1. Technical Field of the Invention
Implementations consistent with the principles of the invention generally relate to the field of battery technology, more specifically to three-dimensional energy storage systems and devices, such as batteries and capacitors, and methods of manufacturing thereof.
2. Background
Existing energy storage devices, such as batteries, fuel cells, and electrochemical capacitors, typically have two-dimensional laminar architectures (e.g., planar or spiral-wound laminates) with a surface area of each laminate being roughly equal to its geometrical footprint (ignoring porosity and surface roughness).
Three-dimensional batteries have been proposed in the literature as ways to improve battery capacity and active material utilization. It has been proposed that a three-dimensional architecture may be used to provide higher surface area and higher energy as compared to a two-dimensional, laminar battery architecture. There is a benefit to making a three-dimensional energy storage device due to the increased amount of energy that may be obtained out of a small geometric area.
The following references may further help to illustrate the state of the art, and are therefore incorporated by reference as non-essential subject matter herein: Long et. al., “Three-Dimensional Battery Architectures,” Chemical Reviews, (2004), 104, 4463-4492; Chang Liu, FOUNDATIONS OF MEMS, Chapter 10, pages 1-55 (2006); Kanamura et. al., “Electrophoretic Fabrication of LiCoO2 Positive Electrodes for Rechargeable Lithium Batteries,” Journal of Power Sources, 97-98 (2001) 294-297; Caballero et al., “LiNi0.5Mn1.5O4 thick-film electrodes prepared by electrophoretic deposition for use in high voltage lithium-ion batteries,” Journal of Power Sources, 156 (2006) 583-590; Wang and Cao, “Li+-intercalation Electrochemical/Electrochromic Properties Of Vanadium Pentoxide Films By Sol Electrophoretic Deposition,” Electrochimica Acta, 51, (2006), 4865-4872; Nishizawa et al., “Template Synthesis of Polypyrrole-Coated Spinel LiMn2O4 Nanotubules and Their Properties as Cathode Active Materials for Lithium Batteries,” Journal of the Electrochemical Society, 1923-1927, (1997); Shembel et. al., “Thin Layer Electrolytic Molybdenum Oxysulfides For Lithium Secondary Batteries With Liquid And Polymer Electrolytes,”5th Advanced Batteries and Accumulators, ABA-2004, Lithium Polymer Electrolytes; and Kobrin et. al., “Molecular Vapor Deposition—An Improved Vapor-Phase Deposition Technique of Molecular Coatings for MEMS Devices,” SEMI Technical Symposium Innovations in Semiconductor Manufacturing (STS: ISM), SEMICON West 2004, 2004 Semiconductor Equipment and Materials International.
Three-dimensional batteries can employ monolithic electrodes. For example,
It would be desirable to make three-dimensional electrochemical energy devices with silicon anodes that provide significantly higher energy and power density, while addressing the above issues or other limitations in the art.
Various methods and apparatus relating to three-dimensional battery structures and methods of manufacturing them are disclosed and claimed. In certain embodiments, a battery comprises a plurality of non-laminar, three-dimensional electrodes including a plurality of cathodes and a plurality of monolithic silicon anodes and an electrolyte solution in fluid contact with the plurality of electrodes, the electrolyte solution comprising a selected one of lithium (bis)trifluoromethanesulfonimide (LiTFSI), LiClO4, LiCF3SO3, and LiBOB.
In certain embodiments, a three-dimensional battery comprises a plurality of electrodes including a plurality of cathodes and a plurality of silicon anodes, wherein either the plurality of cathodes or the plurality of silicon anodes are non-laminar, three-dimensional electrodes; and an electrolyte solution in fluid contact with the plurality of electrodes, wherein the electrolyte solution comprises a salt selected from LiTFSI, LiClO4, LiCF3SO3, and LiBOB.
In certain embodiments, a three-dimensional battery comprises a battery enclosure, and a first structural layer within the battery enclosure, where the first structural layer has a first surface, and a first plurality of conductive protrusions extend from the first surface. A first plurality of electrodes is located within the battery enclosure, where the first plurality of electrodes includes a plurality of cathodes and a plurality of anodes, and wherein the first plurality of electrodes includes a second plurality of electrodes selected from the first plurality of electrodes, each of the second plurality of electrodes being in contact with the outer surface of one of said first plurality of conductive protrusions. The plurality of anodes comprises silicon and an electrolyte solution comprising a selected one of LiTFSI, LiClO4, LiCF3SO3, and LiBOB is in fluid contact with the first plurality of electrodes.
Other aspects and advantages of the present invention may be seen upon review of the figures, the detailed description, and the claims that follow.
Some embodiments of the invention are described with reference to the following figures.
Certain embodiments of the invention relate to the design of a three-dimensional lithium-ion battery with a silicon anode. Existing energy storage devices, such as batteries, fuel cells, and electrochemical capacitors, typically have two-dimensional laminar architectures (e.g., planar or spiral-wound laminates) with a surface area of each laminate being roughly equal to its geometrical footprint (ignoring porosity and surface roughness). A three-dimensional energy storage device can be one in which an anode, a cathode, and/or a separator are non-laminar in nature. For example, if electrodes protrude sufficiently from a backplane to form a non-laminar active battery component, then the surface area for such a non-laminar component may be greater than twice the geometrical footprint of its backplane. In certain embodiments, the ratio of the surface area of a three-dimensional electrode to its geometric footprint may be between about 2 and about 1000.
Some embodiments of the invention relate to the use of a backbone structure for the manufacture of three-dimensional energy storage devices, such as batteries, capacitors, and fuel cells. The backbone structure may be used for the purpose of providing mechanical stability, electrical connectivity, and increased surface area per unit geometrical area. By way of example, the backbone structure may be made in the shape of pillars by wire-bonding aluminum on a flat substrate, which may be subsequently coated with a cathode or anode material for the purpose of assembling a battery. Examples of backbone formation using various materials, shapes, and methodologies are presented herein, among other embodiments.
Three-dimensional energy storage devices may produce higher energy storage and retrieval per unit geometrical area than conventional devices. Three-dimensional energy storage devices may also provide a higher rate of energy retrieval than two-dimensional energy storage devices for a specific amount of energy stored, such as by minimizing or reducing transport distances for electron and ion transfer between an anode and a cathode. These devices may be more suitable for miniaturization and for applications where a geometrical area available for a device is limited and/or where energy density requirement is higher than what may be achieved with a laminar device.
Some embodiments of the invention include a mechanically stable, electrically conductive backbone structure that ends up being a part of the final assembled energy storage device. A backbone material typically does not take an active part in electrochemical reactions of the energy storage device, and may enhance mechanical and electrical robustness.
The backbone material may also act as a high surface area substrate for manufacturing the high surface area electrochemical device. Mechanical robustness may increase the lifetime of the device, since active materials that constitute the device are typically porous electrodes with relatively lower mechanical stability. Electrical conductivity may enhance or maintain a power density of the device (e.g., by decreasing resistivity) while also equalizing current distribution between electroactive species.
A backbone structure may be made in any shape that provides higher surface area relative to geometrical area, such as pillars, posts, plates, waves, circles, diamonds, spirals, staircase structures, and so forth. The backbone structure may be made out of any material that may be shaped, such as metals, semiconductors, organics, ceramics, and glasses. The backbone structure may serve to provide: (i) rigidity to active electrodes in an energy storage device, such as anodes and cathodes in a lithium ion battery; (ii) electrical connectivity to tall three-dimensional structures; and (iii) increased surface area per unit geometrical area. Desirable materials include semiconductor materials such as silicon and germanium. Carbon-based organic materials may also be used to form backbone structures for three-dimensional shaping. Metals, such as aluminum, copper, nickel, cobalt, titanium, and tungsten, may also be used for backbone structures.
In some embodiments, a backbone structure is made out of a metal, semiconductor, organic material, ceramic, or glass using a subtractive formation technique. These materials may be processed by reactively etching a substrate using a selective etch mask and a plasma etch process. Alternatively, or in conjunction, electrochemical etching, stamping, or electrical discharge machining may be used to selectively remove material preferentially in areas where these materials are not desired.
In other embodiments, a backbone structure is made out of a metal, semiconductor, organic, ceramic, or glass using an additive formation technique. These materials may be processed by making a sacrificial mold using a technique such as conventional lithography, and depositing a backbone material using techniques such as electrochemical deposition, electroless deposition, electrophoretic deposition, vacuum assisted filling, stencil assisted filling, and so forth. In certain cases, the backbone structure may be assembled directly using a wirebonding process. In other cases, the backbone structure may be made on a flat plate using conventional lithography and deposition techniques, and subsequently assembled by “pick and place” and soldering or gluing techniques.
In other embodiments, a backbone material may be shaped using printing techniques, such as three-dimensional printing and inkjet printing, to form a backbone structure using single or multiple layers of printing to obtain a desired shape and thickness. Alternatively, or in conjunction, the backbone material may be assembled in the form of layered sheets, with sacrificial layers deposited in between. After stacking of the sheets is substantially complete, a resulting structure is cut into pieces of a desired height, assembled together, and the sacrificial material is released to provide the backbone structure.
In the case of an electrically conductive backbone structure, an active material may be directly assembled on top of and around the backbone structure by various techniques, such as electrochemical deposition, electroless deposition, co-deposition in an organic or inorganic matrix, electrophoretic deposition, mechanical filling and compacting, and vacuum assisted flow deposition.
In case of an electrically non-conductive backbone structure, a conducting layer may be deposited by various techniques, such as electrochemical or electroless deposition, vapor assisted vacuum deposition such as Atomic Layer Deposition (ALD) and Chemical Vapor Deposition (CVD), sputter deposition, evaporation, and electrophoretic deposition. This conductive layer may be subsequently removed in order to remove an electrical connection between an anode and a cathode. This removal may be accomplished using techniques such as sputter etching, ion milling, and liftoff. In addition, techniques such as chemical dissolution may be used with standard techniques such as lithography to protect areas that do not need to be removed.
Some examples of three-dimensional architectures that are capable of use with certain embodiments of the present invention, and that have cathodes and anodes protruding from the same backplane, are shown in
The following example further explains concepts described with reference to
In some embodiments, the patterned substrate 40 is electrically conductive, in which case the resulting backbone structure is ready for further processing of active materials. In certain other embodiments, the backbone structure is electrically non-conductive. In this case, further processing by deposition of a conductive layer may be performed by various methods.
The following example further explains concepts described with reference to
In certain other embodiments of the invention, additive processes may be used to process a backbone structure of an energy storage device.
The following example further explains concepts described with reference to
Once a backbone structure is available, materials that are involved in electrochemical reactions, also called active materials, may be loaded onto the backbone structure. This may be done by several different methods. An anode backbone and a cathode backbone may be separate from each other, but each electrode may be electrically conductive by itself. This lends to electrochemical deposition techniques and electrophoretic deposition techniques as viable options for adding the active materials. For example, in the case of a lithium-ion battery, a cathode material, such as LiCoO2, LiNi0.5Mn1.5O4, Li(NixCoyAlz)O2, LiFePO4, or Li2MnO4 may be electrophoretically deposited onto a conductive substrate. Electrophoretic deposition may also be performed for V2O5 films. Cathode materials may also be co-deposited along with a polypyrrole matrix. In addition, certain cathode materials for lithium-ion batteries may be electrochemically deposited, such as molybdenum oxysulfides. In certain embodiments, cathode formation comprises electrophoretic deposition of LiCoO2 until a layer thickness between 1 micron and 300 microns is formed. In certain embodiments, the layer thickness is between 5 microns and 200 microns, and in certain embodiments, the layer thickness is between 10 microns and 150 microns. With regards to silicon anode materials, electrophoretic deposition may be used to assemble particulates containing silicon. Other deposition processes for silicon materials include but are not limited to chemical vapor deposition, physical vapor deposition, and silk screen. Similar layer thicknesses apply to anode formation as described above. The silicon particulates can include alloys. Electrochemical deposition alternately may be used for plateable anode materials, such as tin, graphite, and an electrophoretic resist deposition followed by pyrolysis may be used to form a carbon anode. Other suitable anode materials may include titanates, silicon, and aluminum. Suitable separator materials may include polyethylenes, polypropylenes, TiO2, SiO2, Al2O3, and the like.
Silicon may be used as a negative electrode material, including in lithium batteries. Such use may be beneficial due to the large gravimetric and volumetric capacity of silicon for lithium. However, charging of silicon with conventional non-aqueous electrolytes may be problematic, because the voltage of the silicon with respect to lithium may become zero unless relatively low current densities are used in charging the silicon. This is undesirable since at zero volts, lithium metal deposition could take place and lead to safety problems and poor cycle life. This may not be a severe problem for conventional pasted electrodes because the particulates provide a relatively high surface area to volume ratio. Similarly, for thin film silicon electrodes made by chemical vapor deposition (for example, see US 2009/0226983) the low current density required for charging may not see a severe problem. However, for monolithic, three-dimensional electrodes such as those described in WIPO Patent Application WO/2008/089110 “THREE-DIMENSIONAL BATTERIES AND METHODS OF MANUFACTURING THE SAME”, the low charging current density permitted by silicon may result in an excessive charging time, especially on the first formation cycle.
We have found surprisingly that the charging rate of silicon anodes can be significantly increased by replacing the commonly used lithium hexafluorophosphate (LiPF6) salt with another salt such as lithium (bis)trifluoromethanesulfonimide (LiN(CF3SO2)2 or LiTFSI). This invention may be of particular value in three-dimensional battery structures where monolithic silicon anodes are extremely advantageous. LiPF6 forms fluorine-containing film at the silicon surface that is highly resistive. LiPF6 tends to disproportionate to give LiF and PF5 that readily form fluorinated films. Therefore, salts that do not release fluorine may be effective in allowing high charging rates of silicon. For example, salts such as LiTFSI (LiN(CF3SO2)2), lithium trifluoromethanesulfonate (LiCF3SO3), lithium perchlorate (LiClO4), and lithium bis(oxalate)borate (LiBOB) may allow high charging rates for silicon. Salts that do not readily release fluorine can be used alone or in combination to provide the benefit. Such salts can be used in a variety of three-dimensional battery structures. The battery structures can involve three-dimensional anodes and cathodes, or a three-dimensional anode paired with a planar cathode, or a three-dimensional cathode paired with a planar anode.
Unexpectedly, the use of the lithium (bis)trifluoromethanesulfonimide (LiTFSI) salt allowed a more than twofold increase in charging current without the silicon voltage going to zero compared to the use of lithium hexafluorophosphate (LiPF6) salt. The fast charging capability enabled by the use of the LiTFSI salt makes more practical the use of silicon anodes, especially monolithic silicon electrodes that have limited surface area. Further, the faster charging lowers the cost of making silicon-containing batteries because the production time is lowered.
A pouch cell was made as follows. A piece of silicon (−½ inch×½ inch) was enveloped in a nickel mesh and placed in a pouch on one side of two pieces of Celgard 2320 separator; a piece of lithium foil was placed on the other side of the separator. Electrolyte was added to the pouch and then it was heat sealed. For each of the electrolytes listed in
The LiTFSI salt is more chemically stable than LiPF6. LiPF6 can disproportionate to PF5 and LiF, and one of these species may react with the silicon to form a resistive film. Since the LiTFSI does not generate reactive species, it may not lead to formation of a resistive film on the silicon. Other salts, such as LiClO4 and LiCF3SO3, LiBOB, which also do not generate reactive species, may behave like the LiTFSI salt. Salts like LiBF4, which do generate reactive species, may behave like LiPF6.
The use of the LiTFSI salt with a silicon electrode may enable higher currents than with conventional LiPF6 electrolytes. This may lower the cost of making batteries because they can be charged in a shorter time at higher current. Before leaving the factory, batteries must typically be charged at least once and this operation is expensive because of the capital investment in charging equipment and the time required for charging. Fast charging reduces the charging time and so increases the throughput, lowering the cost of making batteries. Another advantage of using the LiTFSI salt is that it enables an increase in power of the battery over LiPF6.
While some embodiments have been described with reference to energy storage devices, it should be recognized that the backbone structures described herein may be useful in various other types of devices to provide increased surface area per unit geometrical area (or per unit weight or volume). These other types of devices may involve various types of processes during their operation, such as heat transfer, chemical reactions, and diffusion.
While the invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention as defined by the appended claims. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, method, operation or operations, to the objective, spirit, and scope of the invention. All such modifications are intended to be within the scope of the claims appended hereto. In particular, while the methods disclosed herein have been described with reference to particular operations performed in a particular order, it will be understood that these operations may be combined, sub-divided, or re-ordered to form an equivalent method without departing from the teachings of the invention. Accordingly, unless specifically indicated herein, the order and grouping of the operations is not a limitation of the invention.
This application claims priority under 35 U.S.C. § 120 to U.S. application Ser. No. 12/013,388, entitled “Three-Dimensional Batteries and Methods of Manufacturing the Same,” filed on Jan. 11, 2008; which is hereby incorporated by reference herein in its entirety. U.S. Provisional Application No. 60/884,836, entitled “Electrodes For Three Dimensional Lithium Batteries And Methods Of Manufacturing Thereof,” filed on Jan. 12, 2007; U.S. Provisional Application No. 60/884,828, entitled “Three-Dimensional Batteries and Methods of Manufacturing Using Backbone Structure,” filed on Jan. 12, 2007; and U.S. Provisional Application No. 60/884,846, entitled “Three-Dimensional Lithium Battery Separator Architectures,” filed on Jan. 12, 2007; all of which are hereby incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4113579 | Randall | Feb 1978 | A |
4820599 | Furukawa et al. | Apr 1989 | A |
4996129 | Tuck | Feb 1991 | A |
5294504 | Otagawa | Mar 1994 | A |
5993990 | Kanto et al. | Nov 1999 | A |
6432585 | Kawakami | Aug 2002 | B1 |
6495283 | Yoon et al. | Dec 2002 | B1 |
6498406 | Horiuchi | Dec 2002 | B1 |
6821673 | Hamada et al. | Nov 2004 | B1 |
6833010 | Asahina et al. | Dec 2004 | B2 |
6878173 | Miyahisa | Apr 2005 | B2 |
7056455 | Matyjaszewski | Jun 2006 | B2 |
7153609 | Kubo et al. | Dec 2006 | B2 |
8691450 | Spotnitz et al. | Apr 2014 | B1 |
20020034685 | Sato et al. | Mar 2002 | A1 |
20020039283 | Nakamura et al. | Apr 2002 | A1 |
20020064708 | Asahina et al. | May 2002 | A1 |
20020136957 | Zhang et al. | Sep 2002 | A1 |
20040064708 | Angelo et al. | Apr 2004 | A1 |
20040092395 | Hase et al. | May 2004 | A1 |
20040185336 | Ito et al. | Sep 2004 | A1 |
20040214079 | Simburger et al. | Oct 2004 | A1 |
20040241540 | Tsutsumi et al. | Dec 2004 | A1 |
20050079418 | Kelley et al. | Apr 2005 | A1 |
20060097691 | Green | May 2006 | A1 |
20060121342 | Sano et al. | Jun 2006 | A1 |
20060147795 | Li | Jul 2006 | A1 |
20060188784 | Sudoh et al. | Aug 2006 | A1 |
20060269845 | Xu et al. | Nov 2006 | A1 |
20060281007 | Tsutsumi et al. | Dec 2006 | A1 |
20070059584 | Nakano | Mar 2007 | A1 |
20070092792 | Kasahara et al. | Apr 2007 | A1 |
20070105017 | Kawase | May 2007 | A1 |
20070172732 | Jung et al. | Jul 2007 | A1 |
20070243460 | Carlson et al. | Oct 2007 | A1 |
20080032170 | Wainright et al. | Feb 2008 | A1 |
20080081256 | Madou et al. | Apr 2008 | A1 |
20080081257 | Yoshida et al. | Apr 2008 | A1 |
20090035664 | Chiang et al. | Feb 2009 | A1 |
20090117472 | Iwamoto | May 2009 | A1 |
20090142656 | Nathan et al. | Jun 2009 | A1 |
20100003603 | Chiang et al. | Apr 2010 | A1 |
20100119936 | Misumi et al. | May 2010 | A1 |
20100119939 | Misumi et al. | May 2010 | A1 |
20110111283 | Rust, III et al. | May 2011 | A1 |
20110171518 | Dunn et al. | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
02388711 | May 2001 | CA |
1555588 | Dec 2004 | CN |
11233076 | Aug 1999 | JP |
2008153033 | Jul 2008 | JP |
2008153034 | Jul 2008 | JP |
2008153035 | Jul 2008 | JP |
2008153036 | Jul 2008 | JP |
2005119812 | Dec 2005 | WO |
2008072638 | Jun 2008 | WO |
Entry |
---|
Golodnitsky et al., Advanced materials for the 3D microbattery, 2006, Journal of Power Sources, 153, 281-287. |
Chamran et al., Three-dimensional nickel-zinc microbatteries, 2006, MEMS, Jan. 22-26, 2006, 950-953. |
Patent Cooperation Treaty, International Search Report for PCT/US2008/050942, dated May 18, 2008. |
Chan et al., High-performance lithium battery anodes using silicon nanowires, Nature Nanotechnology, 3, 31-35. |
Serpo, A tenfold improvement in battery life?, ZDNet News, Jan. 15, 2008, 2 pages. |
Long et al., Three-Dimensional battery Architectures, Chemical Reviews, 2004, 104, 4463-4492. |
Liu, C., Foundations of MEMS, Chapter 10, 1-55. |
Kanamura et al., Electrophoretic fabrication of LiCoO2 positive electrodes for rechargeable lithium batteries, Journal of Power Sources, 2001, 97-98, 294-297. |
Caballero et al., LiNi.5Mn1.5O4 thick-film electrodes prepared by electrophoretic deposition for use in high voltage lithium-ion batteries, Journal of Power Sources, 156, 2006, 583. |
Wang et al., Li+-intercalation electrochemical/chromic props of vanadium pentoxide films by sol electrophoretic deposition, Electrochimica Acta, 51, 2006, 4865-4872. |
Nichizawa et al., Template synth of polypyrrole-coated spinel LiMn2O4 nantubules and props as cathode active materials for Li batteries, J. Electrochemical Society, 1997, 1923-1927. |
Shembel et al., Thin Layer Electrolytic Monbdenum Oxysulfides for Li Secondary batteries with liquid and polymer electrolytes, 5th Adv Batteries and Accumulators, 2004. |
Kobrin et al., Molecular Vapor Deposition—An imporved Vapor-Phase deposition technique of molecular coatings for MEMS Devices, SEMI Tech Symp: (STS,ISM), 2004. |
Green et al., Structured Silicon Anodes for Li battery applications, Electrochem & Solid State Letters, 6, 2003, A75-A79. |
Shin et al., Porous silicon negative electrodes for rechargeable lithium batteries, Journal of Power Sources, 193, 2005, 314-320. |
Broussely et al., Li-ion batteries and portable power source prospects for the next 5-10 years, Journal of Power Sources, 136, 2004, 386-394. |
Lehmann, The physics of macropore formation in low doped n-type silicon, Journal of Electrochemical Society, 149(10), 1993, 2836-2843. |
Vyatkin et al., Random and ordered macropore formation in p-type silicon, Journal of Electrochemical Society, 149(1) G70-G76. |
Van Den Meerakker et al., Etching of deep macropores in 6 in. Si wafers, Journal of Electrochemical Society, 147(7), 2000, 2757-2761. |
Balakrishnan et al., Safety mechanisms in lithium-ion batteries, Journal of Power Sources, 155, 2006, 401-414. |
Arora et al., Battery separators, Chemical Reviews, 104, 2004, 4419-4462. |
Masuda, H. et al., Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina, Science, 1995, 268(5216), 1466-1468. |
Number | Date | Country | |
---|---|---|---|
20140170466 A1 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
60884846 | Jan 2007 | US | |
60884828 | Jan 2007 | US | |
60884836 | Jan 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12536154 | Aug 2009 | US |
Child | 14186503 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12013388 | Jan 2008 | US |
Child | 12536154 | US |