Producing multiple slit coils of metal from a single coil of metal is a useful process that transforms a large coil of steel into more useable pieces of a desired width. One of the most difficult parts of the process is getting started. When starting a slitter, the traditional method of doing so required slowly feeding the material into the slitter during the startup with the slitter knives slitting the material from the moment the leading edge of the coil contacted the slitter knives. Immediately after the slit material leaves the slitter the leading edge is transformed into multiple strips of metal. The then slit material curls in opposite directions and the ends spread apart in alternating up and down directions. Depending on the thickness of the material positioning the slit material is a challenge for different reasons. In the case of extremely thin material, the thin edges may act as blades that may cut operators who are forced to handle multiple freely moving strips of steel. In the case of thick material, blunt force is required to wrestle the material into position to be fed into subsequent parts of the slitting line. The operators of the slitter are forced to handle multiple relatively narrow strips of metal from the slitter across the pit table above a looping pit. Operators are forced to move the coil forward at a very slow rate of speed while carefully threading each of the many strips into a tensioner. The strips must be further wrestled into position to be placed into a recoiler. To avoid having multiple slit strips flopping in multiple directions operators have had to employ their own makeshift solutions to keep the strips together. One of these has been for the operators to clamp the multiple strips between boards, then take the heavy, awkward board and metal clamped leading edge through the slitter line until the leading edge of the metal can be attached to the recoiler. This additional step of attaching a makeshift jig made from clamped boards slows the threading process down from its normal running speed compared. An easier way to keep the slit strips together through the threading process is needed.
The present invention is a method for slitting sheet material. The material itself has a thickness, a width, a leading edge and a shear strength. The slitter has rotatable arbors that rotate about their axes and are held adjacent to each other. Each arbor has a knife affixed thereto and the knives are adapted for slitting material passing between them. The knives have an outer diameter. A computer is used to calculate a first and second spacing for the arbors based on the shear strength, outer diameter, and thickness of the material. The material is inserted between the knives and the leading edge passes through the slitter with the arbors in the first position that pinches the material as it moves forward. While the material moves forward the arbors are moved into a second and closer position in which the knives are situated to slit the material as it passes between the knives. This slitting of material behind the leading edge creates a leading tab that is defined by the leading edge and extends rearward to a location where the material has been slit by the knives.
A computer may be used to control the positions of the arbors that plunge knives into the sheet of material passing between the knives.
Choosing the spacing between arbors 36, 38 and therefore, the spacing between the knives 32 is important. When slitting material, it is not necessary to have overlapping knives 32 as shown in
In prior art slitters, the metal 16 is fed from left to right which corresponds to a forward direction through the slitter line. The knives of a prior art slitter are set to a spacing locating the outer diameters of the opposing knives so that the material is slit before the material is fed into the slitter. In the case of prior art slitters, the leading edge 52 of the material is slit by the knives 32 as is all material behind the leading edge 52. This meant that the metal 16 upon being slit became multiple independent strips 44 which could move in different directions. The problem created by this situation is that threading multiple slit strips 44 of the metal through portions of the slitter line 10 subsequent to the slitter 26 was extremely difficult and potentially dangerous.
The slitter line 10 of the present invention, does not begin slitting at the leading edge 52. The computer chooses a first position of the arbors 36, 38 that locates the knives 32 in a position to pinch the metal 16 that travels between the opposing knives 32. This simultaneous contact by opposing knives 32 on both sides of the metal 16 is shown in
Once the knives 32 and arbors 36, 38 are in their second position, which slits the metal 16, a leading tab 56 will be formed. The leading tab 56 is the continuous strip 44 of metal extending behind the leading edge 52 until the metal 16 is slit. This leading tab 56 keeps the individual strips 44 together and the leading tab 56 is continuous across the width of the metal 16. The slitter 26 holds the arbors 36, 38 in the second position and the metal 16 is moved forward for a predetermined distance and then paused. This allows for inspection of the leading tab 56 and the slit strips 44. Upon a satisfactory inspection, the metal 16 is moved forward. Typically after the slitter, 26 the metal 16 will move across a pit table 57 over a looping pit 58. The leading tab 56 is moved through a tensioner 59 that is forward of the looping pit 58. The metal and its leading tab 56 is advanced until the leading tab 56 is beyond a shear 60. The shear 60 is then used to cut the leading tab 56 from the metal 16 and the strips 44 are then unconnected at their respective ends. As can be seen in
The invention is not limited to the details given above, but may be modified within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3730043 | Zimmermann | May 1973 | A |
4155238 | Rogers | May 1979 | A |
5000812 | Murphy | Mar 1991 | A |
8191451 | Stolyar | Jun 2012 | B2 |
8267847 | Cummings | Sep 2012 | B2 |
20080295664 | Stolyar | Dec 2008 | A1 |
20130202765 | Nagayama | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
1997596 | Dec 2008 | EP |
Number | Date | Country | |
---|---|---|---|
20160339593 A1 | Nov 2016 | US |