This application is related to U.S. patent application Ser. No. 15/926,390, filed on Mar. 20, 2018, in the name of Bosshard, et al.; and Ser. No. 15/940,761, filed Mar. 29, 2018, in the name of Bosshard, et al., the disclosures of each of which are hereby incorporated by reference as if set forth in their entireties herein.
The present invention relates to bone plates and bone anchors for coupling to the bone plates, and particularly relates to threaded locking structures defined within a fixation hole of a bone plate for locking with a head of a bone anchor.
Bone plate systems for the internal fixation of bone fractures are well known. Conventional bone plate systems are particularly well-suited to promote the healing of a fracture. A bone anchor, such as a bone screw, is inserted through a fixation aperture or hole in a bone plate and is threaded into bone to compress, neutralize, buttress, tension bend, and/or bridge the fracture ends together. Bone screws that are capable of locking with the bone plate can be employed to transfer loads from one fractured bone part, over a plate, and onto another fractured bone part without drawing the bone against the plate, and to avoid loosening or backing out the bone screws with respect to the plate (which can lead to poor alignment and poor clinical results). One known embodiment of such a screw employs a screw head with external threads for engaging with a corresponding thread on the inner surface of a fixation hole to lock the screw to the plate. These screws, which are hereinafter referred to as “locking screws” or “locking compression screws”, and which can include standard-type locking screws that are configured to lock within fixation hole substantially only at a “nominal” orientation whereby the central screw axis is substantially aligned with the central hole axis, as well as “variable-angle” (VA) locking screws that are configured to lock within a fixation hole at either a nominal orientation or an “angulated” orientation whereby the central screw axis is oriented at an acute angle with respect to the respective central hole axis.
According to an embodiment of the present disclosure, a bone plate includes at least one hole extending through the bone plate from an upper plate surface to a lower plate surface along a central hole axis that is oriented along an axial direction. The at least one hole defined by an interior surface of the bone plate. The interior surface further defining a plurality of columns sequentially located about a circumference of the interior surface and a plurality of recesses located circumferentially between the columns. Each of the columns defines a plurality of thread segments each defining a root, a first thread surface extending from the root to a first crest, and a second thread surface extending from the root to a second crest. At least a portion of the first and second thread surfaces are offset from one another at a thread angle. The thread angle of at least one of the thread segments is in a range of about 5 degrees to about 59 degrees.
The foregoing summary, as well as the following detailed description of illustrative embodiments of the present application, will be better understood when read in conjunction with the appended drawings. For the purposes of illustrating the locking structures of the present application, there is shown in the drawings illustrative embodiments. It should be understood, however, that the application is not limited to the precise arrangements and instrumentalities shown. In the drawings:
The present disclosure can be understood more readily by reference to the following detailed description taken in connection with the accompanying figures and examples, which form a part of this disclosure. It is to be understood that this disclosure is not limited to the specific devices, methods, applications, conditions or parameters described and/or shown herein, and that the terminology used herein is for the purpose of describing particular embodiments by way of example only and is not intended to be limiting of the scope of the present disclosure. Also, as used in the specification including the appended claims, the singular forms “a,” “an,” and “the” include the plural, and reference to a particular numerical value includes at least that particular value, unless the context clearly dictates otherwise.
The term “plurality”, as used herein, means more than one. When a range of values is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. All ranges are inclusive and combinable.
The terms “approximately” and “substantially”, as used herein with respect to dimensions, angles, and other geometries, takes into account manufacturing tolerances. Further, the terms “approximately” and “substantially” can include 10% greater than or less than the stated dimension or angle. Further, the terms “approximately” and “substantially” can equally apply to the specific value stated.
Standard-type locking screws and VA locking screws can both be susceptible to a phenomenon referred to herein as “timing error,” whereby factors relating to a bone plating procedure can cause an axial misalignment between external threads on the head of the bone screw relative to corresponding internal threads of a locking hole extending through the bone plate. Moreover, VA locking screws have a tendency to cause cross-threading within a locking hole in which they are inserted, particularly when the VA locking screw is inserted in the locking hole at an angulated orientation. Cross-threading can be caused by the external threads on the screw head not fitting within and thus cross-threading the internal threads of the locking hole. Regions of contact between the crests of the screw head threads and portions of the internal threads, particularly at or near the crests of the internal threads, can be particularly susceptible to cross-threading. Timing error and cross-threading are problematic because they reduce the interference fit (also referred to as the “form-fit”) between the internal threads of the aperture and the screw head threads, which can reduce stability between the screw head and the locking hole. The embodiments disclosed herein pertain to locking structures employed within a locking hole, which locking structures define internal threads having geometries that can avoid or at least reduce contact with the screw head crests. The internal threads can also deform in a direction along a central axis of the hole responsive to timing error. In this manner, the threaded locking structures described herein can lock with the heads of both standard-type and VA locking screws in a manner inhibiting or at least reducing cross-threading.
Referring to
The bone plate 4 can be a bridge plate, as shown, although other bone plate types and configurations are within the scope of the present disclosure. The plate body 5 can define a first end 10 and a second end 12 spaced from each other along a longitudinal direction X and a first lateral side 14 and a second lateral side 16 spaced from each other along a lateral direction Y that is substantially perpendicular to the longitudinal direction X. The bone plate 4 can also define an upper plate surface 18 configured to face away from the bone and an opposed lower plate surface 20 configured to face the bone. The upper and lower plate surfaces 18, 20 are spaced from each other along a vertical direction Z substantially perpendicular to each of the longitudinal direction X and the lateral direction Y.
It is to be appreciated that, as used herein, the terms “longitudinal”, “longitudinally”, and derivatives thereof refer to the longitudinal direction X; the terms “lateral”, “laterally”, and derivatives thereof refer to the lateral direction Y; and the terms “vertical”, “vertically”, and derivatives thereof refer to the vertical direction Z.
The VA locking holes 6 extend axially from the upper plate surface 18 to the lower plate surface 20 along a central hole axis 22. In the depicted embodiment, the central hole axis 22 is oriented along the vertical direction Z, although in other embodiments the central hole axis 22 of one or more of the VA locking holes 6 can be oriented at an oblique angle with respect to the vertical direction Z. As used herein, an “axial direction” is defined as the direction along which the central hole axis 22 extends. Moreover, the directional terms “axial”, “axially”, and derivatives thereof refer to the axial direction. Thus, as used herein, the directional term “axially upward” and derivatives thereof refers to the axial direction from the lower plate surface 20 toward the upper plate surface 18. Conversely, the term “axially downward” and derivatives thereof refers to the axial direction from the upper plate surface 18 toward the lower plate surface 20. Thus, “axially upward” and “axially downward” are each mono-directional components of the “axial direction”, which is bi-directional.
The plate body 5 and the locking screws 8 can each comprise one or more biocompatible materials, such as titanium, titanium alloys (e.g., titanium-aluminum-niobium (TAN) alloys, such as Ti-6Al-7Nb), stainless steel, cobalt base alloys, composite materials, and polymeric materials and/or ceramic materials, by way of non-limiting examples. Preferably, the plate body 5 material is less hard than the locking screw 8 material. This parameter contributes to the locking characteristics described below. In one example embodiment, the plate body 5 primarily or entirely comprises titanium and the locking screws 8 primarily or entirely comprise TAN.
Referring now to
During a bone plating operation, the screw shaft 25 of a locking screw 8 can be inserted through one of the VA locking holes 6 and driven into the underlying bone 100. In particular, rotation of the locking screw 8 causes its threaded screw head 27 to threadedly mate with the VA locking hole 6. As a result, the screw head 27 fastens the bone plate 4 to the underlying bone 100 substantially without applying a compressive force onto the bone plate 4 against the underlying bone 100. The bone plate 4 can be spaced from the underlying bone 100 when locked to the threaded screw head 27. Alternatively, the bone plate 4 can abut the underlying bone 100 when locked to the threaded screw head 27.
It is to be appreciated that, during a plating operation, the first locking screw 8 inserted through one of the VA locking holes 6 and into underlying bone 100 has the benefit of being able to generally mate with the hole threads 9 so that crests of the screw head thread 29 advance helically substantially along the troughs of the hole threads 9. However, once the first locking screw 8 is locked to the bone plate 4 thereby fastening the plate 4 to the underlying bone 100, the subsequent locking screws 8 often lack the ability to have their external thread crests advance helically along the hole thread 9 troughs. This results because, once the screw shafts 25 of these subsequent locking screws 8 advance through the VA locking holes 6 and threadedly purchase into the underlying bone 100, the relative axial positions of the screw head threads 29 and the hole threads 9 are substantially a function of the screw's threaded purchase with the underlying bone 100. This axial misalignment of the screw head threads 29 relative to the hole threads 9 is referred to herein as “timing error.” As described in more detail below, the threaded columns 26, and thus the hole threads 9, can be configured to deform axially to accommodate the timing error associated with locking screws 8. Such deformation can inhibit or at least reduces cross-threading within the VA locking holes 6.
Referring now to
The interior surface 24 can define the columns 26. The columns 26 extend axially between the upper and lower plate surfaces 18, 20. Within each (or at least some of) the VA locking holes 6, the columns 26 are sequentially located about a circumference of the interior surface 24. The interior surface 24 also defines a plurality of recesses 28 sequentially located circumferentially between the columns 26. The recesses 28 extend axially between the upper and lower plate surfaces 18, 20. The columns 26 and recesses 28 can be evenly spaced about the circumference of the interior surface 24 within the VA locking hole 6. However, in other embodiments, the columns 26 and/or recesses 28 can be un-evenly spaced about the circumference of the VA locking hole 6.
The interior surface 24 can define an upper perimeter 30 of the VA locking hole 6 at an interface with the upper plate surface 18 and a lower perimeter 32 of the VA locking hole 6 at an interface with the lower plate surface 20. The upper and lower perimeters 30, 32 can each be circular in shape, although other shapes are within the scope of the present disclosure. The interior surface 24 can also define a lead-in surface 34 that tapers axially downward from the upper perimeter 30 to one or more of the columns 26. As shown, the lead-in surface 34 can be circumferentially interrupted by one or more of the recesses 28. Alternatively, the lead-in surface 34 can extend circumferentially continuously and uninterrupted along a full revolution about the central hole axis 22. The interior surface 24 can also define an undercut surface 36 that tapers axially upward from the lower perimeter 32. The undercut surface 36 can extend circumferentially continuously and uninterrupted along a full revolution about the central hole axis 22. Alternatively, the undercut surface 36 can be circumferentially interrupted by one or more of the recesses 28.
Referring now to
As shown in
Each column 26 can define a first surface 42 substantially facing the central hole axis 22. The first surface 42 can also be referred to as an “innermost surface” of the column 26. The first surfaces 42 of the columns 26 can extend generally axially between the upper and lower plate surfaces 18, 20. The first surface 42 of each column 26 can also extend between a first side 44 and a circumferentially opposed second side 45 of the column 26. The first and second sides 44, 45 of each column 26 can define interfaces between the column 26 and the circumferentially adjacent recesses 28. For example, the first side 44 of the first column 26a can define an interface between the first column 26a and the third recess 28c; the second side 45 of the first column 26a can define an interface between the first column 26a and the first recess 28a; the first side 44 of the second column 26b can define an interface between the second column 26b and the first recess 28a; and so forth along the circumference of the interior surface 24. The first surfaces 42 of the columns 26 can collectively define segments of another downward-tapering frusto-conical shape that defines a central cone axis coincident with the central hole axis 22.
The hole threads 9 extend through the columns 26 and at least portions of the recesses 28 along one or more thread paths between the upper and lower plate surfaces 18, 20. The one or more thread paths can be a single thread path (i.e., single-lead), a pair of non-intersecting thread paths (i.e., double-lead), or three or more thread paths (e.g., triple-lead, etc.). The thread paths can be helical. Portions of the recesses 28 can optionally circumferentially interrupt the hole threads 9 so as to define a plurality of threaded regions 50 spaced about the circumference of the VA locking hole 6, as shown. Each threaded region 50 carries one or more thread segments 52 extending along the thread path(s). Axially aligned ones of the thread segments 52 can traverse a respective one of the columns 26 so as to define column threads 54.
With reference to
The crest centerline 46 can be radially spaced from the central hole axis 22 by a radial distance R2 measured along a reference plane M that is orthogonal to the central hole axis 22 and located at the vertical center of the VA locking hole 6. Thus, the reference plane M can be characterized as the axial “mid-plane” of the VA locking hole 6. The thread midline 60 can be radially spaced from the central hole axis 22 by a distance R3 measured along the hole mid-plane M. The root centerline 48 can be radially spaced from the central hole axis 22 by a distance R4 measured along the hole mid-plane M. Distance R2 can be characterized as the mean crest radius of the column threads 54. Distance R3 can be characterized as the mean radius of the column threads 54. Distance R4 can be characterized as the mean root radius of the column threads 54.
Referring now to
In embodiments where the hole threads 9 are double-lead threads, the column threads 54 can define a thread pitch P in a range of 0.2 mm to about 0.6 mm and preferably about 0.4 mm and a thread lead L in a range of about 0.4 mm to about 1.2 mm and preferably about 0.8 mm, each measured along the axial direction. The column threads 54 can also define a thread depth D measured from the crest centerline 46 to the root centerline 48 along the radial direction R. The pitch P and lead L of the hole threads 9 are preferably equivalent to the pitch and lead of the screw head threads 29.
Referring now to
With reference to
Referring now to
Referring now to
Once form-fit is achieved, further rotational advancement of the VA locking screw 8b with respect to the column threads 54 can commence deforming the one or more column threads 54, preferably at the crests 56. This deformation occurs primarily radially outward, although some measure of axial and/or circumferential deformation can occur, mostly when a timing-error is present. Moreover, the radial deformation can include plastic and elastic deformation, which compresses the one or more column threads 54 in a manner exerting a reactive compressive force against the associated screw head threads 29, primarily at the roots 75 thereof. The plastic and elastic radial deformability of the column threads 54 can also reduce cross-threading within the VA locking hole 6. Additionally, the thread angle A6 and thread depth D can provide clearance for the screw head crests 77 within the column threads 54, which can reduce contact between the column threads 54 and the screw head crests 77, thereby further reducing cross-threading.
Furthermore, as the one or more column threads 54 deforms radially, the total engaged surface area between the column threads 54 (including at the crests 56 and the upper and lower surfaces 55, 57) and the screw head threads 29 (including at the roots 75 and the upper and lower surfaces 78, 79) increases. In this manner, the physical interface between the column threads 54 and the screw head threads 29, and thus between the plate 4 and the VA locking screw 8b, also increases, providing a more stable bone fixation system 2. This principle of deforming the crests 56 of the column threads 54 via engagement with the roots 75 of the screw head threads 29 is achieved, at least in part, by use of a harder locking screw 8 material relative to the hardness of the plate body 5 material as mentioned above.
With reference to
Referring now to
Referring now to
Referring now to
It is to be appreciated that one or more of the characteristics of the columns 26, such as, by way of non-limiting example, the crest centerline angle A3, the mean radii R2, R3, R4, the thread angle A6, the thread depth D, the thread pitch P, and the thread lead L can be tailored as needed to provide desired locking characteristics. For example, adjustments to the thread geometry that reduce the form-fit can be offset by adjustments that increase the radial deformation of the column threads 54, and vice versa.
With reference to
Referring now to
In the present embodiment, the column 26 design can optionally be substantially similar to that described with reference to
As shown in
Referring now to
Referring now to
While the embodiments shown in
Referring now to
Referring now to
The interior surface 24 of the bone plate 4 can thus also define a compression surface 96 of the compression hole 92 of the combination hole 90. Thus, the upper perimeter 30 can define an upper opening to each of the VA locking hole 6 and the unthreaded compression hole 92 that is open to the VA locking hole 6. Similarly, the lower perimeter 32 can define a lower opening to each of the VA locking hole 6 and the unthreaded compression hole 92 that is open to the VA locking hole 6.
At least a portion up to an entirety of the compression surface 96 can be unthreaded. Accordingly, the unthreaded compression head of a compression screw is configured to bear against the bone plate 4, and in particular the compression surface 96, in the compression hole 92 so as to apply a compressive force against the bone plate 4 toward the underlying bone 100.
In one example, the compression surface 96 can be concave in the axial direction with respect to the central hole axis 94 of the compression hole 92. For instance, the compression surface 96 can be dish shaped or spherical. Thus, the compression surface 96 can be configured to be placed in surface contact with the compression head of the compression screw. Alternatively, the compression surface 96 can be linear in the axial direction as it tapers radially inwardly toward the central hole axis 94. Additional details of the combination hole 90, as well as operation of the compression screw in the combination hole, can be according to the descriptions set forth in U.S. patent application Ser. Nos. 15/926,390 and 15/940,761, referenced above.
Although the disclosure has been described in detail, it should be understood that various changes, substitutions, and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present disclosure is not intended to be limited to the particular embodiments described in the specification. As one of ordinary skill in the art will readily appreciate from that processes, machines, manufacture, composition of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
327296 | Mcginnis | Sep 1885 | A |
1105105 | Sherman | Jul 1914 | A |
1203546 | Parsons | Oct 1916 | A |
2228584 | Piace | Jan 1941 | A |
2352297 | Wales | Jun 1944 | A |
2414882 | Longfellow | Jan 1947 | A |
2443363 | Kenneth et al. | Jun 1948 | A |
2477430 | Swanstrom | Jul 1949 | A |
2496126 | Haboush | Jan 1950 | A |
2526959 | Lorenzo | Oct 1950 | A |
2612159 | Collison | Sep 1952 | A |
2627855 | Price | Feb 1953 | A |
2699774 | Livingston | Jan 1955 | A |
2772676 | Pohl | Dec 1956 | A |
2801631 | Charnley | Aug 1957 | A |
2846701 | Bedford, Jr. | Aug 1958 | A |
2874691 | Mason | Feb 1959 | A |
3025853 | Mason | Mar 1962 | A |
3229743 | Derby | Jan 1966 | A |
3263949 | Conrad | Aug 1966 | A |
3314326 | Bedford, Jr. | Apr 1967 | A |
3364807 | Holton | Jan 1968 | A |
3374786 | Callender, Jr. | Mar 1968 | A |
3388732 | Holton | Jun 1968 | A |
3463148 | Treace | Aug 1969 | A |
3489143 | Halloran | Jan 1970 | A |
3534731 | Muller | Oct 1970 | A |
3551389 | Prince, Jr. | Dec 1970 | A |
3552389 | Allgower et al. | Jan 1971 | A |
3561437 | Orlich | Feb 1971 | A |
3577601 | Mariani et al. | May 1971 | A |
3630261 | Gley | Dec 1971 | A |
3668972 | Allgower et al. | Jun 1972 | A |
3688972 | Mahon | Sep 1972 | A |
3695259 | Yost | Oct 1972 | A |
3695618 | Woolley et al. | Oct 1972 | A |
3716050 | Johnston | Feb 1973 | A |
3741205 | Markolf et al. | Jun 1973 | A |
3744488 | Cox | Jul 1973 | A |
3779240 | Kondo | Dec 1973 | A |
3782374 | Fischer | Jan 1974 | A |
3824995 | Getscher et al. | Jul 1974 | A |
3842825 | Wagner | Oct 1974 | A |
3877339 | Muenchinger | Apr 1975 | A |
RE28841 | Martin et al. | Jun 1976 | E |
3967049 | Brandt | Jun 1976 | A |
3996834 | Reynolds | Dec 1976 | A |
3996931 | Callender, Jr. | Dec 1976 | A |
4009712 | Burstein et al. | Mar 1977 | A |
4029091 | Von et al. | Jun 1977 | A |
4040129 | Steinemann et al. | Aug 1977 | A |
4095591 | Graham et al. | Jun 1978 | A |
4120298 | Fixel | Oct 1978 | A |
4172452 | Forte et al. | Oct 1979 | A |
4175555 | Herbert | Nov 1979 | A |
4219015 | Steinemann | Aug 1980 | A |
4236512 | Aginsky | Dec 1980 | A |
4263904 | Judet | Apr 1981 | A |
4269180 | Dall et al. | May 1981 | A |
4304039 | Asmus | Dec 1981 | A |
4338926 | Kummer et al. | Jul 1982 | A |
4355198 | Gartland, Jr. | Oct 1982 | A |
4379451 | Getscher | Apr 1983 | A |
4388921 | Sutter et al. | Jun 1983 | A |
4408601 | Wenk | Oct 1983 | A |
4429690 | Angelino-Pievani | Feb 1984 | A |
4438762 | Kyle | Mar 1984 | A |
4454876 | Mears | Jun 1984 | A |
RE31628 | Allgower et al. | Jul 1984 | E |
4484570 | Sutter et al. | Nov 1984 | A |
4484750 | Scruggs | Nov 1984 | A |
4488543 | Tornier | Dec 1984 | A |
4491317 | Bansal | Jan 1985 | A |
4493317 | Klaue | Jan 1985 | A |
4494535 | Haig | Jan 1985 | A |
4513744 | Klaue | Apr 1985 | A |
4537185 | Stednitz | Aug 1985 | A |
4565193 | Streli | Jan 1986 | A |
4580225 | Thompson | Apr 1986 | A |
4612920 | Lower | Sep 1986 | A |
4612923 | Kronenthal | Sep 1986 | A |
4616638 | Griggs | Oct 1986 | A |
4617922 | Griggs | Oct 1986 | A |
4621629 | Koeneman | Nov 1986 | A |
4628923 | Medoff | Dec 1986 | A |
4629455 | Kanno | Dec 1986 | A |
4630985 | Simons | Dec 1986 | A |
4651724 | Berentey et al. | Mar 1987 | A |
4657001 | Fixel | Apr 1987 | A |
4683878 | Carter | Aug 1987 | A |
4717613 | Ottaviano | Jan 1988 | A |
4747613 | Brichoud et al. | May 1988 | A |
4776329 | Treharne | Oct 1988 | A |
4776330 | Chapman et al. | Oct 1988 | A |
4781183 | Casey et al. | Nov 1988 | A |
4791918 | Von Hasselbach | Dec 1988 | A |
4794918 | Wolter | Jan 1989 | A |
4795473 | Grimes | Jan 1989 | A |
4800874 | David et al. | Jan 1989 | A |
4838252 | Klaue | Jun 1989 | A |
4848328 | Laboureau et al. | Jul 1989 | A |
4858601 | Glisson | Aug 1989 | A |
4867144 | Karas et al. | Sep 1989 | A |
4903691 | Heinl | Feb 1990 | A |
4905680 | Tunc | Mar 1990 | A |
4927421 | Goble et al. | May 1990 | A |
4955886 | Pawluk | Sep 1990 | A |
4957496 | Schmidt | Sep 1990 | A |
4957497 | Hoogland et al. | Sep 1990 | A |
4964403 | Karas et al. | Oct 1990 | A |
4966599 | Pollock | Oct 1990 | A |
4973332 | Kummer | Nov 1990 | A |
4973333 | Treharne | Nov 1990 | A |
4988350 | Herzberg | Jan 1991 | A |
5002544 | Klaue et al. | Mar 1991 | A |
5006120 | Carter | Apr 1991 | A |
5013313 | Surer | May 1991 | A |
5013315 | Barrows | May 1991 | A |
5015248 | Burstein et al. | May 1991 | A |
5027904 | Miller et al. | Jul 1991 | A |
5039265 | Rath et al. | Aug 1991 | A |
5041113 | Biedermann et al. | Aug 1991 | A |
5041114 | Chapman et al. | Aug 1991 | A |
5041116 | Wilson | Aug 1991 | A |
5053036 | Perren et al. | Oct 1991 | A |
5085660 | Lin | Feb 1992 | A |
5087260 | Fixel | Feb 1992 | A |
5108399 | Eitenmuller et al. | Apr 1992 | A |
5108449 | Gray | Apr 1992 | A |
5116336 | Frigg | May 1992 | A |
5127914 | Calderale et al. | Jul 1992 | A |
5129901 | Decoste | Jul 1992 | A |
5139497 | Tilghman et al. | Aug 1992 | A |
5147361 | Ojima et al. | Sep 1992 | A |
5147363 | Haerle | Sep 1992 | A |
5151103 | Tepic et al. | Sep 1992 | A |
5152794 | Davidson | Oct 1992 | A |
5190544 | Chapman et al. | Mar 1993 | A |
5197966 | Sommerkamp | Mar 1993 | A |
5201733 | Etheredge, III | Apr 1993 | A |
5261910 | Warden et al. | Nov 1993 | A |
5269784 | Mast | Dec 1993 | A |
5275601 | Gogolewski et al. | Jan 1994 | A |
5290281 | Tschakaloff | Mar 1994 | A |
5300074 | Frigg | Apr 1994 | A |
5304180 | Slocum | Apr 1994 | A |
5306275 | Bryan | Apr 1994 | A |
5324290 | Zdeblick et al. | Jun 1994 | A |
5324292 | Meyers | Jun 1994 | A |
5336224 | Selman | Aug 1994 | A |
5356410 | Pennig | Oct 1994 | A |
5360429 | Jeanson et al. | Nov 1994 | A |
5360448 | Thramann | Nov 1994 | A |
5364398 | Chapman et al. | Nov 1994 | A |
5364399 | Lowery et al. | Nov 1994 | A |
5372598 | Luhr et al. | Dec 1994 | A |
5376126 | Lin | Dec 1994 | A |
5395372 | Holt et al. | Mar 1995 | A |
5403136 | Mathys | Apr 1995 | A |
5413577 | Pollock | May 1995 | A |
5429641 | Gotfried | Jul 1995 | A |
5433719 | Pennig | Jul 1995 | A |
5458654 | Tepic | Oct 1995 | A |
5462547 | Weigum | Oct 1995 | A |
5484439 | Olson et al. | Jan 1996 | A |
5514138 | McCarthy | May 1996 | A |
5520690 | Errico et al. | May 1996 | A |
5522902 | Yuan et al. | Jun 1996 | A |
5531746 | Errico et al. | Jul 1996 | A |
5534032 | Hodorek | Jul 1996 | A |
5558674 | Heggeness et al. | Sep 1996 | A |
5569248 | Mathews | Oct 1996 | A |
5571109 | Bertagnoli | Nov 1996 | A |
5571198 | Drucker et al. | Nov 1996 | A |
5586985 | Putnam et al. | Dec 1996 | A |
5591168 | Judet et al. | Jan 1997 | A |
5601551 | Taylor et al. | Feb 1997 | A |
5601553 | Trebing et al. | Feb 1997 | A |
5607426 | Ralph et al. | Mar 1997 | A |
5607427 | Tschakaloff | Mar 1997 | A |
5607428 | Lin | Mar 1997 | A |
5620445 | Brosnahan et al. | Apr 1997 | A |
5647872 | Gilbert et al. | Jul 1997 | A |
5655089 | Bucci | Aug 1997 | A |
5658339 | Tronzo et al. | Aug 1997 | A |
5662655 | Laboureau et al. | Sep 1997 | A |
5674222 | Berger et al. | Oct 1997 | A |
5676667 | Hausman | Oct 1997 | A |
5681311 | Foley et al. | Oct 1997 | A |
D385963 | Hansson | Nov 1997 | S |
5690633 | Taylor et al. | Nov 1997 | A |
5693055 | Zahiri et al. | Dec 1997 | A |
5702396 | Hoenig et al. | Dec 1997 | A |
5702399 | Kilpela et al. | Dec 1997 | A |
5709682 | Medoff | Jan 1998 | A |
5709686 | Talos et al. | Jan 1998 | A |
5709687 | Pennig | Jan 1998 | A |
5718704 | Medoff | Feb 1998 | A |
5718705 | Sammarco | Feb 1998 | A |
5728099 | Tellman et al. | Mar 1998 | A |
5733287 | Tepic et al. | Mar 1998 | A |
5735853 | Olerud | Apr 1998 | A |
5741256 | Bresina | Apr 1998 | A |
5741258 | Klaue et al. | Apr 1998 | A |
5743912 | Lahille et al. | Apr 1998 | A |
5749872 | Kyle et al. | May 1998 | A |
5766175 | Martinotti | Jun 1998 | A |
5772662 | Chapman et al. | Jun 1998 | A |
5779706 | Tschakaloff | Jul 1998 | A |
5785713 | Jobe | Jul 1998 | A |
5797916 | McDowell | Aug 1998 | A |
5800553 | Albrektsson et al. | Sep 1998 | A |
5810821 | Vandewalle | Sep 1998 | A |
5810822 | Mortier | Sep 1998 | A |
5810823 | Klaue et al. | Sep 1998 | A |
5827286 | Incavo et al. | Oct 1998 | A |
5853413 | Carter et al. | Dec 1998 | A |
5921988 | Legrand | Jul 1999 | A |
5928084 | Green | Jul 1999 | A |
5931801 | Burbank et al. | Aug 1999 | A |
5931839 | Medoff | Aug 1999 | A |
5938664 | Winquist et al. | Aug 1999 | A |
5954722 | Bono | Sep 1999 | A |
5961524 | Crombie | Oct 1999 | A |
5968046 | Castleman | Oct 1999 | A |
5968047 | Reed | Oct 1999 | A |
5973223 | Tellman et al. | Oct 1999 | A |
5976139 | Bramlet | Nov 1999 | A |
5976141 | Haag et al. | Nov 1999 | A |
5989255 | Pepper et al. | Nov 1999 | A |
5999940 | Ranger | Dec 1999 | A |
6001099 | Huebner | Dec 1999 | A |
6007535 | Rayhack et al. | Dec 1999 | A |
6022352 | Vandewalle | Feb 2000 | A |
6030162 | Huebner | Feb 2000 | A |
6030389 | Wagner et al. | Feb 2000 | A |
6059785 | Schavan et al. | May 2000 | A |
6066141 | Dall et al. | May 2000 | A |
6096040 | Esser | Aug 2000 | A |
6113603 | Medoff | Sep 2000 | A |
6129728 | Schumacher et al. | Oct 2000 | A |
6129730 | Bono et al. | Oct 2000 | A |
6152927 | Farris et al. | Nov 2000 | A |
6155756 | Mericle et al. | Dec 2000 | A |
6183474 | Bramlet et al. | Feb 2001 | B1 |
6183475 | Lester et al. | Feb 2001 | B1 |
6187007 | Frigg et al. | Feb 2001 | B1 |
6206881 | Frigg et al. | Mar 2001 | B1 |
6221073 | Weiss et al. | Apr 2001 | B1 |
6221075 | Toermala et al. | Apr 2001 | B1 |
D443060 | Benirschke et al. | May 2001 | S |
6224602 | Hayes | May 2001 | B1 |
6228085 | Theken et al. | May 2001 | B1 |
6235032 | Link | May 2001 | B1 |
6235033 | Brace et al. | May 2001 | B1 |
6258250 | Weissenbacher et al. | Jul 2001 | B1 |
6261291 | Talaber et al. | Jul 2001 | B1 |
6283969 | Grusin et al. | Sep 2001 | B1 |
6287309 | Baccelli et al. | Sep 2001 | B1 |
6290703 | Ganem | Sep 2001 | B1 |
6306136 | Baccelli | Oct 2001 | B1 |
6306140 | Siddiqui | Oct 2001 | B1 |
6322562 | Wolter | Nov 2001 | B1 |
6325803 | Schumacher et al. | Dec 2001 | B1 |
6338734 | Burke et al. | Jan 2002 | B1 |
6342055 | Eisermann et al. | Jan 2002 | B1 |
6348052 | Sammarco | Feb 2002 | B1 |
6350265 | Blaustein et al. | Feb 2002 | B1 |
6355041 | Martin | Mar 2002 | B1 |
6355042 | Winquist et al. | Mar 2002 | B2 |
6358250 | Orbay | Mar 2002 | B1 |
6364882 | Orbay | Apr 2002 | B1 |
6375657 | Doubler et al. | Apr 2002 | B1 |
6379359 | Dahners | Apr 2002 | B1 |
D458374 | Bryant et al. | Jun 2002 | S |
D458683 | Bryant et al. | Jun 2002 | S |
D458684 | Bryant et al. | Jun 2002 | S |
D458996 | Bryant et al. | Jun 2002 | S |
6423064 | Kluger | Jul 2002 | B1 |
6440131 | Haidukewych | Aug 2002 | B1 |
6440135 | Orbay et al. | Aug 2002 | B2 |
D463557 | Bryant et al. | Sep 2002 | S |
D463558 | Bryant et al. | Sep 2002 | S |
D463559 | Bryant et al. | Sep 2002 | S |
6454769 | Wagner et al. | Sep 2002 | B2 |
6454770 | Klaue | Sep 2002 | B1 |
D464136 | Bryant et al. | Oct 2002 | S |
D464731 | Bryant et al. | Oct 2002 | S |
6468278 | Mueckter | Oct 2002 | B1 |
6488685 | Manderson | Dec 2002 | B1 |
D469532 | Bryant et al. | Jan 2003 | S |
D469533 | Bryant et al. | Jan 2003 | S |
D469534 | Bryant et al. | Jan 2003 | S |
6503252 | Hansson | Jan 2003 | B2 |
6503281 | Mallory | Jan 2003 | B1 |
6508819 | Orbay | Jan 2003 | B1 |
D469874 | Bryant et al. | Feb 2003 | S |
D469875 | Bryant et al. | Feb 2003 | S |
D470588 | Bryant et al. | Feb 2003 | S |
6525525 | Azinger | Feb 2003 | B1 |
6527776 | Michelson | Mar 2003 | B1 |
6533789 | Hall et al. | Mar 2003 | B1 |
6565525 | Burbank et al. | May 2003 | B1 |
6565569 | Assaker et al. | May 2003 | B1 |
6575975 | Brace et al. | Jun 2003 | B2 |
6602256 | Hayes | Aug 2003 | B1 |
6605090 | Trieu et al. | Aug 2003 | B1 |
D479331 | Pike et al. | Sep 2003 | S |
D480141 | Benirschke et al. | Sep 2003 | S |
6623486 | Weaver et al. | Sep 2003 | B1 |
6648891 | Kim | Nov 2003 | B2 |
6666868 | Fallin | Dec 2003 | B2 |
6669700 | Farris et al. | Dec 2003 | B1 |
6669701 | Steiner et al. | Dec 2003 | B2 |
6712820 | Orbay | Mar 2004 | B2 |
6719759 | Wagner et al. | Apr 2004 | B2 |
6730091 | Pfefferle et al. | May 2004 | B1 |
6767351 | Orbay et al. | Jul 2004 | B2 |
6835197 | Roth et al. | Dec 2004 | B2 |
6863483 | Koenig | Mar 2005 | B2 |
6866665 | Orbay | Mar 2005 | B2 |
6875215 | Taras et al. | Apr 2005 | B2 |
6893443 | Frigg et al. | May 2005 | B2 |
6955677 | Dahners | Oct 2005 | B2 |
6974461 | Wolter | Dec 2005 | B1 |
7001388 | Orbay et al. | Feb 2006 | B2 |
7044953 | Capanni | May 2006 | B2 |
7128744 | Weaver et al. | Oct 2006 | B2 |
7169149 | Hajianpour | Jan 2007 | B1 |
7179260 | Gerlach et al. | Feb 2007 | B2 |
7229445 | Hayeck et al. | Jun 2007 | B2 |
7282053 | Orbay | Oct 2007 | B2 |
7294130 | Orbay | Nov 2007 | B2 |
7309340 | Fallin et al. | Dec 2007 | B2 |
7316687 | Aikins et al. | Jan 2008 | B2 |
7338491 | Baker et al. | Mar 2008 | B2 |
7341589 | Weaver et al. | Mar 2008 | B2 |
7354441 | Frigg | Apr 2008 | B2 |
7517350 | Weiner et al. | Apr 2009 | B2 |
7527639 | Orbay et al. | May 2009 | B2 |
7537596 | Jensen | May 2009 | B2 |
7635381 | Orbay | Dec 2009 | B2 |
7637928 | Fernandez | Dec 2009 | B2 |
7641677 | Weiner et al. | Jan 2010 | B2 |
7695472 | Young | Apr 2010 | B2 |
7695502 | Orbay et al. | Apr 2010 | B2 |
7766916 | Leyden et al. | Aug 2010 | B2 |
7771433 | Orbay et al. | Aug 2010 | B2 |
7771457 | Kay et al. | Aug 2010 | B2 |
7776076 | Grady | Aug 2010 | B2 |
7776916 | Freeman et al. | Aug 2010 | B2 |
7857838 | Orbay | Dec 2010 | B2 |
7867260 | Meyer et al. | Jan 2011 | B2 |
7905909 | Orbay et al. | Mar 2011 | B2 |
7951176 | Grady et al. | May 2011 | B2 |
8075561 | Wolter | Dec 2011 | B2 |
8092505 | Sommers | Jan 2012 | B2 |
8118846 | Leither et al. | Feb 2012 | B2 |
8118848 | Ducharme et al. | Feb 2012 | B2 |
8337535 | White et al. | Dec 2012 | B2 |
8343196 | Schneider | Jan 2013 | B2 |
8403967 | Orbay | Mar 2013 | B2 |
8506607 | Eckhof et al. | Aug 2013 | B2 |
8518042 | Winslow et al. | Aug 2013 | B2 |
8556945 | Orbay | Oct 2013 | B2 |
8574268 | Chan et al. | Nov 2013 | B2 |
8579946 | Orbay | Nov 2013 | B2 |
8641744 | Weaver et al. | Feb 2014 | B2 |
8758346 | Koay et al. | Jun 2014 | B2 |
8814918 | Orbay et al. | Aug 2014 | B2 |
8845698 | Schneider | Sep 2014 | B2 |
8852245 | Schneider | Oct 2014 | B2 |
8876873 | Schneider | Nov 2014 | B2 |
8894693 | Petit et al. | Nov 2014 | B2 |
8940029 | Leung et al. | Jan 2015 | B2 |
9072558 | Orbay | Jul 2015 | B2 |
9107711 | Hainard | Aug 2015 | B2 |
9168075 | Dell Oca | Oct 2015 | B2 |
9265542 | Koay et al. | Feb 2016 | B2 |
9277947 | Koay et al. | Mar 2016 | B2 |
9295505 | Schneider | Mar 2016 | B2 |
9308034 | Grady | Apr 2016 | B2 |
9314284 | Chan et al. | Apr 2016 | B2 |
9387022 | Koay et al. | Jul 2016 | B2 |
9433454 | Paolino et al. | Sep 2016 | B2 |
9498267 | Pfeiffer et al. | Nov 2016 | B2 |
9510880 | Terrill et al. | Dec 2016 | B2 |
9554909 | Donner et al. | Jan 2017 | B2 |
9855083 | Mighell et al. | Jan 2018 | B2 |
9867643 | Terrill et al. | Jan 2018 | B2 |
9931148 | Grady | Apr 2018 | B2 |
20010000186 | Bramlet et al. | Apr 2001 | A1 |
20010011172 | Orbay et al. | Aug 2001 | A1 |
20010012940 | Tunc | Aug 2001 | A1 |
20020013587 | Winquist et al. | Jan 2002 | A1 |
20020032446 | Orbay | Mar 2002 | A1 |
20020045901 | Wagner et al. | Apr 2002 | A1 |
20020049445 | Hall et al. | Apr 2002 | A1 |
20020062127 | Schumacher et al. | May 2002 | A1 |
20020065516 | Winquist et al. | May 2002 | A1 |
20020128654 | Steger et al. | Sep 2002 | A1 |
20020143337 | Orbay et al. | Oct 2002 | A1 |
20020143338 | Orbay et al. | Oct 2002 | A1 |
20020156474 | Wack et al. | Oct 2002 | A1 |
20020183752 | Steiner et al. | Dec 2002 | A1 |
20020183753 | Manderson | Dec 2002 | A1 |
20030040748 | Aikins et al. | Feb 2003 | A1 |
20030055435 | Barrick | Mar 2003 | A1 |
20030060827 | Coughlin | Mar 2003 | A1 |
20030083660 | Orbay | May 2003 | A1 |
20030083661 | Orbay et al. | May 2003 | A1 |
20030105461 | Putnam | Jun 2003 | A1 |
20030125738 | Khanna | Jul 2003 | A1 |
20030135212 | Y Chow | Jul 2003 | A1 |
20030135216 | Sevrain | Jul 2003 | A1 |
20040030339 | Wack et al. | Feb 2004 | A1 |
20040049193 | Capanni | Mar 2004 | A1 |
20040059334 | Weaver et al. | Mar 2004 | A1 |
20040059335 | Weaver et al. | Mar 2004 | A1 |
20040073218 | Dahners | Apr 2004 | A1 |
20040097937 | Pike et al. | May 2004 | A1 |
20040097941 | Weiner et al. | May 2004 | A1 |
20040111089 | Stevens et al. | Jun 2004 | A1 |
20040215198 | Marnay et al. | Oct 2004 | A1 |
20040254579 | Buhren et al. | Dec 2004 | A1 |
20040260291 | Jensen | Dec 2004 | A1 |
20040260306 | Fallin et al. | Dec 2004 | A1 |
20050015089 | Young et al. | Jan 2005 | A1 |
20050049593 | Duong et al. | Mar 2005 | A1 |
20050080421 | Weaver et al. | Apr 2005 | A1 |
20050085818 | Huebner | Apr 2005 | A1 |
20050107796 | Gerlach et al. | May 2005 | A1 |
20050165400 | Fernandez | Jul 2005 | A1 |
20050171544 | Falkner, Jr. | Aug 2005 | A1 |
20050187555 | Biedermann et al. | Aug 2005 | A1 |
20050216001 | David | Sep 2005 | A1 |
20050261688 | Grady et al. | Nov 2005 | A1 |
20050277937 | Leung et al. | Dec 2005 | A1 |
20060004361 | Hayeck et al. | Jan 2006 | A1 |
20060009771 | Orbay | Jan 2006 | A1 |
20060058797 | Mathieu et al. | Mar 2006 | A1 |
20060200151 | Ducharme et al. | Sep 2006 | A1 |
20060217722 | Dutoit et al. | Sep 2006 | A1 |
20060235400 | Schneider | Oct 2006 | A1 |
20060264946 | Young | Nov 2006 | A1 |
20070016205 | Beutter et al. | Jan 2007 | A1 |
20070083207 | Ziolo et al. | Apr 2007 | A1 |
20070088360 | Orbay et al. | Apr 2007 | A1 |
20070162016 | Matityahu | Jul 2007 | A1 |
20070206244 | Kobayashi | Sep 2007 | A1 |
20070208378 | Bonutti et al. | Sep 2007 | A1 |
20070225716 | Deffenbaugh et al. | Sep 2007 | A1 |
20070260244 | Wolter | Nov 2007 | A1 |
20070276386 | Gerlach et al. | Nov 2007 | A1 |
20070276402 | Frankel et al. | Nov 2007 | A1 |
20080065070 | Freid et al. | Mar 2008 | A1 |
20080132960 | Weaver et al. | Jun 2008 | A1 |
20080140130 | Chan | Jun 2008 | A1 |
20080208259 | Gilbert et al. | Aug 2008 | A1 |
20080234749 | Forstein | Sep 2008 | A1 |
20080234752 | Dahners | Sep 2008 | A1 |
20080300637 | Austin et al. | Dec 2008 | A1 |
20090018557 | Pisharodi | Jan 2009 | A1 |
20090018588 | Eckhof et al. | Jan 2009 | A1 |
20090036933 | Dube et al. | Feb 2009 | A1 |
20090076553 | Wolter | Mar 2009 | A1 |
20090076554 | Huebner et al. | Mar 2009 | A1 |
20090099610 | Johnson et al. | Apr 2009 | A1 |
20090118768 | Sixto et al. | May 2009 | A1 |
20090143824 | Austin et al. | Jun 2009 | A1 |
20090143825 | Graham et al. | Jun 2009 | A1 |
20090216242 | Riemer et al. | Aug 2009 | A1 |
20090281543 | Orbay et al. | Nov 2009 | A1 |
20090287258 | Vannemreddy | Nov 2009 | A1 |
20090292318 | White et al. | Nov 2009 | A1 |
20090312803 | Austin et al. | Dec 2009 | A1 |
20100016858 | Michel | Jan 2010 | A1 |
20100030277 | Haidukewych et al. | Feb 2010 | A1 |
20100057086 | Price et al. | Mar 2010 | A1 |
20100076496 | Fernandez | Mar 2010 | A1 |
20100094357 | Wallenstein et al. | Apr 2010 | A1 |
20100100134 | Mocanu | Apr 2010 | A1 |
20100137919 | Wolter | Jun 2010 | A1 |
20100274296 | Appenzeller et al. | Oct 2010 | A1 |
20100312285 | White et al. | Dec 2010 | A1 |
20100312286 | Dell'Oca | Dec 2010 | A1 |
20110046681 | Prandi et al. | Feb 2011 | A1 |
20110087229 | Kubiak et al. | Apr 2011 | A1 |
20110106081 | Graham et al. | May 2011 | A1 |
20110224671 | Koay et al. | Sep 2011 | A1 |
20110301608 | Roth et al. | Dec 2011 | A1 |
20120143193 | Hulliger | Jun 2012 | A1 |
20120197307 | Fritzinger et al. | Aug 2012 | A1 |
20120245642 | Giannoudis et al. | Sep 2012 | A1 |
20130096631 | Leung et al. | Apr 2013 | A1 |
20130116735 | Schneider | May 2013 | A1 |
20130172943 | Austin et al. | Jul 2013 | A1 |
20130190828 | Schneider | Jul 2013 | A1 |
20130197589 | Schneider | Aug 2013 | A1 |
20130245699 | Orbay et al. | Sep 2013 | A1 |
20130261675 | Fritzinger | Oct 2013 | A1 |
20140005728 | Koay et al. | Jan 2014 | A1 |
20140018862 | Koay et al. | Jan 2014 | A1 |
20140180345 | Chan et al. | Jun 2014 | A1 |
20140207194 | Wolter | Jul 2014 | A1 |
20140236154 | Liao et al. | Aug 2014 | A1 |
20140271028 | Arnett | Sep 2014 | A1 |
20140277180 | Paolino et al. | Sep 2014 | A1 |
20140316473 | Pfeiffer et al. | Oct 2014 | A1 |
20140324108 | Orbay et al. | Oct 2014 | A1 |
20150051651 | Terrill et al. | Feb 2015 | A1 |
20150105829 | Laird | Apr 2015 | A1 |
20150257802 | Wolf et al. | Sep 2015 | A1 |
20150327897 | Hulliger | Nov 2015 | A1 |
20150327898 | Martin | Nov 2015 | A1 |
20150359575 | Pech et al. | Dec 2015 | A1 |
20160074081 | Weaver et al. | Mar 2016 | A1 |
20160089191 | Pak et al. | Mar 2016 | A1 |
20160143676 | Koay et al. | May 2016 | A1 |
20160166294 | Schneider | Jun 2016 | A1 |
20160242829 | Kim et al. | Aug 2016 | A1 |
20160278826 | Epperly | Sep 2016 | A1 |
20160310184 | Kazanovicz et al. | Oct 2016 | A1 |
20160317205 | Baker | Nov 2016 | A1 |
20160367299 | Paolino et al. | Dec 2016 | A1 |
20170265915 | Langdale et al. | Sep 2017 | A1 |
20170319248 | Milella et al. | Nov 2017 | A1 |
20180008326 | Hulliger et al. | Jan 2018 | A1 |
20180036049 | Kobayashi | Feb 2018 | A1 |
20180064476 | Lopez et al. | Mar 2018 | A1 |
20180064477 | Lopez et al. | Mar 2018 | A1 |
20180064479 | Lopez et al. | Mar 2018 | A1 |
20180132913 | Davison et al. | May 2018 | A1 |
20180235681 | Chambers et al. | Aug 2018 | A1 |
20190298426 | Bosshard et al. | Oct 2019 | A1 |
Number | Date | Country |
---|---|---|
1112803 | Nov 1981 | CA |
2047521 | Jan 1992 | CA |
2536960 | Mar 2005 | CA |
611147 | May 1979 | CH |
670755 | Jul 1989 | CH |
672245 | Nov 1989 | CH |
675531 | Oct 1990 | CH |
1486162 | Mar 2004 | CN |
2933637 | Apr 1980 | DE |
3442004 | Apr 1986 | DE |
3722852 | Jan 1989 | DE |
3743638 | Jul 1989 | DE |
4004941 | Aug 1990 | DE |
3942326 | Jun 1991 | DE |
4201531 | Jul 1993 | DE |
4341980 | Jun 1995 | DE |
4343117 | Jun 1995 | DE |
4438264 | Mar 1996 | DE |
19636733 | Apr 1997 | DE |
19629011 | Jan 1998 | DE |
9321544 | Sep 1999 | DE |
19832513 | Feb 2000 | DE |
19858889 | Jun 2000 | DE |
10015734 | Sep 2001 | DE |
10125092 | Dec 2001 | DE |
20309361 | Sep 2003 | DE |
20317651 | Mar 2004 | DE |
10319781 | Aug 2004 | DE |
102004009429 | Sep 2005 | DE |
102005042766 | Jan 2007 | DE |
202006019220 | May 2007 | DE |
202008000914 | Mar 2008 | DE |
202007017159 | May 2008 | DE |
102010048052 | Apr 2012 | DE |
102016112845 | Jan 2018 | DE |
202014011161 | Mar 2018 | DE |
0053999 | Jun 1982 | EP |
0158030 | Oct 1985 | EP |
0180532 | May 1986 | EP |
0207884 | Jan 1987 | EP |
0241914 | Oct 1987 | EP |
0244782 | Nov 1987 | EP |
0251583 | Jan 1988 | EP |
0266146 | May 1988 | EP |
0274713 | Jul 1988 | EP |
0290138 | Nov 1988 | EP |
0291632 | Nov 1988 | EP |
0299160 | Jan 1989 | EP |
0337288 | Oct 1989 | EP |
0360139 | Mar 1990 | EP |
0381462 | Aug 1990 | EP |
0382256 | Aug 1990 | EP |
0410309 | Jan 1991 | EP |
0436885 | Jul 1991 | EP |
0471418 | Feb 1992 | EP |
0506420 | Sep 1992 | EP |
0515828 | Dec 1992 | EP |
0530585 | Mar 1993 | EP |
0532421 | Mar 1993 | EP |
0546460 | Jun 1993 | EP |
0649635 | Apr 1995 | EP |
0668059 | Aug 1995 | EP |
0760231 | Mar 1997 | EP |
0848600 | Jun 1998 | EP |
1132052 | Sep 2001 | EP |
1468655 | Oct 2004 | EP |
1568329 | Aug 2005 | EP |
1604619 | Dec 2005 | EP |
1658015 | May 2006 | EP |
1712197 | Oct 2006 | EP |
1741397 | Jan 2007 | EP |
1767160 | Mar 2007 | EP |
1878394 | Jan 2008 | EP |
2529685 | Dec 2012 | EP |
0742618 | Mar 1933 | FR |
2233973 | Jan 1975 | FR |
2405062 | May 1979 | FR |
2405705 | May 1979 | FR |
2405706 | May 1979 | FR |
2496429 | Jun 1982 | FR |
2606268 | May 1988 | FR |
2622431 | May 1989 | FR |
2650500 | Feb 1991 | FR |
2671966 | Jul 1992 | FR |
2674118 | Sep 1992 | FR |
2677876 | Dec 1992 | FR |
2706763 | Dec 1994 | FR |
2739151 | Mar 1997 | FR |
2757370 | Jun 1998 | FR |
2802082 | Jun 2001 | FR |
0997733 | Jul 1965 | GB |
1237405 | Jun 1971 | GB |
1250413 | Oct 1971 | GB |
1312189 | Apr 1973 | GB |
1385398 | Feb 1975 | GB |
2017502 | Oct 1979 | GB |
1575194 | Sep 1980 | GB |
2090745 | Jul 1982 | GB |
2245498 | Jan 1992 | GB |
2257913 | Jan 1993 | GB |
02-121652 | May 1990 | JP |
03-058150 | Mar 1991 | JP |
03-158150 | Jul 1991 | JP |
04-138152 | May 1992 | JP |
06-045941 | Feb 1994 | JP |
06-125918 | May 1994 | JP |
06-245941 | Sep 1994 | JP |
08-098846 | Apr 1996 | JP |
08-126650 | May 1996 | JP |
08-257034 | Oct 1996 | JP |
08-266562 | Oct 1996 | JP |
09-108237 | Apr 1997 | JP |
10-118096 | May 1998 | JP |
11-076259 | Mar 1999 | JP |
11-299804 | Aug 1999 | JP |
11-276501 | Oct 1999 | JP |
11-512004 | Oct 1999 | JP |
11-318930 | Nov 1999 | JP |
2000-000247 | Jan 2000 | JP |
2000-152944 | Jun 2000 | JP |
2001-149379 | Jun 2001 | JP |
2001-161704 | Jun 2001 | JP |
2001-514039 | Sep 2001 | JP |
2001-525701 | Dec 2001 | JP |
2001-525702 | Dec 2001 | JP |
2002-095673 | Apr 2002 | JP |
2002-232185 | Aug 2002 | JP |
2002-532185 | Oct 2002 | JP |
2002-345836 | Dec 2002 | JP |
2002-542875 | Dec 2002 | JP |
2003-024344 | Jan 2003 | JP |
2003-038508 | Feb 2003 | JP |
2003-038509 | Feb 2003 | JP |
2003-509107 | Mar 2003 | JP |
2003-521303 | Jul 2003 | JP |
10-2007-0034449 | Mar 2007 | KR |
10-2008-0028917 | Apr 2008 | KR |
1037911 | Aug 1983 | SU |
1279626 | Dec 1986 | SU |
8700419 | Jan 1987 | WO |
8706982 | Nov 1987 | WO |
8803781 | Jun 1988 | WO |
9211819 | Jul 1992 | WO |
9311714 | Jun 1993 | WO |
9315678 | Aug 1993 | WO |
9322982 | Nov 1993 | WO |
9402073 | Feb 1994 | WO |
9532674 | Dec 1995 | WO |
9617556 | Jun 1996 | WO |
9625892 | Aug 1996 | WO |
9629948 | Oct 1996 | WO |
9708999 | Mar 1997 | WO |
9709000 | Mar 1997 | WO |
9720514 | Jun 1997 | WO |
9802105 | Jan 1998 | WO |
9805263 | Feb 1998 | WO |
9851226 | Nov 1998 | WO |
9851368 | Nov 1998 | WO |
9925266 | May 1999 | WO |
9944529 | Sep 1999 | WO |
0053110 | Sep 2000 | WO |
0053111 | Sep 2000 | WO |
0066012 | Nov 2000 | WO |
0119267 | Mar 2001 | WO |
0119268 | Mar 2001 | WO |
0126566 | Apr 2001 | WO |
0154601 | Aug 2001 | WO |
0189400 | Nov 2001 | WO |
0271963 | Sep 2002 | WO |
0296309 | Dec 2002 | WO |
0302856 | Jan 2003 | WO |
0322166 | Mar 2003 | WO |
0328567 | Apr 2003 | WO |
0357055 | Jul 2003 | WO |
2004043277 | May 2004 | WO |
2004089233 | Oct 2004 | WO |
2004107957 | Dec 2004 | WO |
2005018472 | Mar 2005 | WO |
2005044121 | May 2005 | WO |
2007014279 | Feb 2007 | WO |
2007108734 | Sep 2007 | WO |
2009023666 | Feb 2009 | WO |
2009058969 | May 2009 | WO |
2011032140 | Mar 2011 | WO |
2012112327 | Aug 2012 | WO |
2013045713 | Apr 2013 | WO |
2017048909 | Mar 2017 | WO |
Entry |
---|
Zimmer Advertisement, J. of Orthopaedic Trauma, vol. 12, No. 5, Jun./Jul. 1998. |
Vattolo, M., Thesis, “The Effect of Grooves in Osteosynthesis Plates on the Restructuring of the Corticalis,” Laboratory for Experimental Surgery, Swiss Research Institute, 1986 (original in German, translation to English attached with Certification). |
U.S. Appl. No. 15/940,761, Locking Structures for Affixing Bone Anchors to a Bone Plate, and Related Systems and Methods, Mar. 29, 2018. |
U.S. Appl. No. 15/926,390, Bone Plate With Form-Fitting Variable-Angle Locking Hole, filed Mar. 20, 2018. |
Update, Titanium LC-DCP Condylar Buttress Plate, Jun. 15, 1995 (Synthes) (“The LC-DCP update”). |
Universelle Rekonstruktionsplatte URP 2 4-3.2 (UniRecon-Registered), Swiss Dent, 17,1996, pp. 19-25. |
The Titanium Distal Radius Plate Technique Guide, published by Synthes, 1997. |
The Titanium Distal Radius Plate Technique Guide, (the “DRP Guide”) published by Synthes in 1996. |
The Locking Reconstruction Plate Technique Guide, published by Synthes, 1997. |
The Distal Radius Plate Instrument and Implant Set Technique Guide, (Synthes) (“1999 Radius Plate Guide”). |
The Distal Radius Plate Instrument and Implant Set Technique Guide, (Synthes) (“1998 Radius Plate Guide”). |
Technique Guide: 2.4 mm Variable Angle LCP Distal Radius System. Synthes, 2008,43 pages. |
Technique Guide, Less Invasive Stabilization (LISS), Oct. 2003. |
Synthes' Supporting Memorandum for Reconsideration of Claim Construction (without supporting Declaration) in the Pennsylvania Action, dated Feb. 19, 2008. |
Synthes' Summary Judgment Motion of No Invalidity Based on K982222 Summary including supporting memorandum, and declarations of A. Silversti and B. Liu (with supporting exhibits), dated Sep. 10, 2008. |
Synthes' Responsive Claim Construction Brief (without exhibits) for the Pennsylvania Action, dated Apr. 20, 2007. |
Synthes' Response to Smith & Nephew's Statement of Facts in Support of Smith & Nephew's Motion for Summary Judgment of Invalidity of the '744 patent; dated Sep. 29, 2008; 19 pages. |
Synthes' Response to Motion for Leave to Amend Answer, Civil Action No. 03-0084 (E.D. Pa.), dated Aug. 9, 2007. |
Synthes' Reply to Smith & Nephew's Opposition to Synthes Motion for Reconsideration of Claim Construction for the '486 patent in the Pennsylvania Action, dated Mar. 14, 2008. |
Synthes' Opposition to Smith & Nephew's Motion for Summary Judgment of Invalidity of the '744 patent; dated Sep. 29, 2008; 22 pages. |
Synthes' Opening Claim Construction Brief (without supporting declaration and attached exhibits but including Appendix A & B) for the Pennsylvania Action, dated Mar. 16, 2007 (Dkt. 54) (Ex. 5). |
Synthes' 1996 Titanium Modular Hand System brochure (the “Hand System Brochure”) [SNI-0290287-294] (Ex. 47). |
Synthes Titanium Modular Hand System, 1996. |
Synthes Opposition to Smith & Nephew's Motion for Summary Judgment of Invalidity of Claims 10-12 of the '486 Patent, dated Sep. 29, 2008 (Dkt. 159) (Ex 67). |
Synthes 1997 Catalog, published by Synthes, Mar. 1997; part 2, 261 pgs. |
Synthes 1997 Catalog, published by Synthes, Mar. 1997; part 1, 200 pgs. |
Sutter, F., et al., “Titanplasma-beschichtetes Hohlschrauben—und Rekonstructions-platten—System (THRP) zur Oberbriickung van Kieferdefekten,” Chirurg No. 55, pp. 741-748,1984 [SNI-0006164-171], and translation thereof [SNI-0006152-163] (Ex. 33). |
Surgical Instruments Catalog, Collin & Co., 1935 (original in French, translation to English of pp. 392-397 attached with certification). |
Supplemental Expert Report of Clifford FI. Turen, M.D., May 2009 (with Exhibit 1), dated Aug. 8, 2008(Ex.60). |
Supplement to Apr. 9, 2008 Expert Report of John F. Witherspoon (without exhibits), dated May 14, 2008 (Ex. 74). |
Supplement to Apr. 9, 2008 Expert Report of J. Lawrence Marsh in the Pennsylvania Action (with Exhibit 1), dated May 14, 2008 (Ex. 46). |
Summary of Safety and Effectiveness Information [510(k) Summary], K982222, Jul. 29, 1998. |
Stryker, “VariAx Distal Radius: Locking Plate System”, wwvv.osteosynthesis.stryker.com, 2006, 12 pages. |
Stay Order in Pennsylvania Action, dated Jul. 13, 2009. |
Smith and Nephew's Opposition to Synthes Motion for Summary Judgment of No Invalidity Based on K982222(including Opposition Memorandum, Statement of Undisputed Facts, K. Doyle Declaration with Exhibits A-F and R. King's Declaration with Exhibits A-D), dated Sep. 29, 2008( Dkt. 154) (Ex. 63). |
Smith & Newphew Statement of Undisputed Facts in Support of its Motion for Summary Judgment of Invalidity of U.S. Pat. No. 7,128,744; dated Sep. 29, 2008; 8 pages. |
Smith & Nephew, Inc. v. Rea, Federal Circuit Opinion dated Jul. 9, 2013, 18 pages. |
Smith & Nephew's Third Supplemental Response to Interrogatories Nos. 4, 5, 6, 8 and 9; Second Supplemental Responses to Interrogatories Nos. 1,2, 3,10,11 and 12; and First Supplemental Responses to Interrogatories Nos. 13,15 and 17 (with Smith & Nephew Exhibit 1 thereto), dated Aug. 11, 2008 (Ex. 14). |
Smith & Nephew's Responsive Claim Construction Brief (without exhibits) for the Pennsylvania Action, dated Apr. 20, 2007 (Dkt. 60) (Ex. 8). |
Smith & Nephew's Responses and Objections to Plaintiffs Fourth Set of Interrogatories Nos. 15-16, dated May 21, 2008 (Ex. 55). |
Smith & Nephew's Opposition to Synthes' Motion for Reconsideration of Claim Construction for the '486 Patent in the Pennsylvania Action, dated Mar. 4, 2008 (Dkt. 108) (Ex. 11). |
Smith & Nephew's Opening Claim Construction Brief (without exhibits) for the Pennsylvania Action, dated Mar. 16, 2007 (Dkt. 53) (Ex. 6). |
Smith & Nephew's Memorandum in Support of Motion for Leave to file Amended Answer in the Pennsylvania Action, dated Aug. 7, 2007 (Dkt. 77) (Ex. 70). |
Smith & Nephew's Memorandum in Support of its Motion for Summary Judgment of Invalidly of U.S. Pat. No. 7,128,744; dated Sep. 10, 2008; 22 pages. |
Smith & Nephew's Memorandum in Support of its Motion for Partial Summary Judgment of Invalidity of Claims 10-12 of the '486 patent, dated Sep. 10, 2008. |
Smith & Nephew's Amended Answer in the Pennsylvania Action (without Exhibits A-S ) in the Pennsylvania Action, dated Aug. 7, 2007. |
Smith & Nephew Amended Answer and Counterclaims of Defendant, Civil Action No. 03-0084 (E.D. Pa.), dated Aug. 7, 2007. |
Second Supplement to Apr. 9, 2008 Expert Report of J. Lawrence Marsh (with Exhibit 1), dated Sep. 3, 2008. |
Second Supplement to Apr. 9, 2008 Expert Report of David Seligson, M.D., dated Sep. 3, 2008. |
Schuhli Technique Guide, published by Synthes, 1995. |
European Patent Application No. 12006617.0: Extended European Search Report dated Jan. 21, 2013, 8 pages. |
European Patent Application No. 12006615.4: Extended European Search Report dated Jan. 21, 2013, 7 pages. |
European Patent Application No. 12006606.3: Extended European Search Report dated Jan. 21, 2013, 7 pages. |
English translation of International Patent Application No. PCT/CH03/00577: International Search Report dated Apr. 28, 2004, 4 pages. |
Dr. Turen's Aug. 15, 2008 deposition transcript in the Pennsylvania Action (Ex. 61). |
Dr. Parsons Aug. 7, 2008 deposition transcript in the Pennsylvania Action (Ex. 58). |
Dr. Marsh's Jul. 26,2008 Deposition transcript in the Pennsylvania Action (Ex. 52). |
Docket sheet for the Pennsylvania Action—2:03-cv-0084 (CDJ) (Ex. 4) filed Jan. 7, 2003. |
Docket sheet for the California Action—3:07-cv-00309-L-AJB (Ex. 1) Filed Feb. 14, 2007. |
Defendant's Motion for Leave to Amend Answer to Assert Allegations of Inequitable Conduct, Civil Action No. 03-0084 (E.D. Pa.), dated Aug. 7, 2007. |
Declaration of Robert A. King in Support of their Motion for Partial Summary Judgment of Invalidity of Claims 10-12 of U.S. Pat. No. 6,623,486 (without exhibits), dated Sep. 10, 2008. |
Declaration of J. Russell Parsons, Ph.D. in Support of Synthes Opposition to Smith & Nephew's Motion for Summary Judgement of Invalidity of the '744 patent (w/o Exhibits 1-4) dated Sep. 29, 2008; 15 pages. |
Declaration of J. Russell Parsons, Ph.D. in Support of Synthes Opposition to Smith & Nephew's Motion for Partial Summary Judgment of Invalidity of Method Claims 10-12 of U.S. Pat. No. 6,623,486 (with Exhibits 1-4), dated Sep. 29, 2008 (Dkt. 160) (Ex. 68). |
Declaration of J. Lawrence Marsh, M.D. dated Nov. 22, 2010. |
Declaration of J. Lawrence Marsh, M.D. dated Jun. 25, 2010. |
Declaration of J. Lawrence Marsh, M.D. dated Jun. 3, 2010. |
Declaration of Dr. Seligson in Support of Smith & Nephew's Motion for Partial Summary 175 Judgment of Invalidity of Claims 10-12 of U.S. Pat. No. 6,623,486 dated Sep. 9, 2008 (with Exhibit 1, pp. 16-66 dated Sep. 10, 2008). |
Declaration of Clifford H. Turen, M.D. in Support of Synthes' Opposition to Smith & Nephew's Motion for Partial Summary Judgment of Invalidity of Method Claims 10-12 of U.S. Pat. No. 6,623,486 (with Exhibits 1-4 ), dated Sep. 29, 2008. |
Declaration of Charles E. Van Horn, Esq., in Support of Synthes Opposition to Smith & Nephew's Motion for Summary Judgement of Invalidity of the '744 patent (w/o Exhibits 1-6) dated Sep. 29, 2008; 12 pages. |
Court Order denying Synthes' Motion for Reconsideration of Claim Construction for the '486 Patent in the Pennsylvania Action, dated Jun. 30, 2008. |
Collins Instruments de Chirurgie, published 1935, as illustrated at http://www.litos.com/pages/winkelstabilitaet e.html (Sep. 26, 2007) (“Collin Catalog”) [SNI-0258552-556] (Ex. 20). |
Claim Construction Order in Pennsylvania Action, dated Feb. 4, 2008. |
Brief in Support of Defendants' Motion for Leave to Amend Answer to Assert Allegations of Inequitable Conduct, Civil Action No. 03-0084 (E.D. Pa.), dated Aug. 7, 2007. |
Bone Plating System, U.S. Appl. No. 09/660,287. |
Bone Fixation Method, U.S. Appl. No. 09/848,251. |
Bolhofner, et al., The Results of Open Reduction and Internal Fixation of Distal Femur Fractures Using a Biologic (Indirect) Reduction Technique; Journal of Orthopedic Trauma, vol. 10, No. 6, pp. 372-377, Liooincort-Raven Publishers, Copyright 1996. |
AO/ASIF Instruments and Implants, A Technical Manual, Springer-Verlag, 1994 (the “AO-ASIF Manual”). |
Answer to Amended Complaint and Counterclaims, Civil Action No. 03-0084 (E .. D. Pa), filed Dec. 5. 2006. |
Amended Complaint for Patent Infringement, Civil Action No. 03-0084 (E.D. Pa.), filed Nov. 13, 2006. |
ACE SymmetryTM, “Curves in All the Right Places”, 1996, 3 pages. |
ACE Symmetry Trademark Titanium Upper Extremity Plates, ACE Medical Company, 1996, 2 pages. |
ACE Symmetry (Trademark), “Curves in All the Right Places”, Titanium Upper Extremity Plates, Ace Medical Company, 1996, 6 pages. |
510(k) Summary for Synthes (USA)'s Distal Femur Plate (DFP) System (K982222), dated Jul. 29, 1998 (attached as Exhibit 0 to Amended Answer). |
510(k) Summary for Synthes (USA)'s Anatomical Locking Plate System (K961413), dated Aug. 7, 1996 (attached as Exhibit Q to Amended Answer). |
510(k) Summary for Synthes (USA)'s 2.4 mm Universal Locking Plate System (K961421 ), dated Jun. 26, 1996 (attached as Exhibit S to Amended Answer). |
510(k) Disclosure K982732, Oct. 8, 1998 (Synthes) (“K982732”) [SNI-0259741-744] (Ex. 39). |
510(k) Disclosure K963798, Nov. 27, 1996 (Synthes) (“K963798”) [SNI-0258398] (Ex. 38). |
510(k) Disclosure K962616, Sep. 3, 1996 (Synthes) (“K962616”) [SNI-0258397] (Ex. 37). |
510(k) Disclosure K961421, Jun. 26, 1996 (Synthes) (“K961421”) [SNI-0258396] (Ex. 36). |
510(k) Disclosure K961413, Aug. 7, 1996 (Synthes) (“K961413”) [SNI-0259751] (Ex. 35). |
4.5 mm Cannulated Screw Technique Guide, published 1995 (Synthes) [SNI-0259703-714] (Ex. 21). |
35 U.S.C. .sctn.282 Notice in the Pennsylvania Action, dated Oct. 10, 2008. |
“VariAx TM Distal Radius Locking Plate System”, Stryker R, Copyright 2009,12 pages. |
“The New Comprehensive Stryker R VariAx TM Distal Radius Locking Plate System”, Copyright 2009,20 pages. |
“Multiple Offerings of Plates, Screws and Pegs”, Small Bone Innovations, Inc., Dec. 2009, 2 pages. |
“Less Invasive Stabilization System (LISS) Technique Guide,” Synthes (USA) Copyright 2000 (attached as Exhibit K to Amended Answer). |
“Cone Drive History and Double Enveloping Technology”, http://conedrive.com/history/html., accessed Apr. 20, 2006, 9 pages. |
Schuhli Technique Guide 1998, (Synthes) (“Schuhli Guide”). |
Schmoker, The Locking Reconstruction Plate 2.4-3.2, originally published in Swiss Dent 17,1996. |
Schandelmaier, et al., Distal Femur Fractures and Liss Stabilization, Injury, Int. J. Care Injured, vol. 32, Suppl. 3, 55-63, 2001. |
Ring, D., et al. “Prospective Multicenter Trial of a Plate for Distal Fixation of Distal Radius Fractures,” J. of Hand Surgery, vol. 22a(5), pp. 777-784, Sep. 1997. |
Ring, D., et al,“A New Plate for Internal Fixation of the Distal Radius,” AO.ASIF Dialogue, vol. IX, issue I, Jun. 1996 [SNI-0254971-973] (Ex. 53). |
Reply to Counterclaims, Civil Action No. 03-0084 (E.D. Pa.), filed Jan. 2, 2007. |
Rebuttal Expert Report of Russell Parsons, Ph.D., (with Exhibit 1), dated Jul. 15, 2008. |
Rebuttal Expert Report of Mari Truman, P.E., (with Exhibit 2), dated May 14, 2008 (Ex. 79). |
Rebuttal Expert Report of Eric R. Gozna, M.D., P.ENG., (with Exhibit 1), dated May 13, 2008 (Ex. 56). |
Rebuttal Expert Report of Clifford H. Turen, M.D., (with Exhibit 1 ), dated May 14, 2008. |
Rebuttal Expert Report of Charles E. Van Horn (without Exhibits), dated May 12, 2008 (Ex. 77). |
Pure Titanium Implants Catalog, published Dec. 1993 (Synthes) (“PTI”) [SNI0259670-673] (Ex. 23). |
Printout of http://www.aofoundation.org web site, dated May 23, 2007 (attached as Exhibit L to Amended Answer). |
Printout from USFDA 510(k) Premarket Notification Database, dated May 23, 2007, listing Synthes Distal Femur Plate (DFP) System, and bearing 510(k) No. K982727 (attached as Exhibit N to Amended Answer. |
Printout from USFDA 510(k) Premarket Notification Database, dated May 22, 2007, listing Synthes 2.4 mm Universal Locking Plate System, and bearing 510(k) No. K961421 (attached as Exhibit R to Amended Answer). |
Printout from US FDA 510(k) Premarket Notification Database, dated May 22, 2007, listing Synthes Anatomical Locking Plate System, and bearing 510(k) No. K961413 (attached as Exhibit P to Amended Answer). |
Photographs of the Pi plate marked as Little Deposition Exhibit 84. |
Photographs of the Bolhofner Distal Femur Plating System (Bolhofner DFPS), Apr. 14, 2008. |
Photographs of Synthes Titanium Distal Femur LISS Plate, 9 holes/236 mm—Right, 42.344 (the sample LISS)(SYN-PHY-0000002). |
Photographs of Synthes Less Invasive Stabilization System (LISS), screw; (SYN-PHY0000004). |
Photographs of Sample Synthes LC-DCP Tibia Plate produced as SYN-PHY-0000014. |
Photographs of Sample Synthes LC-DCP CBP produced as SYN-PHY-0000011. |
Photographs of sample LC-DCP Condylar Buttress Plate (“CBP”) [SYN-PHY-0000001] (Ex. 42). |
Perren, S., et al., “Early Temporary Porosis of Bone Induced by Internal Fixation Implants,” Clinical Orthopaedics and Related Research, No. 232, Jul. 1988, 139-151. |
Perren, et al., “The Limited Contact Dynamic Compression Plate (LC-DCP),” Arch. Orthopaedic & Trauma Surg., 1990, vol. 109, 304-310. |
Ms. Truman's Jul. 24, 2008 deposition transcript in the Pennsylvania Action (Ex. 81). |
Mr. Van Horn's Jul. 15, 2008 deposition transcript in the Pennsylvania Action (Ex. 78). |
Marsh Exhibit C, Declaration of J. Lawrence Marsh, MD., in support of Smith & Nephew's, Inc's Motion for Partial Summary Judgement of Invalidity of Claims 10-12 of U.S. Pat. No. 6,623,486, dated Sep. 9, 2008, pp. 1-20. |
Marsh Exhibit B, Supplement to Apr. 9, 2008 Expert Report of J. Lawrence Marsh, MD, Civil Action No. 03-0084, dated May 14, 2008 , pp. 1-19. |
Marsh Exhibit A, Releasable 510(k) Search, Aug. 7, 2000, http://web.archive.org/web/19970615015534/www.fda.gov/egibin/htmlscript? 510k.hts+showcat-OR. |
Marsh Exhibit A, Initial Expert Report of J. Lawrence Marsh, MD, Civil Action No. 03-0084, dated Apr. 9, 2008 , pp. 1-181. |
Marsh Exhibit 1, Curriculum Vitae, Dec. 2006, pp. 1-34. |
Marsh Exhibit 1, Affidavit of Christopher Butler dated Aug. 24, 2010. |
Manual of Internal Fixation, Techniques Recommended by the AO-ASIG Group, Springer-Verlag, 1991,200-251. |
Luthi, U., etal., “Kontackflache zwischen Osteosyntheseplatte und Knochen,” Aktuel. Traumatol. 10:131-136,1980 (“Luthi”) [SNI-0258572-577] (Ex. 31). |
Less Invasive Stabilization System Liss Surgical Technique Proximal Tibia, (Draft), 2000,11 pgs. |
Krettek et al.; “Distale Femurfrakturen”; Swiss Surg.; 1998; 4; p. 263-278 with English abstract. |
Krettek et al, “LISS less Invasive Stabilization System,” AO International Dialogue, vol. 12, Issue I, Jun. 1999. |
Koval, k., et al., “Distal Femoral Fixation: A Biomechanical Comparison of the Standard Condylar Buttress Plate, a Locked Buttress Plate, and the 95-Degree Blade Plate,” J. of Orthopaedic Trauma, val. 11(7), pp. 521-524, Lippencott-Raven Publishers, Oct. 1997. |
Kolodziej, P., et al. “Biomechanical Evaluation of the Schuhli Nut,” Clinical Orthopaedics and Related Research, No. 34 7, pp. 79-85, Lippencott-Raven Publishers, Feb. 1988 (“Kolodziej”) [SNI-0256042-048] (Ex. 28). |
Kassab, et al., “Patients Treated for Nonunions with Plate and Screw Fixation and Adjunctive Locking Nuts,” Clinical Orthopaedics and Related Research, 1998, 347, 86-92. |
Joint submission setting forth agreed claim construction in the Pennsylvania Action, dated Jul. 31, 2007. |
International Patent Application No. PCT/US2008/072894; International Search Report dated Mar. 19, 2009, 18 pages. |
Initial Expert Report of J. Lawrence Marsh, M.D., Apr. 9, 2008 (with Exhibits 1-2 and Appendices A-L), dated Apr. 9, 2008 (Ex. 41). |
Initial Disclosures of Defendant, Civil Action No. 03-0084 (E.D. Pa), dated Jan. 12, 2007. |
Information Disclosure Statement in U.S. Appl. No. 09/660,287, dated Nov. 13, 2000 (attached as Exhibit G to Amended Answer). |
Information Disclosure Statement bearing, dated May 4, 2001 (attached as Exhibit F to Amended Answer). |
Haas, N.P., et al., “LISS-Less Invasive Stabilization System—A New Internal Fixator for Distal Femur Fractures,” OP J., vol. 13(3), pp. 340-344, Georg Thieme Verlag, Dec. 1997 (in English). |
Gautier, E., et al., “Porosity and Remodelling of Plated Bone After Internal Fixation: Result of Stress Shielding of Vascular Damage?”, Biomaterials and Biomechanics 1983, Elsevier Science Publishers B.V. 1984 (“Gautier”). |
Expert Report of John F. Witherspoon (w/o Exhibits A-C) in the Pennsylvania Action, dated Apr. 9, 2008; 36 pages. |
Number | Date | Country | |
---|---|---|---|
20190328430 A1 | Oct 2019 | US |