Threaded connector assembly and methods of making and using the same

Information

  • Patent Grant
  • 10307602
  • Patent Number
    10,307,602
  • Date Filed
    Wednesday, July 5, 2017
    7 years ago
  • Date Issued
    Tuesday, June 4, 2019
    5 years ago
Abstract
A connector assembly includes a lead with a lead body having proximal and distal portions. The lead body defines a longitudinal axis. Terminals are disposed along the proximal portion and a proximal tip is attached thereto. The proximal tip defines an aperture that is non-parallel to the longitudinal axis. The connector assembly further includes a connector having a connector body, a connector lumen, and connector contacts disposed within the connector body. The connector body includes a fastener aperture proximal to all of the connector contacts and intersecting the connector lumen. The fastener aperture and the aperture of the proximal tip align when the proximal portion is fully received within the connector lumen. At least one of the apertures includes internal threading. The connector assembly also includes a threaded fastener for insertion into the apertures to secure the lead to the connector.
Description
FIELD

The present invention is directed to the area of implantable electrical stimulation systems and methods of making and using the systems. The present invention is also directed to implantable electrical stimulation leads having a threaded connector assembly, as well as methods of making and using the connector assembly and the electrical stimulation systems.


BACKGROUND

Implantable electrical stimulation systems have proven therapeutic in a variety of diseases and disorders. For example, spinal cord stimulation systems have been used as a therapeutic modality for the treatment of chronic pain syndromes. Peripheral nerve stimulation has been used to treat chronic pain syndrome and incontinence, with a number of other applications under investigation. Functional electrical stimulation systems have been applied to restore some functionality to paralyzed extremities in spinal cord injury patients. Stimulation of the brain, such as deep brain stimulation, can be used to treat a variety of diseases or disorders.


Stimulators have been developed to provide therapy for a variety of treatments. A stimulator can include a control module (with a pulse generator), one or more leads, and an array of stimulator electrodes on each lead. The stimulator electrodes are in contact with or near the nerves, muscles, or other tissue to be stimulated. The pulse generator in the control module generates electrical pulses that are delivered by the electrodes to body tissue.


BRIEF SUMMARY

In one embodiment, a connector assembly includes a lead having a lead body having a proximal portion and a distal portion. The lead body defines a longitudinal axis. The lead further includes terminals disposed along the proximal portion of the lead body and a proximal tip attached to the proximal portion of the lead body. The proximal tip defines an aperture that is non-parallel to the longitudinal axis of the lead body. The connector assembly further includes a connector having a connector body, a connector lumen, and connector contacts disposed within the connector body and adjacent the connector lumen. The connector body includes a fastener aperture proximal to all of the connector contacts and intersecting the connector lumen. The fastener aperture of the connector and aperture of the proximal tip of the lead are configured and arranged for alignment when the proximal portion of the lead body is fully received within the connector lumen. Either one or both of the aperture of the proximal tip of the lead or the fastener aperture of the connector includes internal threading. The connector assembly further includes a threaded fastener configured and arranged for insertion into the aperture of the proximal tip of the lead and the fastener aperture of the connector. The threaded fastener engages the internal threading to fasten, couple or otherwise secure the lead to the connector.


In at least some embodiments, the aperture of the proximal tip of the lead extends completely through the proximal tip.


In at least some embodiments, the connector assembly further includes an end stop disposed within the connector body and positioned to halt the insertion of the lead into the connector. The end stop can be made from a material that is more rigid than a material of the lead body.


In at least some embodiments, the aperture of the proximal tip is orthogonal to the longitudinal axis of the lead body. In at least some embodiments, an internal diameter of the fastener aperture is equal to an internal diameter of the aperture of the proximal tip of the lead.


In at least some embodiments, the fastener aperture is fully threaded. In at least some embodiments, the aperture of the proximal tip of the lead is fully threaded. In at least some embodiments, the threaded fastener is fully threaded along an outer surface of the threaded fastener.


In at least some embodiments, after insertion of the threaded fastener, a first end portion of the threaded fastener is in contact with an end stop disposed within the connector body and a second, opposing end portion of the threaded fastener extends out of an outer periphery of the end stop.


In at least some embodiments, after insertion of the threaded fastener, a first end portion of the threaded fastener is in contact with an end stop disposed within the connector body and a second, opposing end portion of the threaded fastener seated below an outer periphery of the end stop.


In at least some embodiments, an interface between the threaded fastener and the proximal tip provides a fluid resistant seal. In at least some embodiments, the threaded fastener may be a set screw. In at least some embodiments, a receiving portion of the proximal tip is countersunk.


In a further embodiment, an electrical stimulation system includes the connector assembly having the lead and the connector described above and a control module. The control module is coupleable to the electrical stimulation lead. The control module includes a housing and an electronic subassembly disposed in the housing.


In at least some embodiments, the electrical stimulation system further includes a lead extension coupleable to both the connector assembly and the control module.


In another embodiment, a lead includes a lead body and a proximal tip. The lead body includes a proximal portion and a distal portion. The lead body defines a longitudinal axis. The lead further includes a plurality of terminals disposed along the proximal portion of the lead body. The proximal tip is attached to the proximal portion of the lead body. The proximal tip defines an aperture that is non-parallel to the longitudinal axis of the lead body. At least a portion of an internal surface of the aperture is internally threaded for engagement with an externally threaded fastener.


In at least some embodiments, the internal surface of the aperture is fully threaded along a length of the aperture.


In yet another embodiment, a connector includes a connector body defining a connector lumen; and a plurality of connector contacts disposed within the connector body adjacent to the connector lumen. The connector body includes a fastener aperture located proximal to all of the connector contacts and intersecting the connector lumen. At least a portion of an internal surface of the fastener aperture is internally threaded for engagement with an externally threaded fastener.


In at least some embodiments, the connector further includes an end stop disposed within the connector body and positioned to halt the insertion of a proximal tip of a lead into the connector.





BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following drawings. In the drawings, like reference numerals refer to like parts throughout the various figures unless otherwise specified.


For a better understanding of the present invention, reference will be made to the following Detailed Description, which is to be read in association with the accompanying drawings, wherein:



FIG. 1 is a schematic view of one embodiment of an electrical stimulation system that includes a paddle lead electrically coupled to a control module, according to the invention;



FIG. 2 is a schematic view of one embodiment of an electrical stimulation system that includes a percutaneous lead electrically coupled to a control module, according to the invention;



FIG. 3A is a schematic view of one embodiment of the control module of FIG. 1 configured and arranged to electrically couple to an elongated device, according to the invention;



FIG. 3B is a schematic view of one embodiment of a lead extension configured and arranged to electrically couple the elongated device of FIG. 2 to the control module of FIG. 1, according to the invention;



FIG. 4A is a schematic, perspective view of a lead with a proximal tip according to at least some embodiments of the present invention;



FIG. 4B is a close-up view of the proximal tip of FIG. 4A;



FIG. 5A is a schematic, cross-sectional, side-elevational view of a connector according to at least some embodiments of the present invention;



FIG. 5B is a close-up view of the connector of FIG. 5A;



FIG. 5C is a schematic, cross-sectional, side-elevational, close-up view of a connector assembly having the lead of FIG. 4A inserted into the connector of FIG. 5A, and a threaded fastener being inserted to couple or secure the lead to the connector according to at least some embodiments of the present invention;



FIG. 6 is a schematic, cross-sectional, side-elevational, close-up view of a connector assembly with a threaded fastener that simultaneously seats within the proximal tip of FIG. 4B and within the connector of FIG. 5A according to at least some embodiments of the present invention;



FIG. 7 is a schematic, cross-sectional, side-elevational, close-up view of a connector assembly with a threaded fastener that seats solely within the proximal tip of FIG. 4B according to at least some embodiments of the present invention;



FIG. 8 is a schematic overview of one embodiment of components of a stimulation system, including an electronic subassembly disposed within a control module, according to the invention.





DETAILED DESCRIPTION

The present invention is directed to the area of implantable electrical stimulation systems and methods of making and using the systems. The present invention is also directed to implantable electrical stimulation leads having a threaded connector assembly, as well as methods of making and using the leads and electrical stimulation systems.


Suitable implantable electrical stimulation systems include, but are not limited to, a least one lead with one or more electrodes disposed along a distal end of the lead and one or more terminals disposed along the one or more proximal ends of the lead.


Leads include, for example, percutaneous leads, paddle leads, and cuff leads. Examples of electrical stimulation systems with leads are found in, for example, U.S. Pat. Nos. 6,181,969; 6,295,944; 6,391,985; 6,516,227; 6,609,029; 6,609,032; 6,741,892; 7,244,150; 7,450,997; 7,672,734; 7,761,165; 7,783,359; 7,792,590; 7,809,446; 7,949,395; 7,974,706; 8,831,742; 8,688,235; 6,175,710; 6,224,450; 6,271,094; 6,295,944; 6,364,278; and 6,391,985; U.S. Patent Applications Publication Nos. 2007/0150036; 2009/0187222; 2009/0276021; 2010/0076535; 2010/0268298; 2011/0004267; 2011/0078900; 2011/0130817; 2011/0130818; 2011/0238129; 2011/0313500; 2012/0016378; 2012/0046710; 2012/0071949; 2012/0165911; 2012/0197375; 2012/0203316; 2012/0203320; 2012/0203321; 2012/0316615; 2013/0105071; 2011/0005069; 2010/0268298; 2011/0130817; 2011/0130818; 2011/0078900; 2011/0238129; 2011/0313500; 2012/0016378; 2012/0046710; 2012/0165911; 2012/0197375; 2012/0203316; 2012/0203320; and 2012/0203321, all of which are incorporated by reference in their entireties.


Examples of connector assemblies for electrical stimulation systems with leads are found in, for example, U.S. Pat. Nos. 8,849,396; 7,244,150; 8,600,507; 8,897,876; 8,682,439; U.S. Patent Applications Publication Nos. 2012/0053646; 2014/0148885; 2015/0209575; 2016/0059019; and U.S. Patent Provisional Patent Application Nos. 62/193,472; 62/216,594; 62/259,463; and 62/278,667, all of which are incorporated by reference in their entireties.



FIG. 1 illustrates schematically one embodiment of an electrical stimulation system 100. The electrical stimulation system includes a control module (e.g., a stimulator or pulse generator) 102 and a lead 103 coupleable to the control module 102. The lead 103 includes a paddle body 104 and one or more lead bodies 106. In FIG. 1, the lead 103 is shown having two lead bodies 106. It will be understood that the lead 103 can include any suitable number of lead bodies including, for example, one, two, three, four, five, six, seven, eight or more lead bodies 106. An array 133 of electrodes, such as electrode 134, is disposed on the paddle body 104, and an array of terminals (e.g., 310 in FIG. 3A-3B) is disposed along each of the one or more lead bodies 106.


It will be understood that the electrical stimulation system can include more, fewer, or different components and can have a variety of different configurations including those configurations disclosed in the electrical stimulation system references cited herein. For example, instead of a paddle body, the electrodes can be disposed in an array at or near the distal end of a lead body forming a percutaneous lead.



FIG. 2 illustrates schematically another embodiment of the electrical stimulation system 100, where the lead 103 is a percutaneous lead. In FIG. 2, the electrodes 134 are shown disposed along the one or more lead bodies 106. In at least some embodiments, the lead 103 is isodiametric along a longitudinal length of the lead body 106.


The lead 103 can be coupled to the control module 102 in any suitable manner. In FIG. 1, the lead 103 is shown coupling directly to the control module 102. In at least some other embodiments, the lead 103 couples to the control module 102 via one or more intermediate devices (324 in FIG. 3B). For example, in at least some embodiments one or more lead extensions 324 (see e.g., FIG. 3B) can be disposed between the lead 103 and the control module 102 to extend the distance between the lead 103 and the control module 102. Other intermediate devices may be used in addition to, or in lieu of, one or more lead extensions including, for example, a splitter, an adaptor, or the like or combinations thereof. It will be understood that, in the case where the electrical stimulation system 100 includes multiple elongated devices disposed between the lead 103 and the control module 102, the intermediate devices may be configured into any suitable arrangement.


In FIG. 2, the electrical stimulation system 100 is shown having a splitter 107 configured and arranged for facilitating coupling of the lead 103 to the control module 102. The splitter 107 includes a splitter connector 108 configured to couple to a proximal end of the lead 103, and one or more splitter tails 109a and 109b configured and arranged to couple to the control module 102 (or another splitter, a lead extension, an adaptor, or the like).


With reference to FIGS. 1 and 2, the control module 102 typically includes a connector housing 112 and a sealed electronics housing 114. An electronic subassembly 110 and an optional power source 120 are disposed in the electronics housing 114. A control module connector 144 is disposed in the connector housing 112. The control module connector 144 is configured and arranged to make an electrical connection between the lead 103 and the electronic subassembly 110 of the control module 102.


The electrical stimulation system or components of the electrical stimulation system, including the paddle body 104, the one or more of the lead bodies 106, and the control module 102, are typically implanted into the body of a patient. The electrical stimulation system can be used for a variety of applications including, but not limited to deep brain stimulation, neural stimulation, spinal cord stimulation, muscle stimulation, and the like.


The electrodes 134 can be formed using any conductive, biocompatible material. Examples of suitable materials include metals, alloys, conductive polymers, conductive carbon, and the like, as well as combinations thereof. In at least some embodiments, one or more of the electrodes 134 are formed from one or more of: platinum, platinum iridium, palladium, palladium rhodium, or titanium.


Any suitable number of electrodes 134 can be disposed on the lead including, for example, four, five, six, seven, eight, nine, ten, eleven, twelve, fourteen, sixteen, twenty-four, thirty-two, or more electrodes 134. In the case of paddle leads, the electrodes 134 can be disposed on the paddle body 104 in any suitable arrangement. In FIG. 1, the electrodes 134 are arranged into two columns, where each column has eight electrodes 134.


The electrodes of the paddle body 104 (or one or more lead bodies 106) are typically disposed in, or separated by, a non-conductive, biocompatible material such as, for example, silicone, polyurethane, polyetheretherketone (“PEEK”), epoxy, and the like or combinations thereof. The one or more lead bodies 106 and, if applicable, the paddle body 104 may be formed in the desired shape by any process including, for example, molding (including injection molding), casting, and the like. The non-conductive material typically extends from the distal ends of the one or more lead bodies 106 to the proximal end of each of the one or more lead bodies 106.


In the case of paddle leads, the non-conductive material typically extends from the paddle body 104 to the proximal end of each of the one or more lead bodies 106. Additionally, the non-conductive, biocompatible material of the paddle body 104 and the one or more lead bodies 106 may be the same or different. Moreover, the paddle body 104 and the one or more lead bodies 106 may be a unitary structure or can be formed as two separate structures that are permanently or detachably coupled together.


Terminals (e.g., 310 in FIGS. 3A-3B) are typically disposed along the proximal end of the one or more lead bodies 106 of the electrical stimulation system 100 (as well as any splitters, lead extensions, adaptors, or the like) for electrical connection to corresponding connector contacts (e.g., 314 in FIG. 3A). The connector contacts are disposed in connectors (e.g., 144 in FIGS. 1-3B; and 322FIG. 3B) which, in turn, are disposed on, for example, the control module 102 (or a lead extension, a splitter, an adaptor, or the like). Electrically conductive wires, cables, or the like (not shown) extend from the terminals to the electrodes 134. Typically, one or more electrodes 134 are electrically coupled to each terminal. In at least some embodiments, each terminal is only connected to one electrode 134.


The electrically conductive wires (“conductors”) may be embedded in the non-conductive material of the lead body 106 or can be disposed in one or more lumens (not shown) extending along the lead body 106. In some embodiments, there is an individual lumen for each conductor. In other embodiments, two or more conductors extend through a lumen. There may also be one or more lumens (not shown) that open at, or near, the proximal end of the one or more lead bodies 106, for example, for inserting a stylet to facilitate placement of the one or more lead bodies 106 within a body of a patient. Additionally, there may be one or more lumens (not shown) that open at, or near, the distal end of the one or more lead bodies 106, for example, for infusion of drugs or medication into the site of implantation of the one or more lead bodies 106. In at least one embodiment, the one or more lumens are flushed continually, or on a regular basis, with saline, epidural fluid, or the like. In at least some embodiments, the one or more lumens are permanently or removably sealable at the distal end.



FIG. 3A is a schematic side view of one embodiment of a proximal end of one or more elongated devices 300 configured and arranged for coupling to one embodiment of the control module connector 144. The one or more elongated devices may include, for example, one or more of the lead bodies 106 of FIG. 1, one or more intermediate devices (e.g., a splitter, the lead extension 324 of FIG. 3B, an adaptor, or the like or combinations thereof), or a combination thereof.


The control module connector 144 defines at least one port into which a proximal end of the elongated device 300 can be inserted, as shown by directional arrows 312a and 312b. In FIG. 3A (and in other figures), the connector housing 112 is shown having two ports 304a and 304b. The connector housing 112 can define any suitable number of ports including, for example, one, two, three, four, five, six, seven, eight, or more ports.


The control module connector 144 also includes a plurality of connector contacts, such as connector contact 314, disposed within each port 304a and 304b. When the elongated device 300 is inserted into the ports 304a and 304b, the connector contacts 314 can be aligned with a plurality of terminals 310 disposed along the proximal end(s) of the elongated device(s) 300 to electrically couple the control module 102 to the electrodes (134 of FIG. 1) disposed on the paddle body 104 of the lead 103. Examples of connectors in control modules are found in, for example, U.S. Pat. Nos. 7,244,150 and 8,224,450, which are incorporated by reference.



FIG. 3B is a schematic side view of another embodiment of the electrical stimulation system 100. The electrical stimulation system 100 includes a lead extension 324 that is configured and arranged to couple one or more elongated devices 300 (e.g., one of the lead bodies 106 of FIGS. 1 and 2, the splitter 107 of FIG. 2, an adaptor, another lead extension, or the like or combinations thereof) to the control module 102. In FIG. 3B, the lead extension 324 is shown coupled to a single port 304 defined in the control module connector 144. Additionally, the lead extension 324 is shown configured and arranged to couple to a single elongated device 300. In alternate embodiments, the lead extension 324 is configured and arranged to couple to multiple ports 304 defined in the control module connector 144, or to receive multiple elongated devices 300, or both.


A lead extension connector 322 is disposed on the lead extension 324. In FIG. 3B, the lead extension connector 322 is shown disposed at a distal end 326 of the lead extension 324. The lead extension connector 322 includes a connector housing 328. The connector housing 328 defines at least one port 330 into which terminals 310 of the elongated device 300 can be inserted, as shown by directional arrow 338. The connector housing 328 also includes a plurality of connector contacts, such as connector contacts 340. When the elongated device 300 is inserted into the port 330, the connector contacts 340 disposed in the connector housing 328 can be aligned with the terminals 310 of the elongated device 300 to electrically couple the lead extension 324 to the electrodes (134 of FIGS. 1 and 2) disposed along the lead (103 in FIGS. 1 and 2).


In at least some embodiments, the proximal end of the lead extension 324 is similarly configured and arranged as a proximal end of the lead 103 (or other elongated device 300). The lead extension 324 may include a plurality of electrically conductive wires (not shown) that electrically couple the connector contacts 340 to a proximal end 348 of the lead extension 324 that is opposite to the distal end 326. In at least some embodiments, the conductive wires disposed in the lead extension 324 can be electrically coupled to a plurality of terminals (not shown) disposed along the proximal end 348 of the lead extension 324. In at least some embodiments, the proximal end 348 of the lead extension 324 is configured and arranged for insertion into a connector disposed in another lead extension (or another intermediate device). In other embodiments (and as shown in FIG. 3B), the proximal end 348 of the lead extension 324 is configured and arranged for insertion into the control module connector 144.


Coupling a neuromodulation lead to a receptacle is generally accomplished using a conventional system that includes a set block and set screw mechanism. The conventional system may have a relatively large lateral profile (e.g., a spatial envelope as defined radially outward from a longitudinal axis of the lead) as compared to a lateral profile of the lead. In some clinical applications, for example, it may be preferred to have a smaller or reduced lateral profile for the lead and receptacle interface, as compared to the conventional system, to enhance patient comfort and provide clinical efficacy.


In at least some embodiments of the present invention, an alternative connector assembly utilizes a lead and a connector, which may be part of a lead extension, for example. The lead includes a proximal tip having a threaded proximal tip aperture that is non-parallel to a longitudinal axis of the lead or lead lumen, and preferably perpendicular or orthogonal to a longitudinal axis of the lead or lead lumen. The connector includes a fastener aperture that can be aligned with the proximal tip aperture. A threaded fastener, which may take the form of a set screw or threaded pin, is insertable into the proximal tip aperture and into the fastener aperture to affix or otherwise secure the lead to the connector while achieving a low or reduced lateral profile of the overall connector assembly.



FIGS. 4A and 4B show a schematic, perspective view of a lead 400 having a proximal array 402, a proximal tip 404 with a proximal tip aperture 406 and a lead lumen 408. A plurality of terminals (e.g., 310 in FIGS. 3A-3B) are disposed along the proximal array 402. In at least some embodiments, the lead lumen 408 extends completely through both the proximal array 402 and the proximal tip 404 and further defines a lead lumen axis 410. The lead lumen 408 may function as an ingress and egress opening for a guide such as a stylet. By way of example, the lead lumen 408 may facilitate passage of the stylet through both the proximal array 402 and the proximal tip 404.


The terminals of the proximal array 402 are typically disposed in, or separated by, a non-conductive, biocompatible material such as, for example, silicone, polyurethane, polyetheretherketone (“PEEK”), epoxy, and the like or combinations thereof. The terminals themselves can be formed using any conductive, biocompatible material. Examples of suitable materials include metals, alloys, conductive polymers, conductive carbon, and the like, as well as combinations thereof. In at least some embodiments, one or more of the terminals are formed from one or more of: platinum, platinum iridium, palladium, palladium rhodium, or titanium.


The proximal tip 404 may be made from a variety of materials such as, but not limited to, the same material as the proximal array 402 (e.g., the lead body or a material that is more rigid than the proximal array 402). By way of example, a more rigid material may take the form of a metallic, composite or plastic material. The proximal tip 404 may also be referred to as a connector set block or “in-lead” block.


In at least some embodiments, the proximal tip aperture 406 functions as an opening to receive the threaded fastener, which will be described in more detail with respect to FIGS. 6 and 7. The proximal tip aperture 406 defines an aperture axis 412 that is non-parallel to the lead lumen axis 410. In at least some other embodiments, the aperture axis 412 is perpendicular or orthogonal to the lead lumen axis 410. Additionally or alternatively, the proximal tip aperture 406 includes internal threads that extend at least partially or fully along an inner surface defining the proximal tip aperture 406. The internal threads may be configured to provide some degree of sealing to reduce or prevent bodily fluids from entering into the lead lumen 410. By way of example, the internal threads may be coated with a fluid resistant material, the internal threads may be compressible when the threaded fastener is torqued into the proximal tip aperture 406, or some combination thereof.



FIGS. 5A through 5C show a connector 500 having a connector body 502, a plurality of terminal contacts 504, a connector lumen 505 (FIG. 5A), an optional end stop 506, and a fastener aperture 508. In at least some embodiments, the plurality of terminal contacts 504 are disposed within the connector body 502 adjacent to the connector lumen 505 and in an arrangement that coincides with the terminals of the lead. The connector body 502 can be made from a non-conductive, biocompatible material similar to or the same as the portions of the proximal array 402 that separate the various terminals. Likewise, the terminal contacts 504 can be made from a conductive, biocompatible material similar to or the same as the terminals of the proximal array 402.


For purposes of the description herein, the connector 500 includes the end stop 506 embedded within the connector body 502. However, and at least in some embodiments, the connector 500 may not include the end stop and the various openings and other features associated with the end stop 506 could be applied directly and solely to the connector body 502.


In the illustrated embodiment, the end stop 506 is located at a proximal end of the connector 500. In at least some embodiments, the end stop 506 may be made from a variety of materials such as, but not limited to, the same material as the connector body 502 or a material that is more rigid than the connector body 502. By way of example, a more rigid material may take the form of a metallic, composite or plastic material.


In at least some embodiments, a fastener aperture 508 extends through at least a portion of the connector body 502 and a portion of the end stop 506. In other embodiments, the fastener aperture 508 extends completely through at least one of the connector body 502, the end stop 506, or both. The connector body 502 defines a connector axis 510 (FIG. 5B). The fastener aperture 508 defines a fastener aperture axis 512 (FIG. 5B). In at least some embodiments, the fastener aperture axis 512 is non-parallel or otherwise skewed relative to the connector axis 510. In at least some other embodiments, the fastener aperture axis 508 is perpendicular or orthogonal to the connector axis 510. Additionally or alternatively, the fastener aperture 508 includes internal threads that extend at least partially or completely (e.g., fully) along an inner surface defining the fastener aperture 508 as it extends through both the connector body 502 and the end stop 506. The internal threads may be configured to provide some degree of sealing to reduce or prevent bodily fluids from entering into the connector body 502. By way of example, the internal threads may be coated with a fluid resistant material, the internal threads may be compressible when the threaded fastener is torqued into the fastener aperture 508, or some combination thereof.


Referring specifically to FIG. 5C, a threaded fastener 514 can be inserted into the fastener aperture 508 of the connector 500 and into the proximal tip aperture 406 of the lead 400 once the apertures 508, 406 are brought into alignment. In at least some embodiments, alignment of the apertures 508, 406 can be accomplished by (1) inserting the lead 400 into the connector body 502 until an end portion of the proximal tip 404 contacts the end stop 506; and (2) rotating the lead 400 to bring the apertures 508, 406 into alignment. In some embodiments, the lead 400 and the connector 500 may include a feature or features that would permit the apertures 508, 406 to be aligned without visual confirmation, whether via direct (e.g., eyeball) or indirect (e.g., camera or scope) line-of-sight. By way of example, the lead 400 and the connector 500 can be “keyed” such that the “keying” features could engage to indicate alignment of the apertures 508, 406.


In at least some embodiments, the fastener aperture 508 is not threaded, the proximal tip aperture 406 is threaded, and the threaded fastener 514 includes threads that coincide with the threaded proximal tip aperture 406. In an alternate embodiment, the fastener aperture 508 is threaded, the proximal tip aperture 406 is not threaded, and the threaded fastener 514 includes threads that coincide with the threaded fastener aperture 508. It is appreciated that if the fastener aperture 508 is threaded, but the proximal tip aperture 406 is not threaded, then the threaded fastener 514 is preferably made long enough to engage and remain engaged with the fastener aperture 508 threads even when the threaded fastener is fully seated.


In at least some embodiments, the internal diameter of the fastener apertures 508 is equal to an internal diameter of the proximal tip aperture 406. If either of the apertures 508, 406 is threaded, for purposes of comparing the internal diameters of the apertures, the internal diameter of a threaded aperture is the diameter measured between threads (e.g., the largest diameter of the aperture or the diameter of the aperture in absence of the threading).



FIG. 6 shows an embodiment of a connector assembly 600 in which a threaded fastener 601, after tightening, simultaneously seats within or otherwise fills at least part of both the proximal tip aperture 406 of the lead 400 and the fastener aperture 508 of the connector 500. In this embodiment, the threaded fastener 601 prevents the withdrawal of the lead 400 from the connector 500. In at least some embodiments, a head portion 602 of the threaded fastener 601 extends beyond a periphery of the proximal tip 404 by a first distance 604. In addition, a leading portion 606 of the threaded fastener 601 contacts the end stop 506. Additionally or alternatively, the connector body 502, in a vicinity of the insertion point of the fastener aperture 508, may include a beveled or countersunk feature 608.



FIG. 7 shows another embodiment of a connector assembly 700 in which a different sized fastener 701, after tightening, seats solely within the proximal tip 404 such that a head portion 702 of the set screw 701 remains clear of the fastener aperture 508 of the connector 500. In at least some embodiments, the tightened fastener 701 bears against an inside surface of the end stop 506 to urge a surface of the proximal tip 404 against an adjacent surface of the end stop 506. The contact pressure generated by such contact between the proximal tip 404 and the end stop 606 provides an amount of friction that is sufficient to hold or secure the lead 400 in place relative to the connector 500. The amount of friction may be dependent on a number of factors such as, but not limited, the materials of the contacting members, the surface roughness of the contacting members, the amount of torque applied to the set screw, an optional interference fit between the set screw and the connector body, or any combination thereof.



FIG. 8 is a schematic overview of one embodiment of components of an electrical stimulation system 800 including an electronic subassembly 810 disposed within a control module. It will be understood that the electrical stimulation system can include more, fewer, or different components and can have a variety of different configurations including those configurations disclosed in the stimulator references cited herein.


Some of the components (for example, a power source 812, an antenna 818, a receiver 802, and a processor 804) of the electrical stimulation system can be positioned on one or more circuit boards or similar carriers within a sealed housing of an implantable pulse generator, if desired. Any power source 812 can be used including, for example, a battery such as a primary battery or a rechargeable battery. Examples of other power sources include super capacitors, nuclear or atomic batteries, mechanical resonators, infrared collectors, thermally-powered energy sources, flexural powered energy sources, bioenergy power sources, fuel cells, bioelectric cells, osmotic pressure pumps, and the like including the power sources described in U.S. Pat. No. 7,437,193, incorporated herein by reference.


As another alternative, power can be supplied by an external power source through inductive coupling via the optional antenna 818 or a secondary antenna. The external power source can be in a device that is mounted on the skin of the user or in a unit that is provided near the user on a permanent or periodic basis.


If the power source 812 is a rechargeable battery, the battery may be recharged using the optional antenna 818, if desired. Power can be provided to the battery for recharging by inductively coupling the battery through the antenna to a recharging unit 816 external to the user. Examples of such arrangements can be found in the references identified above.


In one embodiment, electrical current is emitted by the electrodes 134 on the paddle or lead body to stimulate nerve fibers, muscle fibers, or other body tissues near the electrical stimulation system. The processor 804 is generally included to control the timing and electrical characteristics of the electrical stimulation system. For example, the processor 804 can, if desired, control one or more of the timing, frequency, strength, duration, and waveform of the pulses. In addition, the processor 804 can select which electrodes can be used to provide stimulation, if desired. In some embodiments, the processor 804 selects which electrode(s) are cathodes and which electrode(s) are anodes. In some embodiments, the processor 804 is used to identify which electrodes provide the most useful stimulation of the desired tissue.


Any processor can be used and can be as simple as an electronic device that, for example, produces pulses at a regular interval or the processor can be capable of receiving and interpreting instructions from an external programming unit 808 that, for example, allows modification of pulse characteristics. In the illustrated embodiment, the processor 804 is coupled to a receiver 802 which, in turn, is coupled to the optional antenna 818. This allows the processor 804 to receive instructions from an external source to, for example, direct the pulse characteristics and the selection of electrodes, if desired.


In one embodiment, the antenna 818 is capable of receiving signals (e.g., RF signals) from an external telemetry unit 806 which is programmed by the programming unit 808. The programming unit 808 can be external to, or part of, the telemetry unit 806. The telemetry unit 806 can be a device that is worn on the skin of the user or can be carried by the user and can have a form similar to a pager, cellular phone, or remote control, if desired. As another alternative, the telemetry unit 806 may not be worn or carried by the user but may only be available at a home station or at a clinician's office. The programming unit 808 can be any unit that can provide information to the telemetry unit 806 for transmission to the electrical stimulation system 800. The programming unit 808 can be part of the telemetry unit 806 or can provide signals or information to the telemetry unit 806 via a wireless or wired connection. One example of a suitable programming unit is a computer operated by the user or clinician to send signals to the telemetry unit 806.


The signals sent to the processor 804 via the antenna 818 and the receiver 802 can be used to modify or otherwise direct the operation of the electrical stimulation system. For example, the signals may be used to modify the pulses of the electrical stimulation system such as modifying one or more of pulse duration, pulse frequency, pulse waveform, and pulse strength. The signals may also direct the electrical stimulation system 800 to cease operation, to start operation, to start charging the battery, or to stop charging the battery. In other embodiments, the stimulation system does not include the antenna 818 or receiver 802 and the processor 804 operates as programmed.


Optionally, the electrical stimulation system 800 may include a transmitter (not shown) coupled to the processor 804 and the antenna 818 for transmitting signals back to the telemetry unit 806 or another unit capable of receiving the signals. For example, the electrical stimulation system 800 may transmit signals indicating whether the electrical stimulation system 800 is operating properly or not or indicating when the battery needs to be charged or the level of charge remaining in the battery. The processor 804 may also be capable of transmitting information about the pulse characteristics so that a user or clinician can determine or verify the characteristics.


The above specification provides a description of the structure, manufacture, and use of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention also resides in the claims hereinafter appended.

Claims
  • 1. A connector assembly comprising: an implantable lead comprising a lead body having a proximal portion and a distal portion and defining a longitudinal axis, the lead further comprising a plurality of terminals disposed along the proximal portion of the lead body and a proximal tip attached to the proximal portion of the lead body, the proximal tip defining an aperture that is non-parallel to the longitudinal axis of the lead body; a connector comprising a connector body, a connector lumen, and a plurality of connector contacts disposed within the connector body and adjacent the connector lumen, the connector body comprising a fastener aperture proximal to all of the connector contacts and intersecting the connector lumen, wherein the fastener aperture of the connector and aperture of the proximal tip of the lead are configured and arranged for alignment when the proximal portion of the lead body is fully received within the connector lumen, wherein one of the aperture of the proximal tip of the lead or the fastener aperture of the connector comprises internal threading; and a threaded fastener configured and arranged for insertion into the aperture of the proximal tip of the lead and the fastener aperture of the connector and engaging the internal threading to fasten the lead to the connector.
  • 2. The connector assembly of claim 1, wherein the aperture of the proximal tip of the lead extends completely through the proximal tip.
  • 3. The connector assembly of claim 1, further comprising an end stop disposed within the connector body and positioned to halt the insertion of the lead into the connector.
  • 4. The connector assembly of claim 3, wherein the end stop is made from a material that is more rigid than a material of the lead body.
  • 5. The connector assembly of claim 1, wherein the aperture of the proximal tip is orthogonal to the longitudinal axis of the lead body.
  • 6. The connector assembly of claim 1, wherein an internal diameter of the fastener aperture is equal to an internal diameter of the aperture of the proximal tip of the lead.
  • 7. The connector assembly of claim 1, wherein the fastener aperture is fully threaded.
  • 8. The connector assembly of claim 1, wherein the aperture of the proximal tip of the lead is fully threaded.
  • 9. The connector assembly of claim 1, wherein the threaded fastener is fully threaded along an outer surface of the threaded fastener.
  • 10. The connector assembly of claim 3, wherein, after insertion of the threaded fastener, a first end portion of the threaded fastener is in contact with the end stop and a second, opposing end portion of the threaded fastener extends out of an outer periphery of the end stop.
  • 11. The connector assembly of claim 3, wherein, after insertion of the threaded fastener, a first end portion of the threaded fastener is in contact with the end stop and a second, opposing end portion of the threaded fastener seated below an outer periphery of the end stop.
  • 12. The connector assembly of claim 1, wherein an interface between the threaded fastener and the proximal tip provides a fluid resistant seal.
  • 13. The connector assembly of claim 1, wherein the threaded fastener is a set screw.
  • 14. The connector assembly of claim 1, wherein a receiving portion of the proximal tip is countersunk.
  • 15. An electrical stimulation system comprising: the connector assembly of claim 1; anda control module coupleable to the connector assembly, the control module comprising a housing, andan electronic subassembly disposed in the housing.
  • 16. The electrical stimulation system of claim 15, further comprising a lead extension coupleable to both the connector assembly and the control module.
  • 17. An implantable lead comprising: a lead body having a proximal portion and a distal portion, the lead body defining a longitudinal axis; a plurality of terminals disposed along the proximal portion of the lead body; and a proximal tip attached to the proximal portion of the lead body, the proximal tip defining an aperture that is non-parallel to the longitudinal axis of the lead body, wherein at least a portion of an internal surface of the aperture is internally threaded for engagement with a threaded fastener.
  • 18. The lead of claim 17, wherein the internal surface of the aperture is fully threaded along a length of the aperture.
  • 19. A connector assembly comprising: an implantable lead comprising a lead body having a proximal portion and a distal portion and defining a longitudinal axis, the lead further comprising a plurality of terminals disposed along the proximal portion of the lead body and a proximal tip attached to the proximal portion of the lead body, the proximal tip defining an aperture that is non-parallel to the longitudinal axis of the lead body and comprises internal threading; a connector comprising a connector body, a connector lumen, and a plurality of connector contacts disposed within the connector body and adjacent the connector lumen, the connector body comprising a fastener aperture proximal to all of the connector contacts and intersecting the connector lumen, wherein the fastener aperture of the connector and aperture of the proximal tip of the lead are configured and arranged for alignment when the proximal portion of the lead body is fully received within the connector lumen; and a threaded fastener configured and arranged for insertion into the aperture of the proximal tip of the lead and the fastener aperture of the connector and engaging the internal threading to fasten the lead to the connector.
  • 20. The connector assembly of claim 19, wherein the aperture of the proximal tip of the lead extends completely through the proximal tip.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 62/360,145, filed Jul. 8, 2016, which is incorporated herein by reference.

US Referenced Citations (427)
Number Name Date Kind
3222471 Steinkamp Dec 1965 A
3601747 Prall et al. Aug 1971 A
3718142 Mulier Feb 1973 A
3757789 Shanker Sep 1973 A
3771106 Matsumoto et al. Nov 1973 A
3908668 Bolduc Sep 1975 A
3951154 Hartlaub Apr 1976 A
3990727 Gallagher Nov 1976 A
4003616 Springer Jan 1977 A
4072154 Anderson Feb 1978 A
4112953 Shenker et al. Sep 1978 A
4142532 Ware Mar 1979 A
4180078 Anderson Dec 1979 A
4245642 Skubitz et al. Jan 1981 A
4259962 Peers-Trevarton Apr 1981 A
4310001 Comben Jan 1982 A
4364625 Baker et al. Dec 1982 A
4367907 Buck Jan 1983 A
4411276 Dickhudt et al. Oct 1983 A
4411277 Dickhudt Oct 1983 A
4461194 Moore Jul 1984 A
4466441 Skubitz et al. Aug 1984 A
4516820 Kuzma May 1985 A
RE31990 Sluetz et al. Sep 1985 E
4540236 Peers-Trevarton Sep 1985 A
4602624 Naples et al. Jul 1986 A
4603696 Cross, Jr. et al. Aug 1986 A
4614395 Peers-Trevarton Sep 1986 A
4630611 King Dec 1986 A
4695116 Bailey et al. Sep 1987 A
4695117 Kysiak Sep 1987 A
4712557 Harris Dec 1987 A
4715380 Harris Dec 1987 A
4744370 Harris May 1988 A
4784141 Peers-Trevarton Nov 1988 A
4832032 Schneider May 1989 A
4840580 Saell et al. Jun 1989 A
4850359 Putz Jul 1989 A
4860750 Frey et al. Aug 1989 A
4867708 Iizuka Sep 1989 A
4869255 Putz Sep 1989 A
4898173 Daglow et al. Feb 1990 A
4899753 Inoue et al. Feb 1990 A
4951687 Ufford et al. Aug 1990 A
4995389 Harris Feb 1991 A
5000177 Hoffmann et al. Mar 1991 A
5000194 van den Honert et al. Mar 1991 A
5007435 Doan et al. Apr 1991 A
5007864 Stutz, Jr. Apr 1991 A
5070605 Deglow et al. Dec 1991 A
5082453 Stutz, Jr. Jan 1992 A
5086773 Ware Feb 1992 A
5135001 Sinofsky et al. Aug 1992 A
5193539 Schulman et al. Mar 1993 A
5193540 Schulman et al. Mar 1993 A
5201865 Kuehn Apr 1993 A
5241957 Camps et al. Sep 1993 A
5252090 Giurtino et al. Oct 1993 A
5261395 Oleen et al. Nov 1993 A
5312439 Loeb May 1994 A
5324312 Stokes et al. Jun 1994 A
5330521 Cohen Jul 1994 A
5336246 Dantanarayana Aug 1994 A
5348481 Ortiz Sep 1994 A
5354326 Comben et al. Oct 1994 A
5358514 Schulman et al. Oct 1994 A
5368496 Ranalletta et al. Nov 1994 A
5374279 Duffin, Jr. et al. Dec 1994 A
5374285 Vaiani et al. Dec 1994 A
5383913 Schiff Jan 1995 A
5413595 Stutz, Jr. May 1995 A
5433734 Stokes et al. Jul 1995 A
5435731 Kang Jul 1995 A
5458629 Baudino et al. Oct 1995 A
5486202 Bradshaw Jan 1996 A
5489225 Julian Feb 1996 A
5509928 Acken Apr 1996 A
5522874 Gates Jun 1996 A
5534019 Paspa Jul 1996 A
5545188 Bradshaw et al. Aug 1996 A
5545189 Fayram Aug 1996 A
5582180 Manset et al. Aug 1996 A
5560358 Arnold et al. Oct 1996 A
5679026 Fain et al. Oct 1997 A
5683433 Carson Nov 1997 A
5711316 Eisberry et al. Jan 1998 A
5713922 King Feb 1998 A
5720631 Carson et al. Feb 1998 A
5730628 Hawkins Mar 1998 A
5755743 Volz et al. May 1998 A
5766042 Ries et al. Jun 1998 A
5782892 Castle et al. Jul 1998 A
5796044 Cobian et al. Aug 1998 A
5800350 Coppleson et al. Sep 1998 A
5800495 Machek et al. Sep 1998 A
5807144 Sivard Sep 1998 A
5837006 Ocel et al. Nov 1998 A
5843141 Bischoff et al. Dec 1998 A
5843148 Gijsbers et al. Dec 1998 A
5906634 Flynn et al. May 1999 A
5931861 Werner et al. Aug 1999 A
5938688 Schiff Aug 1999 A
5951595 Moberg et al. Sep 1999 A
5968082 Heil Oct 1999 A
5987361 Mortimer Nov 1999 A
5989077 Mast et al. Nov 1999 A
6006135 Kast et al. Dec 1999 A
6018684 Bartig et al. Jan 2000 A
6038479 Werner et al. Mar 2000 A
6038481 Werner et al. Mar 2000 A
6042432 Hashazawa et al. Mar 2000 A
6051017 Loeb et al. Apr 2000 A
6080188 Rowley et al. Jun 2000 A
6112120 Correas Aug 2000 A
6112121 Paul et al. Aug 2000 A
6125302 Kuzma Sep 2000 A
6134478 Spehr Oct 2000 A
6154678 Lauro Nov 2000 A
6161047 King et al. Dec 2000 A
6162101 Fischer et al. Dec 2000 A
6164284 Schulman et al. Dec 2000 A
6167311 Rezai Dec 2000 A
6167314 Fischer, Sr. et al. Dec 2000 A
6175710 Kamaji et al. Jan 2001 B1
6181969 Cord Jan 2001 B1
6185452 Schulman et al. Feb 2001 B1
6192278 Werner et al. Feb 2001 B1
6198969 Kuzma Mar 2001 B1
6208894 Schulman et al. Mar 2001 B1
6224450 Norton May 2001 B1
6271094 Boyd et al. Aug 2001 B1
6295944 Lovett Oct 2001 B1
6319021 Billman Nov 2001 B1
6321126 Kuzma Nov 2001 B1
6322559 Daulton et al. Nov 2001 B1
6343233 Werner et al. Jan 2002 B1
6364278 Lin et al. Apr 2002 B1
6370434 Zhang et al. Apr 2002 B1
6391985 Goode et al. May 2002 B1
6397108 Camps et al. May 2002 B1
6415168 Putz Jul 2002 B1
6428336 Akerfeldt Aug 2002 B1
6428368 Hawkins et al. Aug 2002 B1
6430442 Peters et al. Aug 2002 B1
6466824 Struble Oct 2002 B1
6473654 Chinn Oct 2002 B1
6498952 Imani et al. Dec 2002 B2
6510347 Borkan Jan 2003 B2
6516227 Meadows et al. Feb 2003 B1
6556873 Smits Apr 2003 B1
6564078 Marino et al. May 2003 B1
6604283 Kuzma Aug 2003 B1
6605094 Mann et al. Aug 2003 B1
6609029 Mann et al. Aug 2003 B1
6609032 Woods et al. Aug 2003 B1
6654641 Froberg Nov 2003 B1
6662035 Sochor Dec 2003 B2
6663570 Mott Dec 2003 B2
6671534 Putz Dec 2003 B2
6671553 Helland et al. Dec 2003 B1
6678564 Ketterl et al. Jan 2004 B2
6725096 Chinn et al. Apr 2004 B2
6741892 Meadows et al. May 2004 B1
6757039 Ma Jun 2004 B2
6757970 Kuzma et al. Jul 2004 B1
6799991 Williams et al. Oct 2004 B2
6805675 Gardeski et al. Oct 2004 B1
6854994 Stein et al. Feb 2005 B2
6878013 Behan Apr 2005 B1
6895276 Kast et al. May 2005 B2
6913478 Lamrey Jul 2005 B2
6921295 Sommer et al. Jul 2005 B2
6968235 Belden et al. Nov 2005 B2
6980863 van Venrooij et al. Dec 2005 B2
7027852 Helland Apr 2006 B2
7047084 Erickson et al. May 2006 B2
7058452 Dahberg Jun 2006 B2
7069081 Biggs et al. Jun 2006 B2
7083474 Fleck et al. Aug 2006 B1
7108549 Lyu et al. Sep 2006 B2
7110827 Sage et al. Sep 2006 B2
7128600 Osypka Oct 2006 B2
7155283 Ries et al. Dec 2006 B2
7164951 Ries et al. Jan 2007 B2
7168165 Calzada et al. Jan 2007 B2
7191009 Laske et al. Mar 2007 B2
7195523 Naviaux Mar 2007 B2
7203548 Whitehurst et al. Apr 2007 B2
7225034 Ries et al. May 2007 B2
7231253 Tidemand et al. Jun 2007 B2
7241180 Rentas Jul 2007 B1
7242987 Holleman et al. Jul 2007 B2
7244150 Brase et al. Jul 2007 B1
7270568 Osypka Sep 2007 B2
7283878 Brostrom et al. Oct 2007 B2
7286882 Cole Oct 2007 B2
7287995 Stein et al. Oct 2007 B2
7292890 Whitehurst et al. Nov 2007 B2
7396335 Gardeski et al. Jul 2008 B2
7402083 Kast et al. Jul 2008 B2
7422487 Osypka Sep 2008 B2
7430958 Wong Oct 2008 B2
7437193 Parramon et al. Oct 2008 B2
7450997 Pianca et al. Nov 2008 B1
7489971 Franz Feb 2009 B1
7512446 Honeck Mar 2009 B2
7516447 Marvin et al. Apr 2009 B2
7526339 Lahti et al. Apr 2009 B2
7539542 Malinowski May 2009 B1
7548788 Chinn et al. Jun 2009 B2
7554493 Rahman Jun 2009 B1
7583999 Bedenbaugh Sep 2009 B2
7585190 Osypka Sep 2009 B2
7650184 Walter Jan 2010 B2
7668601 Hegland et al. Feb 2010 B2
7672734 Anderson et al. Mar 2010 B2
7736191 Sochor Jun 2010 B1
7758384 Alexander et al. Jul 2010 B2
7761165 He et al. Jul 2010 B1
7761985 Hegland et al. Jul 2010 B2
7783359 Meadows Aug 2010 B2
7792590 Pianca et al. Sep 2010 B1
7798864 Barker et al. Sep 2010 B2
7809446 Meadows Oct 2010 B2
7822482 Gerber Oct 2010 B2
7840188 Kurokawa Nov 2010 B2
7848802 Goetz Dec 2010 B2
7856707 Cole Dec 2010 B2
7860570 Whitehurst et al. Dec 2010 B2
7949395 Kuzma May 2011 B2
7974705 Zdeblick et al. Jul 2011 B2
7974706 Moffitt et al. Jul 2011 B2
7979140 Schulman Jul 2011 B2
8000808 Hegland et al. Aug 2011 B2
8019440 Kokones et al. Sep 2011 B2
8036755 Franz Oct 2011 B2
8041309 Kurokawa Oct 2011 B2
8046073 Plana Oct 2011 B1
8046074 Barker Oct 2011 B2
8078280 Sage Dec 2011 B2
8099177 Dahlberg Jan 2012 B2
8100726 Harlan et al. Jan 2012 B2
8140163 Daglow et al. Mar 2012 B1
8175710 He May 2012 B2
8190259 Smith et al. May 2012 B1
8206180 Kest et al. Jun 2012 B1
8224450 Brase Jul 2012 B2
8225504 Dye et al. Jul 2012 B2
8239042 Chinn et al. Aug 2012 B2
8271094 Moffitt et al. Sep 2012 B1
8295944 Howard et al. Oct 2012 B2
8301255 Barker Oct 2012 B2
8321025 Bedenbaugh Nov 2012 B2
8342887 Gleason et al. Jan 2013 B2
8359107 Pianca et al. Jan 2013 B2
8364278 Pianca et al. Jan 2013 B2
8391985 McDonald Mar 2013 B2
8412330 Kast et al. Apr 2013 B2
8527054 North Sep 2013 B2
8583237 Bedenbaugh Nov 2013 B2
8600507 Brase et al. Dec 2013 B2
8682439 DeRohan et al. Mar 2014 B2
8688235 Pianca et al. Apr 2014 B1
8784143 Edgell et al. Jul 2014 B2
8831742 Pianca et al. Sep 2014 B2
8849396 DeRohan et al. Sep 2014 B2
8849415 Bedenbaugh Sep 2014 B2
8897876 Sundaramurthy et al. Nov 2014 B2
8897891 Romero Nov 2014 B2
8968331 Sochor Mar 2015 B1
9101775 Barker Aug 2015 B2
9149630 Howard et al. Oct 2015 B2
9162048 Romero et al. Oct 2015 B2
9270070 Plana Feb 2016 B2
9289596 Leven Mar 2016 B2
9352147 Nguyen-stella et al. May 2016 B2
9381348 Romero et al. Jul 2016 B2
9403022 Ries et al. Aug 2016 B2
9409032 Brase et al. Aug 2016 B2
9440066 Black Sep 2016 B2
9498618 Stetson et al. Nov 2016 B2
9498620 Rosenthal et al. Nov 2016 B2
9504839 Leven Nov 2016 B2
9656093 Villarta et al. May 2017 B2
20010023368 Back et al. Sep 2001 A1
20020143376 Chinn et al. Oct 2002 A1
20020156513 Borkan Oct 2002 A1
20020183817 Van Venrooij et al. Dec 2002 A1
20030163171 Kast et al. Aug 2003 A1
20040064164 Ries et al. Apr 2004 A1
20040230268 Huff et al. Nov 2004 A1
20040260373 Ries et al. Dec 2004 A1
20050015130 Gill Jan 2005 A1
20050027326 Ries et al. Feb 2005 A1
20050027327 Ries et al. Feb 2005 A1
20050038489 Grill Feb 2005 A1
20050043770 Hine et al. Feb 2005 A1
20050043771 Sommer et al. Feb 2005 A1
20050137665 Cole Jun 2005 A1
20050171587 Daglow et al. Aug 2005 A1
20050186829 Balsells Aug 2005 A1
20050272280 Osypka Dec 2005 A1
20060015163 Brown Jan 2006 A1
20060025841 McIntyre Feb 2006 A1
20060030918 Chinn Feb 2006 A1
20060167522 Malinowski Jul 2006 A1
20060224208 Naviaux Oct 2006 A1
20060247697 Sharma et al. Nov 2006 A1
20060247749 Colvin Nov 2006 A1
20060259106 Arnholt et al. Nov 2006 A1
20070042648 Balsells Feb 2007 A1
20070142889 Whitehurst et al. Jun 2007 A1
20070150036 Anderson Jun 2007 A1
20070161294 Brass et al. Jul 2007 A1
20070168007 Kuzma et al. Jul 2007 A1
20070203546 Stone et al. Aug 2007 A1
20070219551 Honour et al. Sep 2007 A1
20080077186 Thompson et al. Mar 2008 A1
20080103580 Gerber May 2008 A1
20080114230 Addis May 2008 A1
20080139031 Ries et al. Jun 2008 A1
20080177167 Janzig et al. Jul 2008 A1
20080208277 Janzig et al. Aug 2008 A1
20080208278 Janzig et al. Aug 2008 A1
20080208279 Janzig et al. Aug 2008 A1
20080215125 Farah et al. Sep 2008 A1
20080255647 Jensen et al. Oct 2008 A1
20080274651 Boyd et al. Nov 2008 A1
20090054941 Eggen et al. Feb 2009 A1
20090187222 Barker Jul 2009 A1
20090204192 Carlton et al. Aug 2009 A1
20090264943 Barker Oct 2009 A1
20090276021 Meadows et al. Nov 2009 A1
20090287191 Ferren et al. Nov 2009 A1
20100029127 Sjostedt Feb 2010 A1
20100030298 Martens et al. Feb 2010 A1
20100036468 Decre et al. Feb 2010 A1
20100042169 Barker Feb 2010 A1
20100057176 Barker Mar 2010 A1
20100070012 Chinn et al. Mar 2010 A1
20100076535 Pianca et al. Mar 2010 A1
20100077606 Black et al. Apr 2010 A1
20100082076 Lee et al. Apr 2010 A1
20100094387 Pianca et al. Apr 2010 A1
20100100152 Martens et al. Apr 2010 A1
20100268298 Moffitt et al. Oct 2010 A1
20100269338 Dye Oct 2010 A1
20100269339 Dye et al. Oct 2010 A1
20100287770 Dadd et al. Nov 2010 A1
20110004267 Meadows Jan 2011 A1
20110005069 Pianca Jan 2011 A1
20110022100 Brase et al. Jan 2011 A1
20110047795 Turner et al. Mar 2011 A1
20110056076 Hegland et al. Mar 2011 A1
20110077699 Swanson et al. Mar 2011 A1
20110078900 Pianca et al. Apr 2011 A1
20110130803 McDonald Jun 2011 A1
20110130816 Howard et al. Jun 2011 A1
20110130817 Chen Jun 2011 A1
20110130818 Chen Jun 2011 A1
20110131808 Gill Jun 2011 A1
20110184480 Kast et al. Jul 2011 A1
20110238129 Moffitt et al. Sep 2011 A1
20110245903 Schulte et al. Oct 2011 A1
20110270330 Janzig et al. Nov 2011 A1
20110301665 Mercanzini et al. Dec 2011 A1
20110313500 Barker et al. Dec 2011 A1
20120016378 Pianca et al. Jan 2012 A1
20120046710 DiGiore et al. Feb 2012 A1
20120053646 Brase et al. Mar 2012 A1
20120071937 Sundaramurthy Mar 2012 A1
20120071949 Pianca et al. Mar 2012 A1
20120165911 Pianca Jun 2012 A1
20120185019 Schramm et al. Jul 2012 A1
20120197375 Pianca et al. Aug 2012 A1
20120203302 Moffitt et al. Aug 2012 A1
20120203316 Moffitt et al. Aug 2012 A1
20120203320 DiGiore et al. Aug 2012 A1
20120203321 Moffitt et al. Aug 2012 A1
20120232603 Sage Sep 2012 A1
20120253443 Dilmaghanian et al. Oct 2012 A1
20120259386 DeRohan et al. Oct 2012 A1
20120277760 Kratoska Nov 2012 A1
20120316615 DiGiore et al. Dec 2012 A1
20130053864 Geroy et al. Feb 2013 A1
20130105071 DiGiore et al. May 2013 A1
20130109254 Klardie et al. May 2013 A1
20130116754 Sharma et al. May 2013 A1
20130149031 Changsrivong et al. Jun 2013 A1
20130197424 Bedenbaugh Aug 2013 A1
20130197602 Pianca et al. Aug 2013 A1
20130197603 Eiger Aug 2013 A1
20130218154 Carbunaru Aug 2013 A1
20130261684 Howard Oct 2013 A1
20130288501 Russell et al. Oct 2013 A1
20130304140 Derohan et al. Nov 2013 A1
20130317587 Barker Nov 2013 A1
20130325091 Pianca et al. Dec 2013 A1
20140039587 Romero Feb 2014 A1
20140088666 Goetz et al. Mar 2014 A1
20140142671 Moffitt et al. May 2014 A1
20140148885 DeRohan et al. May 2014 A1
20140180375 Pianca et al. Jun 2014 A1
20140353001 Romero et al. Dec 2014 A1
20140358207 Romero Dec 2014 A1
20140358208 Howard et al. Dec 2014 A1
20140358209 Romero et al. Dec 2014 A1
20140358210 Howard et al. Dec 2014 A1
20150018915 Leven Jan 2015 A1
20150021817 Romero et al. Jan 2015 A1
20150025609 Govea Jan 2015 A1
20150045864 Howard Feb 2015 A1
20150066120 Govea Mar 2015 A1
20150151113 Govea et al. Jun 2015 A1
20150209575 Black Jul 2015 A1
20150360023 Howard et al. Dec 2015 A1
20150374978 Howard et al. Dec 2015 A1
20160059019 Malinowski et al. Mar 2016 A1
20160129242 Malinowski May 2016 A1
20160129265 Malinowski May 2016 A1
20160158558 Shanahan et al. Jun 2016 A1
20160206891 Howard et al. Jul 2016 A1
20160228692 Steinke et al. Aug 2016 A1
20160296745 Govea et al. Oct 2016 A1
20170072187 Howard et al. Mar 2017 A1
20170143978 Barker May 2017 A1
20170203104 Nageri et al. Jul 2017 A1
Foreign Referenced Citations (20)
Number Date Country
0580928 Feb 1994 EP
0650694 Jul 1998 EP
0832667 Feb 2004 EP
1181947 Jan 2006 EP
1625875 Feb 2006 EP
2092952 Aug 2009 EP
1997032628 Sep 1997 WO
1999055411 Feb 2000 WO
2000038574 Jul 2000 WO
2001058520 Aug 2001 WO
2002068042 Sep 2002 WO
2004045707 Jun 2004 WO
2008018067 Feb 2008 WO
2008053789 May 2008 WO
2008100841 Aug 2008 WO
2009025816 Feb 2009 WO
2009102536 Aug 2009 WO
2009148939 Dec 2009 WO
2013162775 Oct 2013 WO
2014018092 Jan 2014 WO
Related Publications (1)
Number Date Country
20180008832 A1 Jan 2018 US
Provisional Applications (1)
Number Date Country
62360145 Jul 2016 US