rotationally connects to upper drive shaft lower end 35 by a splined coupling 57. Coupling 57 is shown schematically and has internal splines as well as an optional internal compression spring. Radial bearings 59 (only one shown) in housing 53 axially support drive shaft 55
A second or lower adapter 61 secures to housing threads 63 and extends upward from lower housing 53. Lower adapter 61 may have two external circumferential bands 65, 67 spaced axially apart from each other. One band 65, 67, rather than two, would also be feasible. Band 65 abuts the upper end of lower housing 53. Lower adapter 61 has a set of external threads 69 that mate with lower internal threads 50 of collar 48. Lower adapter external threads 69 have the same pitch as lower internal threads 50. Lower adapter 61 has a rim 71, which serves as a torque load shoulder, on its upper end for engaging torque shoulder 47. Optionally, torque shoulder 47 and rim 71 could have mating friction or anti-rotation enhancements, such as teeth or knurling formed on them to resist rotation relative to each other. Further, other types of anti-rotation elements may be used to prevent rotation of lower adapter 61 relative to upper adapter 37.
To connect upper module 29 with lower module 51, a worker rotates collar 48 to its highest point on upper adapter 37, which is an initial engagement position. The upper end of collar 48 will contact the lower side of band 41. The lower end of collar 48 may be located slightly below nose section 45 during the initial engagement position. The worker aligns upper shaft 33 with coupling 57 and moves upper module 29 toward lower module 51. Nose section 45 stabs partially into the bore of lower adapter 61, as shown in
The worker then begins rotating collar 48 in a single direction while restraining upper and lower adapters 37, 61 against rotation. The different pitch between collar upper threads 49 and collar lower threads 50 causes relative axial motion between upper adapter 37 and lower adapter 61, pulling them toward each other. Relative axial movement between collar 48 and lower adapter 61 while collar 48 is rotating is twice that of the relative axial motion between collar 48 and upper adapter 37. Lower adapter 61 and upper adapter 37 continue movement toward each other until rim 71 abuts torque shoulder 47, as shown in
Preferably, a slight clearance will exist between lower adapter band 67 and the lower end of collar 48 when collar 48 is tightened to a desired torque. A larger clearance will exist between the upper end of collar 48 and upper adapter band 41 in the full engagement position. Preferably, the upper end of upper adapter external threads 43 is spaced below upper adapter band 41 a sufficient distance such that at full make-up, no portion of upper adapter external threads 43 is exposed to the exterior. That is, the upper end of collar 48 will be closer to upper adapter band 41 at full make-up than the distance from upper adapter external threads 43 to upper adapter band 41. The lower end of collar 48 at full make-up will be below the lower end of lower adapter external threads 69. Nose section 45 will be in sealing engagement with the bore of lower adapter 61.
Referring to the second embodiment in
A collar 87 has a set of upper internal threads 89 that mate with upper adapter threads 81. Collar 87 has a set of lower internal threads 91 spaced a short distance below upper internal threads 89. Upper internal threads 89 and lower internal threads 91 have the same pitch, but turn in opposite directions; that is, one of the sets of threads 89, 91 is right-hand and the other left-hand. Upper internal threads 89 have a longer length or axial dimension than lower internal threads 91. Also, the length of upper internal threads 89 may be somewhat longer than the length of mating upper adapter external threads 81.
Lower module 93 has a housing 95 with a drive shaft 97. Drive shaft 97 and drive shaft 76 couple to each other for torque transmission via a splined coupling 99, which optionally has an internal compression spring. Lower module 93 has one or more radial bearings 101 to support drive shaft 97. A lower adapter 103 secures by housing threads 105 to housing 95 and extends upward. Lower adapter 103 has one or more circumferential bands 107, 109. Band 107 abuts an upper end of housing 95. Lower adapter 103 has a single set of external threads 111 that are turned opposite to upper adapter threads 81 and mate with collar lower threads 91. Lower adapter 103 has a rim 113.
To secure upper module 73 to lower module 93, a worker first rotates collar 87 down to a designated position with the upper end of collar 87 a selected distance below band 79, as shown in
The worker rotates collar 87 in a single direction while preventing rotation of upper and lower adapters 79, 103. The opposite direction of threads 81 and 111 causes modules 73, 93 to move toward each other. As shown in
While the disclosure has been shown in only two of its forms, it should be apparent to those skilled in the art that it is susceptible to various changes.
Number | Date | Country | |
---|---|---|---|
61921251 | Dec 2013 | US |