Three-dimensional array antenna on a substrate with enhanced backlobe suppression for mm-wave automotive applications

Information

  • Patent Grant
  • 8786496
  • Patent Number
    8,786,496
  • Date Filed
    Wednesday, July 28, 2010
    14 years ago
  • Date Issued
    Tuesday, July 22, 2014
    10 years ago
Abstract
A multilayer antenna including a first microstrip patch positioned along a first plane, a second microstrip patch positioned along a second plane that is substantially parallel to the first plane, and a ground plane having a slot formed therein. The multilayer antenna also includes a microstrip feeding line for propagating signals through the slot in the ground plane and to the second microstrip patch and a backlobe suppression reflector for receiving some of the signals and reflecting the signals to the slot in the ground plane.
Description
BACKGROUND

1. Field


The invention relates to three-dimensional integrated automotive radars and methods of manufacturing the same. More particularly, the invention relates to a three-dimensional array antenna on a substrate with enhanced backlobe suppression for mm-wave automotive applications.


2. Background


Automotive radar systems are currently being provided in many luxury automobiles. Over the past few years, automotive radar systems have been used with intelligent cruise control systems to sense and adjust the automobile's speed depending on traffic conditions. Today, automotive radar systems are being used with active safety systems to monitor the surroundings of an automobile for collision avoidance. Current automotive radar systems are divided into long range (for adaptive cruise control and collision warning) and short range (for pre-crash, collision mitigation, parking aid, blind spot detection, etc.). Two or more separate radar systems, for example, a 24 GHz short range radar system and a 77 GHz long range radar system, which are typically each 15×15×15 centimeters in dimensions, are used to provide long and short range detection. Typically, the front-end (e.g., the antenna, the transmitter and the receiver) of an automotive radar system has an aperture area for the array antenna of 8 centimeters×11 centimeters and a thickness of 3 centimeters.


Prior art automotive radar systems have several drawbacks. For example, since multiple prior art radar systems are separately mounted on a vehicle, significant space is needed and can be wasteful. The cost for packaging, assembling, and mounting each radar system increases due to the additional number of radar systems. In order for each radar system to work properly, the materials placed on top of each radar system needs to be carefully selected so that the materials are RF transparent. The cost for multiple radar systems is further increased because multiple areas of RF transparency are needed on the front, sides, and rear of the vehicle. Thus, increasing the number of radar systems increases the packaging, assembly, mounting, and materials costs.


Therefore, a need exists in the art for a compact three-dimensional integrated array antenna for mm-wave automotive applications fabricated on low cost substrates.


SUMMARY

The invention is a multilayer antenna including a first microstrip patch positioned along a first plane, a second microstrip patch positioned along a second plane that is substantially parallel to the first plane, and a ground plane having a slot formed therein. The multilayer antenna also includes a microstrip feeding line for propagating signals through the slot in the ground plane and to the second microstrip patch and a backlobe suppression reflector for receiving some of the signals and reflecting the signals to the slot in the ground plane.





BRIEF DESCRIPTION OF THE DRAWINGS

The features, objects, and advantages of the invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, wherein:



FIG. 1 is a schematic view of a prior art 3D integrated radar RF front-end system having antennas that are combined together using waveguides on a liquid crystal polymer (LCP) substrate;



FIG. 2 is a schematic top view showing four sources of crosstalk on a three-dimensional (3D) automotive radar RF front-end according to an embodiment of the invention;



FIG. 3 is a schematic top view of a portion of a 3D automotive radar RF front-end showing the interconnection scheme between a planar beam steering antenna array on an LCP substrate and a RFIC chip according to an embodiment of the invention;



FIG. 4 is a schematic top view of a portion of a 3D automotive radar RF front-end showing how the interconnection scheme between the planar beam steering antenna array on an LCP substrate, the RFIC chip and the 3D via transition combine to form the 3D automotive radar RF front-end according to an embodiment of the invention;



FIG. 5 includes schematic diagrams showing crosstalk between microstrip lines according to an embodiment of the invention;



FIGS. 6, 7, and 8 are side, top perspective, and bottom perspective views, respectively, of a multilayer antenna array having two microstrip patches, a ground plane, an opening or slot in the ground plane, a microstrip feeding line, and a backlobe suppression reflector for a 3-D integrated architecture according to an embodiment of the invention;



FIGS. 9A, 9B, and 9C show simulation graphs illustrating the improved performance of the multilayer antenna according to an embodiment of the invention;



FIG. 10 shows the layers of the antenna of FIG. 6 according to an embodiment of the invention;



FIG. 11A is a perspective view of the microstrip feeding line embedded into a 0.4 mm LCP substrate according to an embodiment of the invention;



FIG. 11B is a perspective view of the microstrip feeding line embedded into a 0.8 mm LCP substrate according to an embodiment of the invention;



FIG. 11C is a perspective view of the microstrip feeding line positioned within the cavity of the substrate according to an embodiment of the invention;



FIG. 12 is a graph showing the insertion losses of the microstrip feeding line when the microstrip feeding line is embedded in the 0.4 mm and the 0.8 mm thick LCP substrate of FIGS. 11A and 11B and is in free space as shown in FIG. 11C according to an embodiment of the invention.



FIG. 13 is a graph showing the reduction in the losses of the microstrip feeding line and the reduction of substrate or surface modes when the air cavity is formed in different sizes in the substrate according to an embodiment of the invention; and



FIG. 14 shows an antenna array having a transmit antenna (Tx) and a receive antenna (Rx) according to an embodiment of the invention.





DETAILED DESCRIPTION

Apparatus, systems and methods that implement the embodiments of the various features of the invention will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate some embodiments of the invention and not to limit the scope of the invention. Throughout the drawings, reference numbers are re-used to indicate correspondence between referenced elements. For purposes of this disclosure, the term “patch” may be used synonymously with the term “antenna.”



FIG. 1 is a schematic view of a 3D integrated radar RF front-end system 100 having antennas 105 that are combined together using transmission lines 110 on a liquid crystal polymer (LCP) substrate 120. The antennas 105 are printed on the front-side and the transmission lines 110 are printed on the backside. The transmission lines 110 are connected to an RFIC chip 115. The transmission lines 110 provide good performance in terms of loss and low crosstalk (i.e., every channel is completely isolated from the others and extremely low levels of crosstalk are achievable). Instead of using machined metallic waveguides, the transmission lines 110 are planar lines that are printed on the LCP substrate 120. The planar lines are microstrip lines at the topside and coplanar waveguides (CPW) at the backside.


The LCP substrate 120 may be a single 100 um thick LCP layer, as shown, mounted on a 200-400 um thick, FR4 grade printed circuit board (PCB) that contains all the digital signal processing and control signals. The LCP substrate 120 has a planar phased array beam-steering antenna array 105 printed on one side. The signals from each antenna 105 are RF transitioned to the backside with a 3D vertical transition 125. In the backside, the signals converge to the RFIC chip 115.



FIG. 2 shows a schematic top view on the left side of the figure with four sources of crosstalk on a three-dimensional (3D) automotive radar RF front-end according to an embodiment of the invention. The four sources of crosstalk include (1) antenna coupling, (2) feed network coupling, (3) via transition coupling and (4) distributed network coupling. A schematic side view of a portion of the 3D automotive radar RF front end corresponding to the antenna coupling and feed network coupling is shown in the top right of the figure. The two sets of microstrip patch arrays (denoted by “PATCH 1” and “PATCH 2” in FIG. 2) are printed on the top side as shown. PATCH 1 and/or PATCH 2 may have STAGGERED characteristics or arranged as an unstaggered CONVENTIONAL ARRAY as labeled in FIG. 2. The via fence positioned between PATCH 1 and PATCH 2 may have PERIODIC or NON-PERIODIC structures. The via fence may have an SHS (Soft and Hard Surface) boundary structure and may include a SINGLE row or a DOUBLE row, and the via fence may be STAGGERED or unstaggered. A schematic top view of a portion of the 3D automotive radar RF front end corresponding to the via transition coupling and distribution network coupling is shown on the bottom right of the figure. Since the 3D automotive radar RF front-end generally operates as a phased array (as opposed to a switched-beam array), the first and second sources of crosstalk are less critical to the system performance. The third source of crosstalk is limited due to the use of a via fence around each 3D transition formed in half-circle arcs around the vertical transitions as shown in the schematic view on the right side denoted by “VIA FENCE AROUND EACH VERTICAL TRANSITION.” However, the fourth source of crosstalk is important due to the close proximity of the transmission lines that are close to the location of the transmit/receive SiGe chip. Hence, a large portion of crosstalk reduction can be achieved by reducing the parasitic coupling between the microstrip and the CPW transmission lines. CPW transmission lines may be FG-CPW (Finite Ground Coplanar Waveguide) transmission lines and/or the vias may be in DIFFERENTIAL LINES or pairs as shown on the bottom right of FIG. 2. The GROUNDING VIAS may be connected to a ground plane. The via fence may have PERIODIC or NON-PERIODIC structures as denoted in FIG. 2 and may include a SINGLE row or a DOUBLE row, and the via fence may be STAGGERED.



FIG. 3 is a schematic top view of a portion of a 3D automotive radar RF front-end 300 showing the interconnection scheme between a planar beam steering antenna array on an LCP substrate 305 and a RFIC chip 310 according to an embodiment of the invention. The portion of the 3D automotive radar RF front-end 300 may include a 3D via transition 315, a CPW transmission line 320, a single via fence 325, a broken CPW ground plane 330, two double via fences 335 and 336, a via fence 340, and a CPW ground width 345. The 3D automotive radar RF front-end 300 may be implemented using hardware, software, firmware, middleware, microcode, or any combination thereof. One or more elements can be rearranged and/or combined, and other radars can be used in place of the radar RF front-end 300 while still maintaining the spirit and scope of the invention. Elements may be added to the radar RF front-end 300 and removed from the radar RF front-end 300 while still maintaining the spirit and scope of the invention.


After the 3D via transition 315, the CPW transmission line 320 converges towards the RFIC chip 310. The 3D automotive radar RF front-end 300 utilizes one or more vias (e.g., the single via fence 325) that are connected to a ground plane to isolate each CPW transmission line 320 from an adjacent or neighboring CPW transmission line 320. The double via fences 335 and 336 (i.e., two vias side-by-side) allows for better isolation between CPW transmission lines 320 and 321. Each double via fence is positioned on one side of the CPW ground plane 330. A double via means there are two vias positioned side-by-side. As the CPW transmission lines 320 and 321 converge towards the RFIC chip 310, the single via fence 325 may be utilized due to size restrictions. The RFIC chip 310 is connected to the CPW transmission lines 320 and 321.


The CPW ground plane 330 is broken to reduce crosstalk between the two CPW transmission lines 320 and 321. The reason for breaking or splitting the common CPW ground plane 330 is because surface waves that are created within the LCP substrate 305 can more easily propagate and parasitically couple to the adjacent CPW transmission lines 320 and 321. Also, the CPW ground plane 330 achieve high isolation between the CPW transmission lines 320 and 321.



FIG. 4 is a schematic top view of a portion of a 3D automotive radar RF front-end 400 showing how the interconnection scheme between the planar beam steering antenna array 405 on an LCP substrate 305, the RFIC chip 310 and the 3D via transition 315 combine to form the 3D automotive radar RF front-end 400 according to an embodiment of the invention.



FIG. 5 includes schematic diagrams showing crosstalk between microstrip lines 501 and 502 according to an embodiment of the invention. Each microstrip line 501 and 502 has a width W and a metal thickness t. Each microstrip line 501 and 502 is printed on the LCP substrate 305 (e.g., with εr, tan δ, thickness h). The center-to-center lateral separation between the two adjacent microstrips 501 and 502 is C, which is about 500 μm. The lower left drawing shows the various magnitudes of electric field values at 76.5 GHz, labeled in the drawing as “MAG E FIELD AT 76.5 GHz WITH C LARGE (NO CROSSTALK)” which correspond to the magnitude of electric field values listed as “E FIELD [V/m]” in the table to the left when no coupled microstrip line is present. The lower right drawing shows the various magnitude of electric field values (labeled in the drawing as “MAG E FIELD WITH C=500 μm SHOWING SIGNIFICANT COUPLING” which correspond to the magnitude of electric field values listed as “E FIELD [V/m]” in the table to the right when the second microstrip line 502 is present at a distance C away from the first microstrip line 501.



FIGS. 6, 7, and 8 are side, top perspective, and bottom perspective views, respectively, of a multilayer antenna 600 having two microstrip patches 605 and 610, a ground plane 615, an opening or slot 620 in the ground plane 615, a microstrip feeding line 625, and a backlobe suppression reflector 630 for a 3-D integrated architecture according to an embodiment of the invention. In one embodiment, the two microstrip patches 605 and 610, the ground plane 615, the microstrip feeding line 625, and the backlobe suppression reflector 630 are all spaced apart from one another and are all positioned on different parallel planes from one another. The first microstrip patch 605 may be referred to as the stacked patch 605 and the second microstrip patch 610 may be referred to as the main radiating patch 610. The first microstrip patch 605 may be positioned along a first plane and the second microstrip patch 610 may be positioned along a second plane that is substantially parallel to the first plane. In one embodiment, the opening or slot 620 is formed by an etching process. The patches shown in FIGS. 1, 2, and 3 can be configured to be similar to the patches shown in FIGS. 6, 7, and 8. The multilayer antenna 600 achieves a wider bandwidth of operation, a higher gain, and a lower backside radiation when compared to prior art antennas.


The microstrip feeding line 625 propagates signals through the opening 620 in the ground plane 615 to the main radiating patch 610, which is used to transmit the signals. The stacked patch 605 is used to direct the beams of the main radiating patch 610. In one embodiment, the two microstrip patches 605 and 610 are slot fed through the opening 620 in the ground plane 615, as opposed to a direct connection, resulting in a wider or larger bandwidth. The stacked patch 605 is positioned above or on top of the main radiating patch 610 to improve the gain and the bandwidth of the multilayer antenna array 600. In one embodiment, the stacked patch 605 is a planar version of a Yagi-Uda antenna such that the stacked patch 605 acts as a director. In one embodiment, the stacked patch 605 is attached or tacked to the main radiation patch 610.


The backlobe suppression reflector 630 is positioned below the microstrip feeding line 625 and the opening 620 in the ground plane 615. The backlobe suppression reflector 630 is designed as a resonating dipole and acts as a secondary reflector, which couples the energy that is transmitted on the backside of the antenna 600 and retransmits the energy to the front side of the antenna 600. The length of the backlobe suppression reflector 630 is approximately half a wavelength at the resonant frequency. The distance D between the main radiating patch 610 and the backlobe suppression reflector 630 has a value such that the re-transmitted energy is 180 degrees out-of-phase with the backside radiation and can therefore cancel it. The backlobe suppression reflector 630 improves the front-to-back ratio (i.e., how much energy is wasted by being transmitted to the back instead of the front) of the antenna 600 and significantly improves the aperture efficiency. The is, the aperture efficiency is improved by 60% in that the overall aperture area is reduced to a size of 5.5 cm×5.5 cm or 6 cm×6 cm. The reduced aperture area results in reduced materials and packaging and assembly costs. The backlobe suppression reflector 630 is also used to reduce or suppress radiation created by the two microstrip patches 605 and 610.



FIGS. 9A, 9B, and 9C show simulation graphs illustrating the improved performance of the multilayer antenna 600 according to an embodiment of the invention. The multilayer antenna 600 yields an 8% bandwidth, which is more than the 5% required for 77 GHz-81 GHz wideband automotive radars. The multilayer antenna 600 also yields a 6.7 dB gain and a 24.5 dB front-to-back ratio.



FIG. 10 shows the layers of the antenna 600 of FIG. 6 according to an embodiment of the invention. The antenna 600 may include substrates 607, 611, 618, and 635 (e.g., LCP) and adhesive materials 609, 614, and 616 (e.g., Pre 3098). As an example, the LCP and the Pre 3098 may be products manufactured by Rogers Corporation located in Rogers, Connecticut. The substrates 607, 611, 618, and 635 exhibit low loss at high frequencies, can be laminated with a copper material, can be stacked in multiple layers, and maintain good performance at wide temperature ranges (e.g., −40 degrees C. to +125 degrees C.).


The microstrip patch 605 is attached to or formed on a top surface 606 of the substrate 607. In one embodiment, the substrate 607 has a thickness of 2 mils. The microstrip patch 610 is attached to or formed on a top surface 608 of the substrate 611. In one embodiment, the substrate 611 has a thickness of 2 mils. An adhesive material 609 is placed between the substrate 607 and the substrate 611. In one embodiment, the adhesive material 609 has a thickness of 2 mils.


The ground plane 615 is attached or formed on a top surface 619 of the substrate 618. In one embodiment, the substrate 618 has a thickness of 4 mils. An adhesive material 614 is placed between the substrate 611 and the substrate 618. In one embodiment, the adhesive material 614 has a thickness of 2 mils. The microstrip feeding line 625 is attached or formed on a bottom surface of the substrate 618.


In one embodiment, the substrate 635 has a thickness of 30 mils. In one embodiment, the substrate 635 has an air cavity 636 of at least 12 mils (see also FIG. 11C). The microstrip feeding line 625 fits into the air cavity 636 and is attached to the substrate 635. An adhesive material 616 is placed between the substrate 618 and the substrate 635. In one embodiment, the adhesive material 616 has a thickness of 2 mils. The backlobe suppression reflector 630 is attached to or formed on a bottom surface of the substrate 635. The air cavity 636 reduces the losses of the microstrip feeding line 625 in order to achieve high antenna efficiency. Also, the air cavity 636 helps in suppressing substrate or surface modes that may otherwise be generated in the substrate 635.



FIG. 11A is a perspective view of the microstrip feeding line 625 embedded into a 0.4 mm LCP substrate according to an embodiment of the invention. FIG. 11B is a perspective view of the microstrip feeding line 625 embedded into a 0.8 mm LCP substrate according to an embodiment of the invention. FIG. 11C is a perspective view of the microstrip feeding line 625 positioned within the cavity 636 of the substrate 635 according to an embodiment of the invention.



FIG. 12 is a graph showing the insertion losses of the microstrip feeding line 625 when the microstrip feeding line 625 is embedded in the 0.4 mm and the 0.8 mm thick LCP substrate of FIGS. 11A and 11B and is in free space as shown in FIG. 11C according to an embodiment of the invention. The addition of the substrate 618 over the microstrip feeding line 625 increases the losses of the microstrip feeding line 625. Furthermore, when the microstrip feeding line 625 is embedded in the 0.8 mm thick LCP substrate, a ripple as shown in FIG. 12 is created on the simulated response. The ripple is due to surface wave modes that propagate in the structure because of the thickness of the substrate 635.



FIG. 13 is a graph showing the reduction in the losses of the microstrip feeding line 625 and the reduction of substrate or surface modes when the air cavity 636 is formed in different sizes in the substrate according to an embodiment of the invention. As shown, the air cavity 636 may have a height of between 0.3 mm and 0.7 mm. The air cavity 636 is implemented in the substrate 635 to reduce the losses of the microstrip feeding line 625 and the substrate or surface modes. In one embodiment, the air cavity 636 has a height of at least 0.3 mm.



FIG. 14 shows an antenna array 1400 having a transmit antenna (Tx) 1405 and a receive antenna (Rx) 1410 according to an embodiment of the invention. In one embodiment, the transmit antenna has 4 rows of 30 antenna elements each and the receive antenna has 16 rows of 30 antenna elements each.


Those of ordinary skill would appreciate that the various illustrative logical blocks, modules, and algorithm steps described in connection with the examples disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the disclosed apparatus and methods.


The various illustrative logical blocks, modules, and circuits described in connection with the examples disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.


The steps of a method or algorithm described in connection with the examples disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an Application Specific Integrated Circuit (ASIC). The ASIC may reside in a wireless modem. In the alternative, the processor and the storage medium may reside as discrete components in the wireless modem.


The previous description of the disclosed examples is provided to enable any person of ordinary skill in the art to make or use the disclosed methods and apparatus. Various modifications to these examples will be readily apparent to those skilled in the art, and the principles defined herein may be applied to other examples without departing from the spirit or scope of the disclosed method and apparatus. The described embodiments are to be considered in all respects only as illustrative and not restrictive and the scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims
  • 1. A multilayer antenna array comprising: a substrate;a plurality of rows of receive antenna elements positioned on the substrate; anda plurality of rows of transmit antenna elements positioned on the substrate and spaced apart from the plurality of rows of receive antenna elements, each of the plurality of rows of receive antenna elements and each of the plurality of rows of transmit antenna elements comprise: a first microstrip patch positioned along a first plane;a second microstrip patch positioned along a second plane that is substantially parallel to the first plane;a ground plane having a slot formed therein;a microstrip feeding line positioned within a cavity defined in the substrate for propagating signals through the slot in the ground plane and to the second microstrip patch; anda backlobe suppression reflector for receiving some of the signals and reflecting the signals to the slot in the ground plane.
  • 2. The multilayer antenna array of claim 1 wherein the cavity has a height that is between 0.3 mm and 0.7 mm.
  • 3. The multilayer antenna array of claim 1 wherein the substrate has a thickness of at least 30 mils and is made of a liquid crystal polymer material.
  • 4. The multilayer antenna array of claim 1 wherein the first microstrip patch is used to direct beams from the second microstrip patch.
  • 5. The multilayer antenna array of claim 1 wherein the backlobe suppression reflector is positioned below the microstrip feeding line.
  • 6. The multilayer antenna array of claim 1 wherein the backlobe suppression reflector absorbs radiation from the first and second microstrip patches.
  • 7. The multilayer antenna array of claim 1 wherein the second microstrip patch is spaced apart from the backlobe suppression reflector by a distance D, where D has a value such that the reflected signals are approximately 180 degrees out-of-phase with the signals transmitted from the microstrip feeding line in order to provide cancellation of the signals.
  • 8. The multilayer antenna array of claim 1 wherein the backlobe suppression reflector is designed as a resonating dipole.
  • 9. The multilayer antenna array of claim 1 wherein the backlobe suppression reflector has a length that is approximately half a wavelength at a resonating frequency of the microstrip feeding line.
US Referenced Citations (191)
Number Name Date Kind
3093805 Osifchin et al. Jun 1963 A
3686596 Albee Aug 1972 A
4259743 Kaneko et al. Mar 1981 A
4494083 Josefsson et al. Jan 1985 A
4513266 Ishihara Apr 1985 A
4623894 Lee et al. Nov 1986 A
4731611 Muller et al. Mar 1988 A
4786913 Barendregt et al. Nov 1988 A
5008678 Herman Apr 1991 A
5111210 Morse May 1992 A
5115245 Wen et al. May 1992 A
5124713 Mayes et al. Jun 1992 A
5153600 Metzler et al. Oct 1992 A
5220335 Huang Jun 1993 A
5262783 Philpott et al. Nov 1993 A
5307075 Huynh Apr 1994 A
5376902 Bockelman et al. Dec 1994 A
5436453 Chang et al. Jul 1995 A
5481268 Higgins Jan 1996 A
5485167 Wong et al. Jan 1996 A
5495262 Klebe Feb 1996 A
5512901 Chen et al. Apr 1996 A
5554865 Larson Sep 1996 A
5561405 Hoffmeister et al. Oct 1996 A
5583511 Hulderman Dec 1996 A
5633615 Quan May 1997 A
5724042 Komatsu et al. Mar 1998 A
5767009 Yoshida et al. Jun 1998 A
5815112 Sasaki et al. Sep 1998 A
5821625 Yoshida et al. Oct 1998 A
5867120 Ishikawa et al. Feb 1999 A
5877726 Kudoh et al. Mar 1999 A
5886671 Riemer et al. Mar 1999 A
5909191 Hirshfield et al. Jun 1999 A
5923290 Mikami et al. Jul 1999 A
5929802 Russell et al. Jul 1999 A
5933109 Tohya et al. Aug 1999 A
5943005 Tanizaki et al. Aug 1999 A
5952971 Strickland Sep 1999 A
5977915 Bergstedt et al. Nov 1999 A
5994766 Shenoy et al. Nov 1999 A
5999092 Smith et al. Dec 1999 A
6008750 Cottle et al. Dec 1999 A
6034641 Kudoh et al. Mar 2000 A
6037911 Brankovic et al. Mar 2000 A
6040524 Kobayashi et al. Mar 2000 A
6043772 Voigtlaender et al. Mar 2000 A
6091365 Derneryd et al. Jul 2000 A
6107578 Hashim Aug 2000 A
6107956 Russell et al. Aug 2000 A
6114985 Russell et al. Sep 2000 A
6130640 Uematsu et al. Oct 2000 A
6137434 Tohya et al. Oct 2000 A
6191740 Kates et al. Feb 2001 B1
6232849 Flynn et al. May 2001 B1
6249242 Sekine et al. Jun 2001 B1
6278400 Cassen et al. Aug 2001 B1
6281843 Evtioushkine et al. Aug 2001 B1
6329649 Jack et al. Dec 2001 B1
6359588 Kuntzsch Mar 2002 B1
6388206 Dove et al. May 2002 B2
6452549 Lo Sep 2002 B1
6483481 Sievenpiper et al. Nov 2002 B1
6483714 Kabumoto et al. Nov 2002 B1
6501415 Viana et al. Dec 2002 B1
6577269 Woodington et al. Jun 2003 B2
6583753 Reed Jun 2003 B1
6624786 Boyle Sep 2003 B2
6628230 Mikami et al. Sep 2003 B2
6639558 Kellerman et al. Oct 2003 B2
6642819 Jain et al. Nov 2003 B1
6642908 Pleva et al. Nov 2003 B2
6657518 Weller et al. Dec 2003 B1
6683510 Padilla Jan 2004 B1
6686867 Lissel et al. Feb 2004 B1
6703965 Ming et al. Mar 2004 B1
6717544 Nagasaku et al. Apr 2004 B2
6727853 Sasada et al. Apr 2004 B2
6756936 Wu Jun 2004 B1
6771221 Rawnick et al. Aug 2004 B2
6784828 Delcheccolo et al. Aug 2004 B2
6794961 Nagaishi et al. Sep 2004 B2
6795021 Ngai et al. Sep 2004 B2
6806831 Johansson et al. Oct 2004 B2
6828556 Pobanz et al. Dec 2004 B2
6833806 Nagasaku et al. Dec 2004 B2
6842140 Killen et al. Jan 2005 B2
6853329 Shinoda et al. Feb 2005 B2
6864831 Woodington et al. Mar 2005 B2
6873250 Viana et al. Mar 2005 B2
6897819 Henderson et al. May 2005 B2
6909405 Kondo Jun 2005 B2
6930639 Bauregger et al. Aug 2005 B2
6933881 Shinoda et al. Aug 2005 B2
6940547 Mine Sep 2005 B1
6946995 Choi et al. Sep 2005 B2
6987307 White et al. Jan 2006 B2
6992629 Kerner et al. Jan 2006 B2
7009551 Sapletal Mar 2006 B1
7015860 Alsliety Mar 2006 B2
7019697 du Toit Mar 2006 B2
7030712 Brunette et al. Apr 2006 B2
7034753 Elsallal et al. Apr 2006 B1
7071889 McKinzie, III et al. Jul 2006 B2
7081847 Ziller et al. Jul 2006 B2
7098842 Nakazawa et al. Aug 2006 B2
7102571 McCarrick Sep 2006 B2
7106264 Lee et al. Sep 2006 B2
7109922 Shmuel Sep 2006 B2
7109926 du Toit Sep 2006 B2
7154356 Brunette et al. Dec 2006 B2
7154432 Nagasaku et al. Dec 2006 B2
7170361 Farnworth Jan 2007 B1
7177549 Matsushima et al. Feb 2007 B2
7187334 Franson et al. Mar 2007 B2
7193562 Shtrom et al. Mar 2007 B2
7215284 Collinson May 2007 B2
7236130 Voigtlaender Jun 2007 B2
7239779 Little Jul 2007 B2
7268732 Gotzig et al. Sep 2007 B2
7292125 Mansour et al. Nov 2007 B2
7298234 Dutta Nov 2007 B2
7307581 Sasada Dec 2007 B2
7310061 Nagasaku et al. Dec 2007 B2
7331723 Yoon et al. Feb 2008 B2
7336221 Matsuo et al. Feb 2008 B2
7355547 Nakazawa et al. Apr 2008 B2
7358497 Boreman et al. Apr 2008 B1
7362259 Gottwald Apr 2008 B2
7388279 Fjelstad et al. Jun 2008 B2
7408500 Shinoda et al. Aug 2008 B2
7411542 O'Boyle Aug 2008 B2
7414569 De Mersseman Aug 2008 B2
7436363 Klein et al. Oct 2008 B1
7446696 Kondo et al. Nov 2008 B2
7456790 Isono et al. Nov 2008 B2
7463122 Kushta et al. Dec 2008 B2
7489280 Aminzadeh et al. Feb 2009 B2
7528780 Thiam et al. May 2009 B2
7532153 Nagasaku et al. May 2009 B2
7586450 Muller Sep 2009 B2
7603097 Leblanc et al. Oct 2009 B2
7639173 Wang et al. Dec 2009 B1
7733265 Margomenos et al. Jun 2010 B2
7830301 Margomenos Nov 2010 B2
7881689 Leblanc et al. Feb 2011 B2
8022861 Margomenos Sep 2011 B2
8384611 Asakura et al. Feb 2013 B2
20020047802 Voipio Apr 2002 A1
20020158305 Dalmia et al. Oct 2002 A1
20030016162 Sasada et al. Jan 2003 A1
20030034916 Kwon et al. Feb 2003 A1
20030036349 Liu et al. Feb 2003 A1
20040028888 Lee et al. Feb 2004 A1
20040075604 Nakazawa et al. Apr 2004 A1
20050109453 Jacobson et al. May 2005 A1
20050156693 Dove et al. Jul 2005 A1
20050248418 Govind et al. Nov 2005 A1
20060044189 Livingston et al. Mar 2006 A1
20060146484 Kim et al. Jul 2006 A1
20060152406 Leblanc et al. Jul 2006 A1
20060158378 Pons et al. Jul 2006 A1
20060250298 Nakazawa et al. Nov 2006 A1
20060267830 O'Boyle Nov 2006 A1
20060290564 Sasada et al. Dec 2006 A1
20070026567 Beer et al. Feb 2007 A1
20070052503 Quach et al. Mar 2007 A1
20070085108 White et al. Apr 2007 A1
20070131452 Gilliland Jun 2007 A1
20070230149 Bibee Oct 2007 A1
20070279287 Castaneda et al. Dec 2007 A1
20070285314 Mortazawi et al. Dec 2007 A1
20080030416 Lee et al. Feb 2008 A1
20080048800 Dutta Feb 2008 A1
20080061900 Park et al. Mar 2008 A1
20080068270 Thiam et al. Mar 2008 A1
20080074338 Vacanti Mar 2008 A1
20080150821 Koch et al. Jun 2008 A1
20080169992 Ortiz et al. Jul 2008 A1
20090000804 Kobayashi et al. Jan 2009 A1
20090015483 Liu Jan 2009 A1
20090058731 Geary et al. Mar 2009 A1
20090066593 Jared et al. Mar 2009 A1
20090102723 Mateychuk et al. Apr 2009 A1
20090251356 Margomenos Oct 2009 A1
20090251357 Margomenos Oct 2009 A1
20090251362 Margomenos et al. Oct 2009 A1
20100073238 Jun et al. Mar 2010 A1
20100182103 Margomenos Jul 2010 A1
20100182107 Margomenos Jul 2010 A1
20100327068 Chen et al. Dec 2010 A1
Foreign Referenced Citations (15)
Number Date Country
101145627 Mar 2008 CN
1324423 Jul 2003 EP
04-286204 Oct 1992 JP
6-224629 Aug 1994 JP
8186437 Jul 1996 JP
11-088038 Mar 1999 JP
11186837 Jul 1999 JP
2001-077608 Mar 2001 JP
2001-189623 Jul 2001 JP
2002-506592 Feb 2002 JP
2007-194915 Aug 2007 JP
2008-048090 Feb 2008 JP
777967 Nov 2007 KR
WO 2007149746 Dec 2007 WO
WO 2008148569 Dec 2008 WO
Non-Patent Literature Citations (22)
Entry
Targonski, S.D.; Waterhouse, R.B.; , “Reflector elements for aperture and aperture coupled microstrip antennas,” Antennas and Propagation Society International Symposium, 1997. IEEE., 1997 Digest , vol. 3, No., pp. 1840-1843 vol. 3, Jul. 13-18, 1997.
K. Schuler et al., “Innovative Material Modulation for Multilayer LTCC Antenna at 76.5 GHz in Radar and Communication Applications”; Proceedings of the 33rd European Microwave Conference, Munich Germany 2003; pp. 707-710; printed in the year 2003.
Walden et al., “A European Low Cost MMIC Based Millimetre-Wave Radar Module for Automotive Applications”, 4 pages.
Chouvaev et al., “Application of a Substrate-Lens Antenna Concept and SiGe Component Development for Cost-Efficient Automotive Radar”, Sweedish National Testing and Research Institute, 34th European Microwave Conference, Amsterdam, pp. 1417-1420, 2004.
“Advanced RF Frontend Technology Using Micromachined SiGe”, Information Society Technologies IST Program, 38 pages.
Lee et al., “Characteristic of the Coplanar Waveguide to Microstrip Right-Angled Transition”, 3 pages.
Suntives et al., “Design and Characterization of the EBG Waveguide-Based Interconnects”, IEEE Transactions on Advanced Packaging, vol. 30, No. 2, pp. 163-170, May 2007.
Gedney et al., “Simulation and Performance of Passive Millimeter Wave Coplanar Waveguide Circuit Devices”, 1997 Wireless Communications Conference, pp. 27-31, May 1997.
Weller, Thomas M., “Three-Dimensional High-Frequency Distribution Networks—Part I: Optimization of CPW Discontinuities”, IEEE Transactions on Microwave Theory and Techniques, vol. 48, No. 10, pp. 1635-1642, Oct. 2000.
Omar et al., “Effects of Air-Bridges and Mitering on Coplanar Waveguide 90° Bends: Theory and Experiment”, 1993 IEEE MTT-S Digest, pp. 823-826, 1993.
Watson et al., “Design and Optimization of CPW Circuits Using EM-ANN Models for CPW Components”, IEEE Transactions on Microwave Theory and Techniques, vol. 45, No. 12, pp. 2515-2523, Dec. 1997.
Vetharatnam et al., “Combined Feed Network for a Shared-Aperture Dual-Band Dual-Polarized Array”, IEEE Antennas and Wireless Propagation Letters, vol. 4, pp. 297-299, 2005.
Pozar et al., “Shared-Aperture Dual Band Dual-Polarized Microstrip Array”, IEEE Transactions on Antennas and Propagation, vol. 49, No. 2, pp. 150-157, Feb. 2001.
Leong et al. “Coupling Suppression in Microstrip Lines using a Bi-Periodically Perforated Ground Plane”, IEEE Microwave and Wireless Components Letters, vol. 12, No. 5, pp. 169-171, May 2002.
Iizuka et al., “Millimeter-Wave Microstrip Array Antenna for Automotive Radars”, IEEE Transactions for Communications, vol. E86-B, No. 9, pp. 2728-2738, Sep. 2003.
Margomenos et al., “Isolation in Three-Dimensional Integrated Circuits”, IEEE Transactions on Microwave Theory and Techniques, vol. 51, issue 1, pp. 25-32, Jan. 2003.
Ponchak et al., “Characterization of the Coupling Between Adjacent Finite Ground Coplanar (FGC) wageguides”, Int. J. Microcircuits Electron. Packag., vol. 20, No. 4, pp. 587-592, Nov. 1997.
Ponchak et al., “Coupling Between Microstrip Lines With Finite Width Groundh Plane Embedded in Thin-Film Circuits”, IEEE Transaction on Advanced Packaging, vol. 28, No. 2, pp. 320-327, May 2005.
Ponchak et al., “The Use of Metal Filled Via Holes for Improving Isolation in LTCC RF and Wireless Multichip Packages”, IEEE Transactions on Advanced Packaging, vol. 23, No. 1, pp. 88-99, Feb. 2000.
Papapolymerou et al., “Crosstalk Between Finite Ground Coplanar Waveguides Over Polyimide Layers for 3-D MMICs on Si Substrates”, IEEE Transactions on Microwave Theory and Techniques, vol. 52, No. 4, pp. 1292-1301, Apr. 2004.
Mbairi et al., “On the Problem of Using Guard Traces for High Frequency Differential Lines Crosstalk Reduction”, IEEE Transactions on Components and Packaging Technologies, vol. 30, No. 1, pp. 67-74, Mar. 2007.
Alexandros D. Margomenos, “Three Dimensional Integration and Packaging Using Silicon Micromachining”, dissertation at the University of Michigan; Ann Arbor, Michigan; 2003.
Related Publications (1)
Number Date Country
20120026043 A1 Feb 2012 US