1.0 Field of the Disclosure
This disclosure relates generally to a jacketed bullet which utilizes a core-retaining feature within the jacket and a method of making the bullet and, more specifically, this disclosure relates to a three component bullet having an external locking band which ultimately forms a core-locking feature within the interior of the jacket such that the core remains locked within the jacket even after impact with a hard barrier material such as windshield glass or sheet steel, for example.
2.0 Related Art
In order for a bullet to achieve optimum terminal performance, its jacket and core must penetrate a target as a single unit and remain connected throughout the course of travel, regardless of the resistance offered by the target material.
Various attempts have been made over the years to keep a bullet's jacket and core coupled together on impact. One of the earliest and simplest attempts utilized a knurling method which created a “cannelure” in a jacketed bullet. A cannelure typically includes a narrow, 360° circumferential depression in the shank portion of the bullet jacket. While the cannelure was originally conceived for use as a crimping feature, various companies have attempted to use it as both a crimping groove and as a core retaining feature, or solely as a core retaining feature. The knurling process forces jacket material radially inwardly, subsequently creating a shallow internal protrusion which extends a short distance into the bullet core. This approach has generally proven ineffective in keeping the core and jacket together, primarily due to the limited radial depth involved and the minimal amount of longitudinal core-gripping area that a cannelure offers. Upon impact with a hard barrier material, the core tends to immediately extrude beyond the confines of the inner protrusion, subsequently sliding out of the jacket. Depending on jacket wall thickness, core hardness and impact energy, axial core movement can actually “iron out” the internal geometry of the cannelure as the core slides forward. Even multiple cannelures have proven ineffective due to the inadequate amount of square area they are collectively able to cover.
U.S. Pat. No. 4,336,756 (Schreiber) describes a “two-component bullet” intended for hunting which comprises a cold worked jacket utilizing a narrow, inwardly-extending annular ring of jacket material terminating in a “knife-like edge” which is formed from a thickened portion of the jacket wall and which engages and holds the base of the core within the jacket after the bullet is final formed. U.S. Pat. No. 4,856,160 (Habbe, et al.) also describes a “two-component bullet” utilizing a reverse taper on the rearward interior of the jacket to lock the core within the jacket.
Other attempts at retaining the core within the jacket have been used in the past which do not utilize an external locking band. Such attempts range from providing a “partition” separating a rear core from a front core, electroplating a copper skin around the core prior to final forming the bullet, and heat-bonding (or similar heat treatment) the core to the interior of the jacket wall after the bullet is final formed. Each of these methods has shortcomings. The shortcomings typically include one or more of the following: (a) Jacket-core eccentricity resulting in less than desirable accuracy due to bullet imbalance, (b) slow manufacture, (c) high cost, and/or (d) less reliable.
With respect to the use of an external “band” in the construction of a projectile, U.S. Pat. No. 4,108,073 (Davis) describes an armor piercing projectile having a “rotating band” which is positioned around the outer surface of the jacket near the rearward end of the projectile. The diameter of the rotating band is larger than the diameter of the jacket. The rotating band serves to impart rotation to the projectile as it passes through the gun bore and seals hot gasses within the bore. The band typically includes plastic, gilding metal, sintered iron or other well known rotating band material. The Davis patent as cited herein should be viewed as general information only as the rotating band concept serves a completely different purpose than the three-component invention disclosed herein wherein an external band is used to lock a malleable core within a jacket.
According to an aspect of the disclosure, a bullet includes a malleable core having a section with a first end and a second end, a jacket comprising malleable material surrounding the malleable core, the jacket having a first end and a second end, and a locking band surrounding a portion of the jacket configured to retain the malleable core with the jacket during use, at least a portion of the locking band configured around a circumferential depression in a wall of the jacket and a mating circumferential depression in the malleable core.
According to another aspect of the disclosure, a method for manufacturing a bullet, includes forming an indention around a circumference of a jacket, forming an indention around a circumference of a malleable core within the jacket, and arranging a band in the indentation of the circumference of the jacket such that the jacket and malleable core are retained together with the band of material positioned within the indentation around the circumference of the jacket during impact at a desired velocity.
Additional features, advantages, and embodiments of the disclosure may be set forth or apparent from consideration of the following detailed description, drawings, and claims. Moreover, it is to be understood that both the foregoing summary of the disclosure and the following detailed description are exemplary and intended to provide further explanation without limiting the scope of the disclosure as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention, are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and together with the detailed description, serve to explain the principles of the invention. No attempt is made to show structural details of the invention in more detail than may be necessary for a fundamental understanding of the invention and the various ways in which it may be practiced. In the drawings:
The aspects of the invention and the various features and advantageous details thereof are explained more fully with reference to the non-limiting embodiments and examples that are described and/or illustrated in the accompanying drawings and detailed in the following description. It should be noted that the features illustrated in the drawings are not necessarily drawn to scale, and features of one embodiment may be employed with other embodiments as the skilled artisan would recognize, even if not explicitly stated herein. Descriptions of well-known components and processing techniques may be omitted so as to not unnecessarily obscure the embodiments of the invention. The examples used herein are intended merely to facilitate an understanding of ways in which the invention may be practiced and to further enable those of skill in the art to practice the embodiments of the invention. Accordingly, the examples and embodiments herein should not be construed as limiting the scope of the invention, which is defined solely by the appended claims and applicable law. Moreover, it is noted that like reference numerals represent similar parts throughout the several views of the drawings.
It is understood that the invention is not limited to the particular methodology, devices, apparatus, materials, applications, etc., described herein, as these may vary. It is also to be understood that the terminology used herein is used for the purpose of describing particular embodiments only, and is not intended to limit the scope of the invention. It must be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural reference unless the context clearly dictates otherwise.
Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Preferred methods, devices, and materials are described, although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the invention.
The disclosure is generally directed to a three component bullet including a metal jacket, a malleable core and an externally situated metal locking band which is embedded in a portion of the outside of the jacket. Swaging the locking band in place forms an inward circumferential protrusion on the interior wall of the jacket which embeds itself in the malleable core which locks the core within the jacket. The jacket and core remain locked together even after the bullet is fired from a firearm and impacts hard barrier materials such as windshield glass, sheet steel or the like while retaining a large percentage of its original weight. This combination of elements allows the bullet to achieve post-barrier penetration of ballistic gelatin which exceeds 12 inches—the minimum depth called for in the FBI's Ballistic Test Protocol. In so doing, the bullet exhibits a terminally effective degree of expansion beyond its original diameter.
The locking band 130 may be constructed from any suitable material. The preferred materials are brass, gilding metal, copper and mild steel. The metal used in the locking band 130 does not have to match the metal used in the jacket 100. If the metal used is steel, the steel locking band may be electroplated to resist corrosion using a thin coating of copper, zinc, brass, nickel or any other corrosion-resistant material as desired. The locking band 130 may also be anodized, dyed or otherwise colored for marketing purposes or color-coded for law enforcement use to distinguish one type of ammunition from another.
Metal locking bands may be manufactured by drawing long metal jackets and thereafter pinch-trimming individual band sections from the jacket or by cutting off multiple band sections of the same on a lathe using a stepped cutoff tool. As an alternative, the locking bands can be cut from metal tubing using a lathe.
As an alternative material, the locking band 130 may be made of a polymer. The preferred polymers are polycarbonate, Nylon™ and high density polyethylene. Polymer locking bands may be injection molded or cut to length on a lathe from tubing.
The locking band 130 may be constructed to have an axial wall height of between about 0.080 of an inch and 0.350 of an inch but the preferred height is between about 0.125 of an inch and 0.200 of an inch. The locking band 130 may be constructed to have a wall thickness of between about 0.009 of an inch and 0.045 of an inch, but the preferred wall thickness is between about 0.016 of an inch and 0.030 of an inch.
Moreover, in one aspect, the jacket weakening features 145 may comprise a plurality of longitudinally projecting spaced slits 145 forming spaced petals therebetween having side edges extending through a front open end of the malleable core into a central recess to form petals of core material and jacket material between the spaced slits and wherein the jacket material extends into the slits to said central recess which permits the petals of core and jacket material to separate and form outwardly projecting petals.
The 90° shoulder formed on the interior wall of the jacket proximate 134/135 in conjunction with the axial length and the radial depth of the circumferential depression coalesce to provide superior core-locking ability. The internal geometry derived from the use of a third component, i.e., an external locking band 130, is a principle factor that provides superior bullet core retention ability during impacts as compared with prior art bullets. However, other architectures for the circumferential depression are shown in the figures, described below, and/or contemplated by the invention.
A modification to the manufacturing approach described in
Yet another modification to the manufacturing approach to the invention includes the steps of taking the standard drawn jacket 100 without the core 110, forcing the jacket 100 into the bottleneck shape through the use of a bottleneck die without the core 110. Thereafter, attaching the band 130 over the jacket 114 from the open end 105 until it is positioned adjacent the larger diameter section of the jacket 100. Thereafter expanding the jacket 100 with an expander punch to expand the bottlenecked portion of the jacket 100 to increase the outside diameter thereof Thereafter inserting the lead core 110. The core may then be seated as described with respect to
Yet another alternative modification to the manufacturing process may include point forming the base of the jacket 100 such that it has a greatly reduced diameter. The band 130 in this case may be placed on the jacket 100 base first. Thereafter the insertion of the core 120 is next performed on the bullet and the core 110 may be seated and manufactured a consistent with the
While the invention has been described in terms of exemplary embodiments, those skilled in the art will recognize that the invention can be practiced with modifications in the spirit and scope of the appended claims. These examples given above are merely illustrative and are not meant to be an exhaustive list of all possible designs, embodiments, applications or modifications of the invention.
This application is a continuation of U.S. patent application Ser. No. 13/190,972, filed Jul. 26, 2011, which is entirely incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1081616 | Johnson | Dec 1913 | A |
2696130 | Peters | Dec 1954 | A |
3157137 | Burns | Nov 1964 | A |
3881421 | Burczynski | May 1975 | A |
4108073 | Davis | Aug 1978 | A |
4550662 | Burczynski | Nov 1985 | A |
4947755 | Burczynski | Aug 1990 | A |
5131123 | Brooks | Jul 1992 | A |
5385100 | Corzine et al. | Jan 1995 | A |
5385101 | Corzine et al. | Jan 1995 | A |
5686693 | Jakobsson | Nov 1997 | A |
D389221 | Borg | Jan 1998 | S |
5943749 | Swank | Aug 1999 | A |
6213022 | Pullum | Apr 2001 | B1 |
D447209 | Benini | Aug 2001 | S |
6530328 | Burczynski et al. | Mar 2003 | B2 |
6776101 | Pickard | Aug 2004 | B1 |
6805057 | Carr et al. | Oct 2004 | B2 |
6973879 | McElroy et al. | Dec 2005 | B1 |
7543535 | Herrlinger | Jun 2009 | B2 |
D621468 | Nilsson | Aug 2010 | S |
7874253 | Marx | Jan 2011 | B2 |
D646179 | Jansen | Oct 2011 | S |
D664042 | Kurpis | Jul 2012 | S |
8256352 | Masinelli | Sep 2012 | B2 |
8397641 | Jackson | Mar 2013 | B1 |
8448575 | Goddard | May 2013 | B2 |
8511233 | Nilsson | Aug 2013 | B2 |
8640589 | Dryer et al. | Feb 2014 | B2 |
8646389 | Masinelli | Feb 2014 | B2 |
8763535 | Padgett | Jul 2014 | B2 |
8789470 | Frank | Jul 2014 | B2 |
8950333 | Burczynski et al. | Feb 2015 | B2 |
9046333 | Masineill | Jun 2015 | B2 |
20060027128 | Hober | Feb 2006 | A1 |
20070089629 | Marx | Apr 2007 | A1 |
20080035008 | Riess et al. | Feb 2008 | A1 |
20130305950 | Coffman, II | Nov 2013 | A1 |
20140261044 | Seecamp | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
648039 | Jul 1937 | DE |
705504 | Apr 1941 | DE |
743914 | Jan 1944 | DE |
2064553 | Jul 1972 | DE |
0225532 | Jun 1987 | EP |
0918208 | May 1999 | EP |
191300326 | Jan 1914 | GB |
WO2013016330 | Jan 2013 | WO |
WO 2014186007 | Nov 2014 | WO |
Entry |
---|
Don Roberts, At Last! Pressure Data for the .30-40 Krag, Handloader: The Journal of Ammunition Reloading, Jul.-Aug. 1976, pages cover, 4, 38-41, Issue 62, Wolfe Publishing. |
George C. Lambert, letter to Mr. C. V. Bracher regarding “Belted Bullet”, Mar. 4, 1936, 1 pages, Peters Cartridge Division of Remington Arms Co., Inc., Bridgeport, CT. |
International Search Report dated Apr. 17, 2014 for International Application No. PCT/US2014/012952 filed Jan. 24, 2014. |
International Search Report for PCT/US2012/047966 dated Oct. 16, 2012. |
Maj. George Nonte, Tip to Tip, Handloader: The Journal of Ammunition Reloading, Jul.-Aug. 1976, pages cover, 4, 12-13, Issue 62, Wolfe Publishing Company, Inc., Prescott. |
Photograph of .30 U.S. Govt. 1906-180 GRA . . . ; Scientific Bullet Design Ins . . . Superfine Accuracy; and Heavy Jacket Re-Inforced by Belt. |
Sharpe, Philp Burdette, “Complete Guide to Handloading”, pp. 41-43, third edition, Wolfe Pub Co.; 1988. |
Written Opinion dated Apr. 17, 2014 for International Application No. PCT/US2014/012952 filed Jan. 24, 2014. |
Written Opinion for PCT/US2012/047966 dated Oct. 16, 2012. |
Number | Date | Country | |
---|---|---|---|
20140331885 A1 | Nov 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13190972 | Jul 2011 | US |
Child | 14303908 | US |