The present disclosure relates to a three-dimensional data encoding method, a three-dimensional data decoding method, a three-dimensional data encoding device, and a three-dimensional data decoding device.
Devices or services utilizing three-dimensional data are expected to find their widespread use in a wide range of fields, such as computer vision that enables autonomous operations of cars or robots, map information, monitoring, infrastructure inspection, and video distribution. Three-dimensional data is obtained through various means including a distance sensor such as a rangefinder, as well as a stereo camera and a combination of a plurality of monocular cameras.
Methods of representing three-dimensional data include a method known as a point cloud scheme that represents the shape of a three-dimensional structure by a point cloud in a three-dimensional space. In the point cloud scheme, the positions and colors of a point cloud are stored. While point cloud is expected to be a mainstream method of representing three-dimensional data, a massive amount of data of a point cloud necessitates compression of the amount of three-dimensional data by encoding for accumulation and transmission, as in the case of a two-dimensional moving picture (examples include Moving Picture Experts Group-4 Advanced Video Coding (MPEG-4 AVC) and High Efficiency Video Coding (HEVC) standardized by MPEG).
Meanwhile, point cloud compression is partially supported by, for example, an open-source library (Point Cloud Library) for point cloud-related processing.
Furthermore, a technique for searching for and displaying a facility located in the surroundings of the vehicle by using three-dimensional map data is known (see, for example, Patent Literature (PTL) 1 (International Publication WO 2014/020663)).
There has been a demand for improving coding efficiency in coding of three-dimensional data.
The present disclosure has an object to provide a three-dimensional data encoding method, a three-dimensional data decoding method, a three-dimensional data encoding device, or a three-dimensional data decoding device that is capable of improving the coding efficiency.
A three-dimensional data encoding method according to one aspect of the present disclosure includes: obtaining a data unit including three-dimensional points; generating one or more prediction trees using the three-dimensional points included in the data unit; performing predictive encoding on position information items of one or more three-dimensional points among the three-dimensional points, using a prediction tree including the one or more three-dimensional points; and generating a bitstream including encoded data resulting from the predictive encoding, wherein in the performing, (i) a prediction value in a specific prediction mode is obtained, and (ii) one or more prediction residuals are calculated for each of the one or more three-dimensional points, the one or more prediction residuals each being a difference between a position information item of the three-dimensional point and the prediction value, and in the generating of the bitstream, the bitstream including a header and the one or more prediction residuals is generated, the header including the prediction value.
A three-dimensional data decoding method according to one aspect of the present disclosure includes: obtaining a bitstream including encoded data; and calculating position information items of three-dimensional points by performing predictive decoding on the encoded data using a prediction tree obtained from the bitstream, wherein in the calculating, position information items of one or more three-dimensional points among the three-dimensional points are calculated by adding one or more prediction residuals included in the encoded data and a prediction value in a specific prediction mode included in a header of a data unit including the encoded data.
The present disclosure provides a three-dimensional data encoding method, a three-dimensional data decoding method, a three-dimensional data encoding device, or a three-dimensional data decoding device that is capable of improving the coding efficiency.
These and other objects, advantages and features of the disclosure will become apparent from the following description thereof taken in conjunction with the accompanying drawings that illustrate a specific embodiment of the present disclosure.
A three-dimensional data encoding method according to one aspect of the present disclosure includes: obtaining a data unit including a header and three-dimensional points; generating one or more prediction trees using the three-dimensional points included in the data unit; performing predictive encoding on position information items of one or more three-dimensional points among the three-dimensional points, using a prediction tree including the one or more three-dimensional points; and generating a bitstream including encoded data resulting from the predictive encoding, wherein in the performing, (i) a prediction value in a specific prediction mode is obtained from the header, and (ii) one or more prediction residuals are calculated for each of the one or more three-dimensional points, the one or more prediction residuals each being a difference between a position information item of the three-dimensional point and the prediction value, and in the generating of the bitstream, the bitstream including the header and the one or more prediction residuals is generated.
According to this method, the geometry information can be encoded using the predicted value in the specific prediction mode obtained from the header, and therefore, the encoding efficiency of the geometry information can be improved.
Moreover, the one or more three-dimensional points may include a three-dimensional point set to a root node of the prediction tree including the one or more three-dimensional points.
Therefore, the geometry information of the three-dimensional point set to a root node can be encoded using the predicted value in the specific prediction mode obtained from the header, and therefore, the encoding efficiency of the geometry information of the root node can be improved.
Furthermore, a prediction mode value indicating the specific prediction mode may be 0.
Moreover, the prediction value in the specific prediction mode may be a minimum value among position information items of the three-dimensional points.
A three-dimensional data decoding method according to one aspect of the present disclosure includes: obtaining a bitstream including encoded data; and calculating position information items of three-dimensional points by performing predictive decoding on the encoded data using a prediction tree obtained from the bitstream, wherein in the calculating, position information items of one or more three-dimensional points among the three-dimensional points are calculated by adding one or more prediction residuals included in the encoded data and a prediction value in a specific prediction mode included in a header of a data unit including the encoded data.
According to this method, the geometry information encoded using the predicted value in the specific prediction mode obtained from the header can be properly decoded.
Moreover, the one or more three-dimensional points may include a three-dimensional point set to a root node of the prediction tree including the one or more three-dimensional points.
Therefore, the geometry information of the three-dimensional point set to a root node can be encoded using the predicted value in the specific prediction mode obtained from the header, and therefore, the geometry information of the root node can be properly decoded.
Furthermore, a prediction mode value indicating the specific prediction mode may be 0.
Moreover, the prediction value in the specific prediction mode may be a minimum value among position information items of the three-dimensional points.
A three-dimensional data encoding device according to one aspect of the present disclosure includes a processor and memory. Using the memory, the processor obtains a data unit including a header and three-dimensional points; generates one or more prediction trees using the three-dimensional points included in the data unit; performs predictive encoding on position information items of one or more three-dimensional points among the three-dimensional points, using a prediction tree including the one or more three-dimensional points; and generates a bitstream including encoded data resulting from the predictive encoding. In the performing, (i) a prediction value in a specific prediction mode is obtained from the header, and (ii) one or more prediction residuals are calculated for each of the one or more three-dimensional points, the one or more prediction residuals each being a difference between a position information item of the three-dimensional point and the prediction value. In the generating of the bitstream, the bitstream including the header and the one or more prediction residuals is generated.
According to this method, the geometry information can be encoded using the predicted value in the specific prediction mode obtained from the header, and therefore, the encoding efficiency of the geometry information can be improved.
A three-dimensional data decoding device according to one aspect of the present disclosure includes a processor and memory. Using the memory, the processor obtains a bitstream including encoded data; and calculates position information items of three-dimensional points by performing predictive decoding on the encoded data using a prediction tree obtained from the bitstream. In the calculating, position information items of one or more three-dimensional points among the three-dimensional points are calculated by adding one or more prediction residuals included in the encoded data and a prediction value in a specific prediction mode included in a header of a data unit including the encoded data.
According to this method, the geometry information encoded using the predicted value in the specific prediction mode obtained from the header can be properly decoded.
It is to be noted that these general or specific aspects may be implemented as a system, a method, an integrated circuit, a computer program, or a computer-readable recording medium such as a CD-ROM, or may be implemented as any combination of a system, a method, an integrated circuit, a computer program, and a recording medium.
Hereinafter, embodiments will be specifically described with reference to the drawings. It is to be noted that each of the following embodiments indicate a specific example of the present disclosure. The numerical values, shapes, materials, constituent elements, the arrangement and connection of the constituent elements, steps, the processing order of the steps, etc., indicated in the following embodiments are mere examples, and thus are not intended to limit the present disclosure. Among the constituent elements described in the following embodiments, constituent elements not recited in any one of the independent claims will be described as optional constituent elements.
When using encoded data of a point cloud in a device or for a service in practice, required information for the application is desirably transmitted and received in order to reduce the network bandwidth. However, conventional encoding structures for three-dimensional data have no such a function, and there is also no encoding method for such a function.
Embodiment 1 described below relates to a three-dimensional data encoding method and a three-dimensional data encoding device for encoded data of a three-dimensional point cloud that provides a function of transmitting and receiving required information for an application, a three-dimensional data decoding method and a three-dimensional data decoding device for decoding the encoded data, a three-dimensional data multiplexing method for multiplexing the encoded data, and a three-dimensional data transmission method for transmitting the encoded data.
In particular, at present, a first encoding method and a second encoding method are under investigation as encoding methods (encoding schemes) for point cloud data. However, there is no method defined for storing the configuration of encoded data and the encoded data in a system format. Thus, there is a problem that an encoder cannot perform an MUX process (multiplexing), transmission, or accumulation of data.
In addition, there is no method for supporting a format that involves two codecs, the first encoding method and the second encoding method, such as point cloud compression (PCC).
With regard to this embodiment, a configuration of PCC-encoded data that involves two codecs, a first encoding method and a second encoding method, and a method of storing the encoded data in a system format will be described.
A configuration of a three-dimensional data (point cloud data) encoding and decoding system according to this embodiment will be first described.
Three-dimensional data encoding system 4601 generates encoded data or multiplexed data by encoding point cloud data, which is three-dimensional data. Three-dimensional data encoding system 4601 may be a three-dimensional data encoding device implemented by a single device or a system implemented by a plurality of devices. The three-dimensional data encoding device may include a part of a plurality of processors included in three-dimensional data encoding system 4601.
Three-dimensional data encoding system 4601 includes point cloud data generation system 4611, presenter 4612, encoder 4613, multiplexer 4614, input/output unit 4615, and controller 4616. Point cloud data generation system 4611 includes sensor information obtainer 4617, and point cloud data generator 4618.
Sensor information obtainer 4617 obtains sensor information from sensor terminal 4603, and outputs the sensor information to point cloud data generator 4618. Point cloud data generator 4618 generates point cloud data from the sensor information, and outputs the point cloud data to encoder 4613.
Presenter 4612 presents the sensor information or point cloud data to a user. For example, presenter 4612 displays information or an image based on the sensor information or point cloud data.
Encoder 4613 encodes (compresses) the point cloud data, and outputs the resulting encoded data, control information (signaling information) obtained in the course of the encoding, and other additional information to multiplexer 4614. The additional information includes the sensor information, for example.
Multiplexer 4614 generates multiplexed data by multiplexing the encoded data, the control information, and the additional information input thereto from encoder 4613. A format of the multiplexed data is a file format for accumulation or a packet format for transmission, for example.
Input/output unit 4615 (a communication unit or interface, for example) outputs the multiplexed data to the outside. Alternatively, the multiplexed data may be accumulated in an accumulator, such as an internal memory. Controller 4616 (or an application executor) controls each processor. That is, controller 4616 controls the encoding, the multiplexing, or other processing.
Note that the sensor information may be input to encoder 4613 or multiplexer 4614. Alternatively, input/output unit 4615 may output the point cloud data or encoded data to the outside as it is.
A transmission signal (multiplexed data) output from three-dimensional data encoding system 4601 is input to three-dimensional data decoding system 4602 via external connector 4604.
Three-dimensional data decoding system 4602 generates point cloud data, which is three-dimensional data, by decoding the encoded data or multiplexed data. Note that three-dimensional data decoding system 4602 may be a three-dimensional data decoding device implemented by a single device or a system implemented by a plurality of devices. The three-dimensional data decoding device may include a part of a plurality of processors included in three-dimensional data decoding system 4602.
Three-dimensional data decoding system 4602 includes sensor information obtainer 4621, input/output unit 4622, demultiplexer 4623, decoder 4624, presenter 4625, user interface 4626, and controller 4627.
Sensor information obtainer 4621 obtains sensor information from sensor terminal 4603.
Input/output unit 4622 obtains the transmission signal, decodes the transmission signal into the multiplexed data (file format or packet), and outputs the multiplexed data to demultiplexer 4623.
Demultiplexer 4623 obtains the encoded data, the control information, and the additional information from the multiplexed data, and outputs the encoded data, the control information, and the additional information to decoder 4624.
Decoder 4624 reconstructs the point cloud data by decoding the encoded data.
Presenter 4625 presents the point cloud data to a user. For example, presenter 4625 displays information or an image based on the point cloud data. User interface 4626 obtains an indication based on a manipulation by the user. Controller 4627 (or an application executor) controls each processor. That is, controller 4627 controls the demultiplexing, the decoding, the presentation, or other processing.
Note that input/output unit 4622 may obtain the point cloud data or encoded data as it is from the outside. Presenter 4625 may obtain additional information, such as sensor information, and present information based on the additional information. Presenter 4625 may perform a presentation based on an indication from a user obtained on user interface 4626.
Sensor terminal 4603 generates sensor information, which is information obtained by a sensor. Sensor terminal 4603 is a terminal provided with a sensor or a camera. For example, sensor terminal 4603 is a mobile body, such as an automobile, a flying object, such as an aircraft, a mobile terminal, or a camera.
Sensor information that can be generated by sensor terminal 4603 includes (1) the distance between sensor terminal 4603 and an object or the reflectance of the object obtained by LiDAR, a millimeter wave radar, or an infrared sensor or (2) the distance between a camera and an object or the reflectance of the object obtained by a plurality of monocular camera images or a stereo-camera image, for example. The sensor information may include the posture, orientation, gyro (angular velocity), position (GPS information or altitude), velocity, or acceleration of the sensor, for example. The sensor information may include air temperature, air pressure, air humidity, or magnetism, for example.
External connector 4604 is implemented by an integrated circuit (LSI or IC), an external accumulator, communication with a cloud server via the Internet, or broadcasting, for example.
Next, point cloud data will be described.
Point cloud data includes data on a plurality of points. Data on each point includes geometry information (three-dimensional coordinates) and attribute information associated with the geometry information. A set of a plurality of such points is referred to as a point cloud. For example, a point cloud indicates a three-dimensional shape of an object.
Geometry information (position), such as three-dimensional coordinates, may be referred to as geometry. Data on each point may include attribute information (attribute) on a plurality of types of attributes. A type of attribute is color or reflectance, for example.
One item of attribute information (in other words, a piece of attribute information or an attribute information item) may be associated with one item of geometry information (in other words, a piece of geometry information or a geometry information item), or attribute information on a plurality of different types of attributes may be associated with one item of geometry information. Alternatively, items of attribute information on the same type of attribute may be associated with one item of geometry information.
The configuration example of a data file shown in
The geometry information is information on three axes, specifically, an x-axis, a y-axis, and a z-axis, for example. The attribute information is RGB color information, for example. A representative data file is ply file, for example.
Next, types of point cloud data will be described.
The static object is three-dimensional point cloud data at an arbitrary time (a time point). The dynamic object is three-dimensional point cloud data that varies with time. In the following, three-dimensional point cloud data associated with a time point will be referred to as a PCC frame or a frame.
The object may be a point cloud whose range is limited to some extent, such as ordinary video data, or may be a large point cloud whose range is not limited, such as map information.
There are point cloud data having varying densities. There may be sparse point cloud data and dense point cloud data.
In the following, each processor will be described in detail. Sensor information is obtained by various means, including a distance sensor such as LiDAR or a range finder, a stereo camera, or a combination of a plurality of monocular cameras. Point cloud data generator 4618 generates point cloud data based on the sensor information obtained by sensor information obtainer 4617. Point cloud data generator 4618 generates geometry information as point cloud data, and adds attribute information associated with the geometry information to the geometry information.
When generating geometry information or adding attribute information, point cloud data generator 4618 may process the point cloud data. For example, point cloud data generator 4618 may reduce the data amount by omitting a point cloud whose position coincides with the position of another point cloud. Point cloud data generator 4618 may also convert the geometry information (such as shifting, rotating or normalizing the position) or render the attribute information.
Note that, although
Encoder 4613 generates encoded data by encoding point cloud data according to an encoding method previously defined. In general, there are the two types of encoding methods described below. One is an encoding method using geometry information, which will be referred to as a first encoding method, hereinafter. The other is an encoding method using a video codec, which will be referred to as a second encoding method, hereinafter.
Decoder 4624 decodes the encoded data into the point cloud data using the encoding method previously defined.
Multiplexer 4614 generates multiplexed data by multiplexing the encoded data in an existing multiplexing method. The generated multiplexed data is transmitted or accumulated. Multiplexer 4614 multiplexes not only the PCC-encoded data but also another medium, such as a video, an audio, subtitles, an application, or a file, or reference time information. Multiplexer 4614 may further multiplex attribute information associated with sensor information or point cloud data.
Multiplexing schemes or file formats include ISOBMFF, MPEG-DASH, which is a transmission scheme based on ISOBMFF, MMT, MPEG-2 TS Systems, or RMP, for example.
Demultiplexer 4623 extracts PCC-encoded data, other media, time information and the like from the multiplexed data.
Input/output unit 4615 transmits the multiplexed data in a method suitable for the transmission medium or accumulation medium, such as broadcasting or communication. Input/output unit 4615 may communicate with another device over the Internet or communicate with an accumulator, such as a cloud server.
As a communication protocol, http, ftp, TCP, UDP or the like is used. The pull communication scheme or the push communication scheme can be used.
A wired transmission or a wireless transmission can be used. For the wired transmission, Ethernet (registered trademark), USB, RS-232C, HDMI (registered trademark), or a coaxial cable is used, for example. For the wireless transmission, wireless LAN, Wi-Fi (registered trademark), Bluetooth (registered trademark), or a millimeter wave is used, for example.
As a broadcasting scheme, DVB-T2, DVB-S2, DVB-C2, ATSC3.0, or ISDB-S3 is used, for example.
First encoder 4630 is characterized by performing encoding by keeping a three-dimensional structure in mind. First encoder 4630 is further characterized in that attribute information encoder 4632 performs encoding using information obtained from geometry information encoder 4631. The first encoding method is referred to also as geometry-based PCC (GPCC).
Point cloud data is PCC point cloud data like a PLY file or PCC point cloud data generated from sensor information, and includes geometry information (position), attribute information (attribute), and other additional information (metadata). The geometry information is input to geometry information encoder 4631, the attribute information is input to attribute information encoder 4632, and the additional information is input to additional information encoder 4633.
Geometry information encoder 4631 generates encoded geometry information (compressed geometry), which is encoded data, by encoding geometry information. For example, geometry information encoder 4631 encodes geometry information using an N-ary tree structure, such as an octree. Specifically, in the case of an octree, a current space (target space) is divided into eight nodes (subspaces), 8-bit information (occupancy code) that indicates whether each node includes a point cloud or not is generated. A node including a point cloud is further divided into eight nodes, and 8-bit information that indicates whether each of the eight nodes includes a point cloud or not is generated. This process is repeated until a predetermined level is reached or the number of the point clouds included in each node becomes equal to or less than a threshold.
Attribute information encoder 4632 generates encoded attribute information (compressed attribute), which is encoded data, by encoding attribute information using configuration information generated by geometry information encoder 4631. For example, attribute information encoder 4632 determines a reference point (reference node) that is to be referred to in encoding a current point (in other words, a current node or a target node) to be processed based on the octree structure generated by geometry information encoder 4631. For example, attribute information encoder 4632 refers to a node whose parent node in the octree is the same as the parent node of the current node, of peripheral nodes or neighboring nodes. Note that the method of determining a reference relationship is not limited to this method.
The process of encoding attribute information may include at least one of a quantization process, a prediction process, and an arithmetic encoding process. In this case, “refer to” means using a reference node for calculating a predicted value of attribute information or using a state of a reference node (occupancy information that indicates whether a reference node includes a point cloud or not, for example) for determining a parameter of encoding. For example, the parameter of encoding is a quantization parameter in the quantization process or a context or the like in the arithmetic encoding.
Additional information encoder 4633 generates encoded additional information (compressed metadata), which is encoded data, by encoding compressible data of additional information.
Multiplexer 4634 generates encoded stream (compressed stream), which is encoded data, by multiplexing encoded geometry information, encoded attribute information, encoded additional information, and other additional information. The generated encoded stream is output to a processor in a system layer (not shown).
Next, first decoder 4640, which is an example of decoder 4624 that performs decoding in the first encoding method, will be described.
An encoded stream (compressed stream), which is encoded data, is input to first decoder 4640 from a processor in a system layer (not shown).
Demultiplexer 4641 separates encoded geometry information (compressed geometry), encoded attribute information (compressed attribute), encoded additional information (compressed metadata), and other additional information from the encoded data.
Geometry information decoder 4642 generates geometry information by decoding the encoded geometry information. For example, geometry information decoder 4642 restores the geometry information on a point cloud represented by three-dimensional coordinates from encoded geometry information represented by an N-ary structure, such as an octree.
Attribute information decoder 4643 decodes the encoded attribute information based on configuration information generated by geometry information decoder 4642. For example, attribute information decoder 4643 determines a reference point (reference node) that is to be referred to in decoding a current point (current node) to be processed based on the octree structure generated by geometry information decoder 4642. For example, attribute information decoder 4643 refers to a node whose parent node in the octree is the same as the parent node of the current node, of peripheral nodes or neighboring nodes. Note that the method of determining a reference relationship is not limited to this method.
The process of decoding attribute information may include at least one of an inverse quantization process, a prediction process, and an arithmetic decoding process. In this case, “refer to” means using a reference node for calculating a predicted value of attribute information or using a state of a reference node (occupancy information that indicates whether a reference node includes a point cloud or not, for example) for determining a parameter of decoding. For example, the parameter of decoding is a quantization parameter in the inverse quantization process or a context or the like in the arithmetic decoding.
Additional information decoder 4644 generates additional information by decoding the encoded additional information. First decoder 4640 uses additional information required for the decoding process for the geometry information and the attribute information in the decoding, and outputs additional information required for an application to the outside.
Next, an example configuration of a geometry information encoder will be described.
Octree generator 2701 generates an octree, for example, from input position information, and generates an occupancy code of each node of the octree. Geometry information calculator 2702 obtains information that indicates whether a neighboring node of a current node (target node) is an occupied node or not. For example, geometry information calculator 2702 calculates occupancy information on a neighboring node from an occupancy code of a parent node to which a current node belongs (information that indicates whether a neighboring node is an occupied node or not). Geometry information calculator 2702 may save an encoded node in a list and search the list for a neighboring node. Note that geometry information calculator 2702 may change neighboring nodes in accordance with the position of the current node in the parent node.
Encoding table selector 2703 selects an encoding table used for entropy encoding of the current node based on the occupancy information on the neighboring node calculated by geometry information calculator 2702. For example, encoding table selector 2703 may generate a bit sequence based on the occupancy information on the neighboring node and select an encoding table of an index number generated from the bit sequence.
Entropy encoder 2704 generates encoded geometry information and metadata by entropy-encoding the occupancy code of the current node using the encoding table of the selected index number. Entropy encoder may add, to the encoded geometry information, information that indicates the selected encoding table.
In the following, an octree representation and a scan order for geometry information will be described. Geometry information (geometry data) is transformed into an octree structure (octree transform) and then encoded. The octree structure includes nodes and leaves. Each node has eight nodes or leaves, and each leaf has voxel (VXL) information.
Specifically, node 1 corresponds to the entire space comprising the geometry information in
Next, an example configuration of a geometry information decoder will be described.
Octree generator 2711 generates an octree of a space (node) based on header information, metadata or the like of a bitstream. For example, octree generator 2711 generates an octree by generating a large space (root node) based on the sizes of a space in an x-axis direction, a y-axis direction, and a z-axis direction added to the header information and dividing the space into two parts in the x-axis direction, the y-axis direction, and the z-axis direction to generate eight small spaces A (nodes A0 to A7). Nodes A0 to A7 are sequentially designated as a current node.
Geometry information calculator 2712 obtains occupancy information that indicates whether a neighboring node of a current node is an occupied node or not. For example, geometry information calculator 2712 calculates occupancy information on a neighboring node from an occupancy code of a parent node to which a current node belongs. Geometry information calculator 2712 may save a decoded node in a list and search the list for a neighboring node. Note that geometry information calculator 2712 may change neighboring nodes in accordance with the position of the current node in the parent node.
Encoding table selector 2713 selects an encoding table (decoding table) used for entropy decoding of the current node based on the occupancy information on the neighboring node calculated by geometry information calculator 2712. For example, encoding table selector 2713 may generate a bit sequence based on the occupancy information on the neighboring node and select an encoding table of an index number generated from the bit sequence.
Entropy decoder 2714 generates position information by entropy-decoding the occupancy code of the current node using the selected encoding table. Note that entropy decoder 2714 may obtain information on the selected encoding table by decoding the bitstream, and entropy-decode the occupancy code of the current node using the encoding table indicated by the information.
In the following, configurations of an attribute information encoder and an attribute information decoder will be described.
Attribute information encoder A100 includes LoD attribute information encoder A101 and transformed-attribute-information encoder A102. LoD attribute information encoder A101 classifies three-dimensional points into a plurality of layers based on geometry information on the three-dimensional points, predicts attribute information on three-dimensional points belonging to each layer, and encodes a prediction residual therefor. Here, each layer into which a three-dimensional point is classified is referred to as a level of detail (LoD).
Transformed-attribute-information encoder A102 encodes attribute information using region adaptive hierarchical transform (RAHT). Specifically, transformed-attribute-information encoder A102 generates a high frequency component and a low frequency component for each layer by applying RAHT or Haar transform to each item of attribute information based on the geometry information on three-dimensional points, and encodes the values by quantization, entropy encoding or the like.
Attribute information decoder A110 includes LoD attribute information decoder A111 and transformed-attribute-information decoder A112. LoD attribute information decoder A111 classifies three-dimensional points into a plurality of layers based on the geometry information on the three-dimensional points, predicts attribute information on three-dimensional points belonging to each layer, and decodes attribute values thereof.
Transformed-attribute-information decoder A112 decodes attribute information using region adaptive hierarchical transform (RAHT). Specifically, transformed-attribute-information decoder A112 decodes each attribute value by applying inverse RAHT or inverse Haar transform to the high frequency component and the low frequency component of the attribute value based on the geometry information on the three-dimensional point.
Attribute information encoder 3140 includes LoD generator 3141, periphery searcher 3142, predictor 3143, prediction residual calculator 3144, quantizer 3145, arithmetic encoder 3146, inverse quantizer 3147, decoded value generator 3148, and memory 3149.
LoD generator 3141 generates an LoD using geometry information on a three-dimensional point.
Periphery searcher 3142 searches for a neighboring three-dimensional point neighboring each three-dimensional point using a result of LoD generation by LoD generator 3141 and distance information indicating distances between three-dimensional points.
Predictor 3143 generates a predicted value of an item of attribute information on a current (target) three-dimensional point to be encoded.
Prediction residual calculator 3144 calculates (generates) a prediction residual of the predicted value of the item of the attribute information generated by predictor 3143.
Quantizer 3145 quantizes the prediction residual of the item of attribute information calculated by prediction residual calculator 3144.
Arithmetic encoder 3146 arithmetically encodes the prediction residual quantized by quantizer 3145. Arithmetic encoder 3146 outputs a bitstream including the arithmetically encoded prediction residual to the three-dimensional data decoding device, for example.
The prediction residual may be binarized by quantizer 3145 before being arithmetically encoded by arithmetic encoder 3146.
Arithmetic encoder 3146 may initialize the encoding table used for the arithmetic encoding before performing the arithmetic encoding. Arithmetic encoder 3146 may initialize the encoding table used for the arithmetic encoding for each layer. Arithmetic encoder 3146 may output a bitstream including information that indicates the position of the layer at which the encoding table is initialized.
Inverse quantizer 3147 inverse-quantizes the prediction residual quantized by quantizer 3145.
Decoded value generator 3148 generates a decoded value by adding the predicted value of the item of attribute information generated by predictor 3143 and the prediction residual inverse-quantized by inverse quantizer 3147 together.
Memory 3149 is a memory that stores a decoded value of an item of attribute information on each three-dimensional point decoded by decoded value generator 3148. For example, when generating a predicted value of a three-dimensional point yet to be encoded, predictor 3143 may generate the predicted value using a decoded value of an item of attribute information on each three-dimensional point stored in memory 3149.
Sorter 6601 generates the Morton codes by using the geometry information of three-dimensional points, and sorts the plurality of three-dimensional points in the order of the Morton codes. Haar transformer 6602 generates the coding coefficient by applying the Haar transform to the attribute information. Quantizer 6603 quantizes the coding coefficient of the attribute information.
Inverse quantizer 6604 inverse quantizes the coding coefficient after the quantization. Inverse Haar transformer 6605 applies the inverse Haar transform to the coding coefficient. Memory 6606 stores the values of items of attribute information of a plurality of decoded three-dimensional points. For example, the attribute information of the decoded three-dimensional points stored in memory 6606 may be utilized for prediction and the like of an unencoded three-dimensional point.
Arithmetic encoder 6607 calculates ZeroCnt from the coding coefficient after the quantization, and arithmetically encodes ZeroCnt. Additionally, arithmetic encoder 6607 arithmetically encodes the non-zero coding coefficient after the quantization. Arithmetic encoder 6607 may binarize the coding coefficient before the arithmetic encoding. In addition, arithmetic encoder 6607 may generate and encode various kinds of header information.
Attribute information decoder 3150 includes LoD generator 3151, periphery searcher 3152, predictor 3153, arithmetic decoder 3154, inverse quantizer 3155, decoded value generator 3156, and memory 3157.
LoD generator 3151 generates an LoD using geometry information on a three-dimensional point decoded by the geometry information decoder (not shown in
Periphery searcher 3152 searches for a neighboring three-dimensional point neighboring each three-dimensional point using a result of LoD generation by LoD generator 3151 and distance information indicating distances between three-dimensional points.
Predictor 3153 generates a predicted value of attribute information item on a current three-dimensional point to be decoded.
Arithmetic decoder 3154 arithmetically decodes the prediction residual in the bitstream obtained from attribute information encoder 3140 shown in
Arithmetic decoder 3154 may initialize the decoding table used for the arithmetic decoding for each layer. Arithmetic decoder 3154 may initialize the decoding table based on the information included in the bitstream that indicates the position of the layer for which the encoding table has been initialized.
Inverse quantizer 3155 inverse-quantizes the prediction residual arithmetically decoded by arithmetic decoder 3154.
Decoded value generator 3156 generates a decoded value by adding the predicted value generated by predictor 3153 and the prediction residual inverse-quantized by inverse quantizer 3155 together. Decoded value generator 3156 outputs the decoded attribute information data to another device.
Memory 3157 is a memory that stores a decoded value of an item of attribute information on each three-dimensional point decoded by decoded value generator 3156. For example, when generating a predicted value of a three-dimensional point yet to be decoded, predictor 3153 generates the predicted value using a decoded value of an item of attribute information on each three-dimensional point stored in memory 3157.
Arithmetic decoder 6611 arithmetically decodes ZeroCnt and the coding coefficient included in a bitstream. Note that arithmetic decoder 6611 may decode various kinds of header information.
Inverse quantizer 6612 inverse quantizes the arithmetically decoded coding coefficient. Inverse Haar transformer 6613 applies the inverse Haar transform to the coding coefficient after the inverse quantization. Memory 6614 stores the values of items of attribute information of a plurality of decoded three-dimensional points. For example, the attribute information of the decoded three-dimensional points stored in memory 6614 may be utilized for prediction of an undecoded three-dimensional point.
Next, second encoder 4650, which is an example of encoder 4613 that performs encoding in the second encoding method, will be described.
Second encoder 4650 generates encoded data (encoded stream) by encoding point cloud data in the second encoding method. Second encoder 4650 includes additional information generator 4651, geometry image generator 4652, attribute image generator 4653, video encoder 4654, additional information encoder 4655, and multiplexer 4656.
Second encoder 4650 is characterized by generating a geometry image and an attribute image by projecting a three-dimensional structure onto a two-dimensional image, and encoding the generated geometry image and attribute image in an existing video encoding scheme. The second encoding method is referred to as video-based PCC (VPCC).
Point cloud data is PCC point cloud data like a PLY file or PCC point cloud data generated from sensor information, and includes geometry information (position), attribute information (attribute), and other additional information (metadata).
Additional information generator 4651 generates map information on a plurality of two-dimensional images by projecting a three-dimensional structure onto a two-dimensional image.
Geometry image generator 4652 generates a geometry image based on the geometry information and the map information generated by additional information generator 4651. The geometry image is a distance image in which distance (depth) is indicated as a pixel value, for example. The distance image may be an image of a plurality of point clouds viewed from one point of view (an image of a plurality of point clouds projected onto one two-dimensional plane), a plurality of images of a plurality of point clouds viewed from a plurality of points of view, or a single image integrating the plurality of images.
Attribute image generator 4653 generates an attribute image based on the attribute information and the map information generated by additional information generator 4651. The attribute image is an image in which attribute information (color (RGB), for example) is indicated as a pixel value, for example. The image may be an image of a plurality of point clouds viewed from one point of view (an image of a plurality of point clouds projected onto one two-dimensional plane), a plurality of images of a plurality of point clouds viewed from a plurality of points of view, or a single image integrating the plurality of images.
Video encoder 4654 generates an encoded geometry image (compressed geometry image) and an encoded attribute image (compressed attribute image), which are encoded data, by encoding the geometry image and the attribute image in a video encoding scheme. Note that, as the video encoding scheme, any well-known encoding method can be used. For example, the video encoding scheme is AVC or HEVC.
Additional information encoder 4655 generates encoded additional information (compressed metadata) by encoding the additional information, the map information and the like included in the point cloud data.
Multiplexer 4656 generates an encoded stream (compressed stream), which is encoded data, by multiplexing the encoded geometry image, the encoded attribute image, the encoded additional information, and other additional information. The generated encoded stream is output to a processor in a system layer (not shown).
Next, second decoder 4660, which is an example of decoder 4624 that performs decoding in the second encoding method, will be described.
An encoded stream (compressed stream), which is encoded data, is input to second decoder 4660 from a processor in a system layer (not shown).
Demultiplexer 4661 separates an encoded geometry image (compressed geometry image), an encoded attribute image (compressed attribute image), an encoded additional information (compressed metadata), and other additional information from the encoded data.
Video decoder 4662 generates a geometry image and an attribute image by decoding the encoded geometry image and the encoded attribute image in a video encoding scheme. Note that, as the video encoding scheme, any well-known encoding method can be used. For example, the video encoding scheme is AVC or HEVC.
Additional information decoder 4663 generates additional information including map information or the like by decoding the encoded additional information.
Geometry information generator 4664 generates geometry information from the geometry image and the map information. Attribute information generator 4665 generates attribute information from the attribute image and the map information.
Second decoder 4660 uses additional information required for decoding in the decoding, and outputs additional information required for an application to the outside.
In the following, a problem with the PCC encoding scheme will be described.
A multiplexing scheme and a file format have a function of multiplexing various encoded data and transmitting or accumulating the data. To transmit or accumulate encoded data, the encoded data has to be converted into a format for the multiplexing scheme. For example, with HEVC, a technique for storing encoded data in a data structure referred to as a NAL unit and storing the NAL unit in ISOBMFF is prescribed.
At present, a first encoding method (Codec1) and a second encoding method (Codec2) are under investigation as encoding methods for point cloud data. However, there is no method defined for storing the configuration of encoded data and the encoded data in a system format. Thus, there is a problem that an encoder cannot perform an MUX process (multiplexing), transmission, or accumulation of data.
Note that, in the following, the term “encoding method” means any of the first encoding method and the second encoding method unless a particular encoding method is specified.
In this embodiment, types of the encoded data (geometry information (geometry), attribute information (attribute), and additional information (metadata)) generated by first encoder 4630 or second encoder 4650 described above, a method of generating additional information (metadata), and a multiplexing process in the multiplexer will be described. The additional information (metadata) may be referred to as a parameter set or control information (signaling information).
In this embodiment, the dynamic object (three-dimensional point cloud data that varies with time) described above with reference to
Encoder 4801 encodes a plurality of PCC (point cloud compression) frames of point cloud data to generate a plurality of pieces of encoded data (multiple compressed data) of geometry information, attribute information, and additional information.
Multiplexer 4802 integrates a plurality of types of data (geometry information, attribute information, and additional information) into a NAL unit, thereby converting the data into a data configuration that takes data access in the decoding device into consideration.
First, a process of generating encoded data of geometry information will be described. Encoder 4801 encodes geometry information of each frame to generate encoded geometry data (compressed geometry data) for each frame. The encoded geometry data is denoted by G(i). i denotes a frame number or a time point of a frame, for example.
Furthermore, encoder 4801 generates a geometry parameter set (GPS(i)) for each frame. The geometry parameter set includes a parameter that can be used for decoding of the encoded geometry data. The encoded geometry data for each frame depends on an associated geometry parameter set.
The encoded geometry data formed by a plurality of frames is defined as a geometry sequence. Encoder 4801 generates a geometry sequence parameter set (referred to also as geometry sequence PS or geometry SPS) that stores a parameter commonly used for a decoding process for the plurality of frames in the geometry sequence. The geometry sequence depends on the geometry SPS.
Next, a process of generating encoded data of attribute information will be described. Encoder 4801 encodes attribute information of each frame to generate encoded attribute data (compressed attribute data) for each frame. The encoded attribute data is denoted by A(i).
Furthermore, encoder 4801 generates an attribute parameter set (APS(i)) for each frame. The attribute parameter set for attribute X is denoted by AXPS(i), and the attribute parameter set for attribute Y is denoted by AYPS(i). The attribute parameter set includes a parameter that can be used for decoding of the encoded attribute information. The encoded attribute data depends on an associated attribute parameter set.
The encoded attribute data formed by a plurality of frames is defined as an attribute sequence. Encoder 4801 generates an attribute sequence parameter set (referred to also as attribute sequence PS or attribute SPS) that stores a parameter commonly used for a decoding process for the plurality of frames in the attribute sequence. The attribute sequence depends on the attribute SPS.
In the first encoding method, the encoded attribute data depends on the encoded geometry data.
Note that, although
Next, a process of generating encoded data of additional information (metadata) will be described. Encoder 4801 generates a PCC stream PS (referred to also as PCC stream PS or stream PS), which is a parameter set for the entire PCC stream. Encoder 4801 stores a parameter that can be commonly used for a decoding process for one or more geometry sequences and one or more attribute sequences in the stream PS. For example, the stream PS includes identification information indicating the codec for the point cloud data and information indicating an algorithm used for the encoding, for example. The geometry sequence and the attribute sequence depend on the stream PS.
Next, an access unit and a GOF will be described. In this embodiment, concepts of access unit (AU) and group of frames (GOF) are newly introduced.
An access unit is a basic unit for accessing data in decoding, and is formed by one or more pieces of data and one or more pieces of metadata. For example, an access unit is formed by geometry information and one or more pieces of attribute information associated with a same time point. A GOF is a random access unit, and is formed by one or more access units.
Encoder 4801 generates an access unit header (AU header) as identification information indicating the top of an access unit. Encoder 4801 stores a parameter relating to the access unit in the access unit header. For example, the access unit header includes a configuration of or information on the encoded data included in the access unit. The access unit header further includes a parameter commonly used for the data included in the access unit, such as a parameter relating to decoding of the encoded data.
Note that encoder 4801 may generate an access unit delimiter that includes no parameter relating to the access unit, instead of the access unit header. The access unit delimiter is used as identification information indicating the top of the access unit. The decoding device identifies the top of the access unit by detecting the access unit header or the access unit delimiter.
Next, generation of identification information for the top of a GOF will be described. As identification information indicating the top of a GOF, encoder 4801 generates a GOF header. Encoder 4801 stores a parameter relating to the GOF in the GOF header. For example, the GOF header includes a configuration of or information on the encoded data included in the GOF. The GOF header further includes a parameter commonly used for the data included in the GOF, such as a parameter relating to decoding of the encoded data.
Note that encoder 4801 may generate a GOF delimiter that includes no parameter relating to the GOF, instead of the GOF header. The GOF delimiter is used as identification information indicating the top of the GOF. The decoding device identifies the top of the GOF by detecting the GOF header or the GOF delimiter.
In the PCC-encoded data, the access unit is defined as a PCC frame unit, for example. The decoding device accesses a PCC frame based on the identification information for the top of the access unit.
For example, the GOF is defined as one random access unit. The decoding device accesses a random access unit based on the identification information for the top of the GOF. For example, if PCC frames are independent from each other and can be separately decoded, a PCC frame can be defined as a random access unit.
Note that two or more PCC frames may be assigned to one access unit, and a plurality of random access units may be assigned to one GOF.
Encoder 4801 may define and generate a parameter set or metadata other than those described above. For example, encoder 4801 may generate supplemental enhancement information (SE) that stores a parameter (an optional parameter) that is not always used for decoding.
Next, a configuration of encoded data and a method of storing encoded data in a NAL unit will be described.
For example, a data format is defined for each type of encoded data.
For example, as shown in
The header includes identification information for identifying the data, for example. The identification information indicates a data type or a frame number, for example.
The header includes identification information indicating a reference relationship, for example. The identification information is stored in the header when there is a dependence relationship between data, for example, and allows an entity to refer to another entity. For example, the header of the entity to be referred to includes identification information for identifying the data. The header of the referring entity includes identification information indicating the entity to be referred to.
Note that, when the entity to be referred to or the referring entity can be identified or determined from other information, the identification information for identifying the data or identification information indicating the reference relationship can be omitted.
Multiplexer 4802 stores the encoded data in the payload of the NAL unit. The NAL unit header includes pcc_nal_unit_type, which is identification information for the encoded data.
As shown in
When pec_codec_type is codec 2 (Codec2: second encoding method), values of 0 to 2 of pcc_nal_unit_type are assigned to data A (DataA), metadata A (MetaDataA), and metadata B (MetaDataB) in the codec. Values of 3 and greater are reserved in codec 2.
Next, an order of transmission of data will be described. In the following, restrictions on the order of transmission of NAL units will be described.
Multiplexer 4802 transmits NAL units on a GOF basis or on an AU basis. Multiplexer 4802 arranges the GOF header at the top of a GOF, and arranges the AU header at the top of an AU.
In order to allow the decoding device to decode the next AU and the following AUs even when data is lost because of a packet loss or the like, multiplexer 4802 may arrange a sequence parameter set (SPS) in each AU.
When there is a dependence relationship for decoding between encoded data, the decoding device decodes the data of the entity to be referred to and then decodes the data of the referring entity. In order to allow the decoding device to perform decoding in the order of reception without rearranging the data, multiplexer 4802 first transmits the data of the entity to be referred to.
The geometry information-first order of transmission is an example in which information relating to geometry information is transmitted together, and information relating to attribute information is transmitted together. In the case of this order of transmission, the transmission of the information relating to the geometry information ends earlier than the transmission of the information relating to the attribute information.
For example, according to this order of transmission is used, when the decoding device does not decode attribute information, the decoding device may be able to have an idle time since the decoding device can omit decoding of attribute information. When the decoding device is required to decode geometry information early, the decoding device may be able to decode geometry information earlier since the decoding device obtains encoded data of the geometry information earlier.
Note that, although in
In the parameter set-first order of transmission, a parameter set is first transmitted, and data is then transmitted.
As described above, as far as the restrictions on the order of transmission of NAL units are met, multiplexer 4802 can transmit NAL units in any order. For example, order identification information may be defined, and multiplexer 4802 may have a function of transmitting NAL units in a plurality of orders. For example, the order identification information for NAL units is stored in the stream PS.
The three-dimensional data decoding device may perform decoding based on the order identification information. The three-dimensional data decoding device may indicate a desired order of transmission to the three-dimensional data encoding device, and the three-dimensional data encoding device (multiplexer 4802) may control the order of transmission according to the indicated order of transmission.
Note that multiplexer 4802 can generate encoded data having a plurality of functions merged to each other as in the case of the data-integrated order of transmission, as far as the restrictions on the order of transmission are met. For example, as shown in
In the following, variations of this embodiment will be described. There are levels of PSs, such as a frame-level PS, a sequence-level PS, and a PCC sequence-level PS. Provided that the PCC sequence level is a higher level, and the frame level is a lower level, parameters can be stored in the manner described below.
The value of a default PS is indicated in a PS at a higher level. If the value of a PS at a lower level differs from the value of the PS at a higher level, the value of the PS is indicated in the PS at the lower level. Alternatively, the value of the PS is not described in the PS at the higher level but is described in the PS at the lower level. Alternatively, information indicating whether the value of the PS is indicated in the PS at the lower level, at the higher level, or at both the levels is indicated in both or one of the PS at the lower level and the PS at the higher level. Alternatively, the PS at the lower level may be merged with the PS at the higher level. If the PS at the lower level and the PS at the higher level overlap with each other, multiplexer 4802 may omit transmission of one of the PSs.
Note that encoder 4801 or multiplexer 4802 may divide data into slices or tiles and transmit each of the divided slices or tiles as divided data. The divided data includes information for identifying the divided data, and a parameter used for decoding of the divided data is included in the parameter set. In this case, an identifier that indicates that the data is data relating to a tile or slice or data storing a parameter is defined in pcc_nal_unit_type.
In the following, a process relating to order identification information will be described.
First, the three-dimensional data encoding device determines the order of transmission of NAL units (geometry information-first or parameter set-first) (S4801). For example, the three-dimensional data encoding device determines the order of transmission based on a specification from a user or an external device (the three-dimensional data decoding device, for example).
If the determined order of transmission is geometry information-first (if “geometry information-first” in S4802), the three-dimensional data encoding device sets the order identification information included in the stream PS to geometry information-first (S4803). That is, in this case, the order identification information indicates that the NAL units are transmitted in the geometry information-first order. The three-dimensional data encoding device then transmits the NAL units in the geometry information-first order (S4804).
On the other hand, if the determined order of transmission is parameter set-first (if “parameter set-first” in S4802), the three-dimensional data encoding device sets the order identification information included in the stream PS to parameter set-first (S4805). That is, in this case, the order identification information indicates that the NAL units are transmitted in the parameter set-first order. The three-dimensional data encoding device then transmits the NAL units in the parameter set-first order (S4806).
If the order of transmission indicated by the order identification information is geometry information-first (if “geometry information-first” in S4812), the three-dimensional data decoding device decodes the NAL units based on the determination that the order of transmission of the NAL units is geometry information-first (S4813).
On the other hand, if the order of transmission indicated by the order identification information is parameter set-first (if “parameter set-first” in S4812), the three-dimensional data decoding device decodes the NAL units based on the determination that the order of transmission of the NAL units is parameter set-first (S4814).
For example, if the three-dimensional data decoding device does not decode attribute information, in step S4813, the three-dimensional data decoding device does not obtain the entire NAL units but can obtain a part of a NAL unit relating to the geometry information and decode the obtained NAL unit to obtain the geometry information.
Next, a process relating to generation of an AU and a GOF will be described.
First, the three-dimensional data encoding device determines the type of the encoded data (S4821). Specifically, the three-dimensional data encoding device determines whether the encoded data to be processed is AU-first data, GOF-first data, or other data.
If the encoded data is GOF-first data (if “GOF-first” in S4822), the three-dimensional data encoding device generates NAL units by arranging a GOF header and an AU header at the top of the encoded data belonging to the GOF (S4823).
If the encoded data is AU-first data (if “AU-first” in S4822), the three-dimensional data encoding device generates NAL units by arranging an AU header at the top of the encoded data belonging to the AU (S4824).
If the encoded data is neither GOF-first data nor AU-first data (if “other than GOF-first and AU-first” in S4822), the three-dimensional data encoding device generates NAL units by arranging the encoded data to follow the AU header of the AU to which the encoded data belongs (S4825).
Next, a process relating to access to an AU and a GOF will be described.
First, the three-dimensional data decoding device determines the type of the encoded data included in the NAL unit by analyzing nal_unit_type in the NAL unit (S4831). Specifically, the three-dimensional data decoding device determines whether the encoded data included in the NAL unit is AU-first data, GOF-first data, or other data.
If the encoded data included in the NAL unit is GOF-first data (if “GOF-first” in S4832), the three-dimensional data decoding device determines that the NAL unit is a start position of random access, accesses the NAL unit, and starts the decoding process (S4833).
If the encoded data included in the NAL unit is AU-first data (if “AU-first” in S4832), the three-dimensional data decoding device determines that the NAL unit is AU-first, accesses the data included in the NAL unit, and decodes the AU (S4834).
If the encoded data included in the NAL unit is neither GOF-first data nor AU-first data (if “other than GOF-first and AU-first” in S4832), the three-dimensional data decoding device does not process the NAL unit.
In the present embodiment, a representation means of three-dimensional points (point cloud) in encoding of three-dimensional data will be described.
Server 1501 includes storage 1511 and controller 1512. Storage 1511 stores encoded three-dimensional map 1513 that is encoded three-dimensional data.
Client 1502 transmits a message to server 1501. This message includes position information on client 1502. Controller 1512 included in server 1501 obtains a bitstream of a submap located closest to client 1502, based on the position information included in the received message. The bitstream of the submap includes the subcoordinate information and is transmitted to client 1502. Decoder 1521 included in client 1502 obtains overall coordinates of the submap having the reference coordinates as reference, using this subcoordinate information. Application 1522 included in client 1502 executes an application relating to a self-location, using the obtained overall coordinates of the submap.
The submap indicates a partial area of the overall map. The subcoordinates are the coordinates in which the submap is located in a reference coordinate space of the overall map. For example, in an overall map called A, there is submap A called AA and submap B called AB. When a vehicle wants to consult a map of AA, decoding begins from submap A, and when the vehicle wants to consult a map of AB, decoding begins from submap B. The submap here is a random-access point. To be specific, A is Osaka Prefecture, AA is Osaka City, and AB is Takatsuki City.
Each submap is transmitted along with the subcoordinate information to the client. The subcoordinate information is included in header information of each submap, a transmission packet, or the like.
The reference coordinates, which serve as a reference for the subcoordinate information of each submap, may be appended to header information of a space at a higher level than the submap, such as header information of the overall map.
The submap may be formed by one space (SPC). The submap may also be formed by a plurality of SPCs.
The submap may include a Group of Spaces (GOS). The submap may be formed by a world. For example, in a case where there are a plurality of objects in the submap, the submap is formed by a plurality of SPCs when assigning the plurality of objects to separate SPCs. The submap is formed by one SPC when assigning the plurality of objects to one SPC.
An advantageous effect on encoding efficiency when using the subcoordinate information will be described next.
Server 1501 first receives a message including position information on client 1502 from client 1502 (S1501). Controller 1512 obtains an encoded bitstream of the submap based on the position information on the client from storage 1511 (S1502). Server 1501 then transmits the encoded bitstream of the submap and the reference coordinates to client 1502 (S1503).
Client 1502 first receives the encoded bitstream of the submap and the reference coordinates transmitted from server 1501 (S1511). Client 1502 next obtains the subcoordinate information of the submap by decoding the encoded bitstream (S1512). Client 1502 next restores the differential coordinates in the submap to the overall coordinates, using the reference coordinates and the subcoordinates (S1513).
An example syntax of information relating to the submap will be described next. In the encoding of the submap, the three-dimensional data encoding device calculates the differential coordinates by subtracting the subcoordinates from the coordinates of each point cloud (three-dimensional points). The three-dimensional data encoding device then encodes the differential coordinates into the bitstream as a value of each point cloud. The encoding device encodes the subcoordinate information indicating the subcoordinates as the header information of the bitstream. This enables the three-dimensional data decoding device to obtain overall coordinates of each point cloud. For example, the three-dimensional data encoding device is included in server 1501 and the three-dimensional data decoding device is included in client 1502.
diff_x[i], diff_y[i], and diff_z[i] are differential coordinates of an i-th point cloud in the submap. diff_x[i] is a differential value between an x-coordinate of the i-th point cloud and the x-coordinate of the subcoordinates in the submap. diff_y[i] is a differential value between a y-coordinate of the i-th point cloud and the y-coordinate of the subcoordinates in the submap. diff_z[i] is a differential value between a z-coordinate of the i-th point cloud and the z-coordinate of the subcoordinates in the submap.
The three-dimensional data decoding device decodes point_cloud[i]_x, point_cloud[i]_y, and point_cloud[i]_z, which are overall coordinates of the i-th point cloud, using the expression below. point_cloud[i]_x is an x-coordinate of the overall coordinates of the i-th point cloud. point_cloud[i]_y is a y-coordinate of the overall coordinates of the i-th point cloud. point_cloud[i]_z is a z-coordinate of the overall coordinates of the i-th point cloud.
point_cloud[i]_x=sub_coordinate_x+diff_x[i]
point_cloud[i]_y=sub_coordinate_y+diff_y[i]
point_cloud[i]_z=sub_coordinate_z+diff_z[i]
A switching process for applying octree encoding will be described next. The three-dimensional data encoding device selects, when encoding the submap, whether to encode each point cloud using an octree representation (hereinafter, referred to as octree encoding) or to encode the differential values from the subcoordinates (hereinafter, referred to as non-octree encoding).
The three-dimensional data encoding device appends, to a header and the like of the submap, information indicating whether octree encoding or non-octree encoding has been applied to the submap (hereinafter, referred to as octree encoding application information). This enables the three-dimensional data decoding device to identify whether the bitstream is obtained by octree encoding the submap or non-octree encoding the submap.
The three-dimensional data encoding device may calculate encoding efficiency when applying octree encoding and encoding efficiency when applying non-octree encoding to the same point cloud, and apply an encoding method whose encoding efficiency is better to the submap.
When the encoding type is non-octree encoding (non_octree), the submap includes NumOfPoint and the subcoordinate information (sub_coordinate_x, sub_coordinate_y, and sub_coordinate_z).
When the encoding type is octree encoding (octree), the submap includes octree_info. octree_info is information necessary to the octree encoding and includes, for example, depth information.
When the encoding type is non-octree encoding (non_octree), the submap includes the differential coordinates (diff_x[i], diff_y[i], and diff_z[i]).
When the encoding type is octree encoding (octree), the submap includes octree_data, which is encoded data relating to the octree encoding.
Note that an example has been described here in which an xyz coordinate system is used as the coordinate system of the point cloud, but a polar coordinate system may also be used.
When the total number of point clouds is at least the predetermined threshold (YES in S1522), the three-dimensional data encoding device applies octree encoding to the current submap (S1523). The three-dimensional data encoding device appends, to a header of the bitstream, octree encoding application information indicating that octree encoding has been applied to the current submap (S1525).
In contrast, when the total number of point clouds is lower than the predetermined threshold (NO in S1522), the three-dimensional data encoding device applies non-octree encoding to the current submap (S1524). The three-dimensional data encoding device appends, to the header of the bitstream, octree encoding application information indicating that non-octree encoding has been applied to the current submap (S1525).
When the octree encoding application information indicates that the encoding type is octree encoding (YES in S1532), the three-dimensional data decoding device decodes the current submap through octree decoding (S1533). In contrast, when the octree encoding application information indicates that the encoding type is non-octree encoding (NO in S1532), the three-dimensional data decoding device decodes the current submap through non-octree decoding (S1534).
Hereinafter, variations of the present embodiment will be described.
As illustrated in
This enables the three-dimensional data encoding device to improve encoding efficiency, since it is possible to appropriately select whether to apply octree encoding, in accordance with a shape of objects or the total number of point clouds in the space.
As illustrated in
This enables the three-dimensional data encoding device to improve encoding efficiency, since it is possible to appropriately select whether to apply octree encoding, in accordance with a shape of objects or the total number of point clouds in the volume.
In the above description, an example has been shown in which the difference, which is the subcoordinates of each point cloud subtracted from the coordinates of each point cloud, is encoded as the non-octree encoding, but is not limited thereto, and any other type of encoding method other than the octree encoding may be used. For example, as illustrated in
In this case, the three-dimensional data encoding device stores, in the header, information indicating that original coordinate encoding has been applied to a current space (submap, space, or volume). This enables the three-dimensional data decoding device to determine whether original coordinate encoding has been applied to the current space.
When applying original coordinate encoding, the three-dimensional data encoding device may perform the encoding without applying quantization and arithmetic encoding to original coordinates. The three-dimensional data encoding device may encode the original coordinates using a predetermined fixed bit length. This enables three-dimensional data encoding device to generate a stream with a fixed bit length at a certain time.
In the above description, an example has been shown in which the difference, which is the subcoordinates of each point cloud subtracted from the coordinates of each point cloud, is encoded as the non-octree encoding, but is not limited thereto.
For example, the three-dimensional data encoding device may sequentially encode a differential value between the coordinates of each point cloud.
In the above description, the subcoordinates are coordinates in the lower left front corner of the submap, but a location of the subcoordinates is not limited thereto.
The location of the subcoordinates may be the same as coordinates of a certain point cloud in the current space (submap, space, or volume). For example, in the example shown in
In the present embodiment, an example has been shown that switches between applying octree encoding or non-octree encoding, but is not necessarily limited thereto. For example, the three-dimensional data encoding device may switch between applying a tree structure other than an octree or a non-tree structure other than the tree-structure. For example, the other tree structure is a k-d tree in which splitting is performed using perpendicular planes on one coordinate axis. Note that any other method may be used as the other tree structure.
In the present embodiment, an example has been shown in which coordinate information included in a point cloud is encoded, but is not necessarily limited thereto. The three-dimensional data encoding device may encode, for example, color information, a three-dimensional feature quantity, or a feature quantity of visible light using the same method as for the coordinate information. For example, the three-dimensional data encoding device may set an average value of the color information included in each point cloud in the submap to subcolor information, and encode a difference between the color information and the subcolor information of each point cloud.
In the present embodiment, an example has been shown in which an encoding method (octree encoding or non-octree encoding) with good encoding efficiency is selected in accordance with a total number of point clouds and the like, but is not necessarily limited thereto. For example, the three-dimensional data encoding device, which is a server end, may store a bitstream of a point cloud encoded through octree encoding, a bitstream of a point cloud encoded through non-octree encoding, and a bitstream of a point cloud encoded through both methods, and switch the bitstream to be transmitted to the three-dimensional data decoding device, in accordance with a transmission environment or a processing power of the three-dimensional data decoding device.
diff_x[i], diff_y[i], and diff_z[i] are differential coordinates of an i-th point cloud in the volume. diff_x[i] is a differential value between an x-coordinate of the i-th point cloud and the x-coordinate of the subcoordinates in the volume. diff_y[i] is a differential value between a y-coordinate of the i-th point cloud and the y-coordinate of the subcoordinates in the volume. diff_z[i] is a differential value between a z-coordinate of the i-th point cloud and the z-coordinate of the subcoordinates in the volume.
Note that when it is possible to calculate a relative position of the volume in the space, the three-dimensional data encoding device does not need to include the subcoordinate information in a header of the volume. In other words, the three-dimensional data encoding device may calculate the relative position of the volume in the space without including the subcoordinate information in the header, and use the calculated position as the subcoordinates of each volume.
As stated above, the three-dimensional data encoding device according to the present embodiment determines whether to encode, using an octree structure, a current space unit among a plurality of space units (e.g. submaps, spaces, or volumes) included in three-dimensional data (e.g. S1522 in
When it is determined that the current space unit is to be encoded using the octree structure (YES in S1522), the three-dimensional data encoding device encodes the current space unit using the octree structure (S1523). When it is determined that the current space unit is not to be encoded using the octree structure (NO in S1522), the three-dimensional data encoding device encodes the current space unit using a different method that is not the octree structure (S1524). For example, in the different method, the three-dimensional data encoding device encodes coordinates of three-dimensional points included in the current space unit. To be specific, in the different method, the three-dimensional data encoding device encodes a difference between reference coordinates of the current space unit and the coordinates of the three-dimensional points included in the current space unit.
The three-dimensional data encoding device next appends, to a bitstream, information that indicates whether the current space unit has been encoded using the octree structure (S1525).
This enables the three-dimensional data encoding device to improve encoding efficiency since it is possible to reduce the amount of data of the encoded signal.
For example, the three-dimensional data encoding device includes a processor and memory, the processor using the memory to perform the above processes.
The three-dimensional data decoding device according to the present embodiment decodes, from a bitstream, information that indicates whether to decode, using an octree structure, a current space unit among a plurality of space units (e.g. submaps, spaces, or volumes) included in three-dimensional data (e.g. S1531 in
When the information indicates not to decode the current space unit using the octree structure (NO in S1532), the three-dimensional data decoding device decodes the current space unit using a different method that is not the octree structure (S1534). For example, in the different method, the three-dimensional data decoding device decodes coordinates of three-dimensional points included in the current space unit. To be specific, in the different method, the three-dimensional data decoding device decodes a difference between reference coordinates of the current space unit and the coordinates of the three-dimensional points included in the current space unit.
This enables the three-dimensional data decoding device to improve encoding efficiency since it is possible to reduce the amount of data of the encoded signal.
For example, three-dimensional data decoding device includes a processor and memory. The processor uses the memory to perform the above processes.
According to a three-dimensional data encoding device according to Embodiment 4, geometry information of a plurality of three-dimensional points is encoded using a prediction tree generated based on the geometry information.
As shown in
As shown in
Next, a method of generating a prediction tree will be described with reference to
In the method of generating a prediction tree, as shown in Part (a) of
child_count is incremented by 1 each time one child node is added to the node for which the child_count is set. Once the generation of the prediction tree is completed, child_count of each node indicates the number of child nodes of the node, and is added to the bitstream. pred_mode indicates the prediction mode for predicting values of the geometry information of each node. Details of the prediction mode will be described later.
As shown in Part (b) of
Note that the predicted value of the geometry information of each node may be calculated when adding the node to the prediction tree. For example, in the case of Part (b) of
As shown in Part (c) of
As shown in Part (d) of
In this way, the three-dimensional data encoding device adds all points to the prediction tree and ends the generation of the prediction tree. When the generation of the prediction tree ends, any node having child_count=0 is a leaf of the prediction tree. After the generation of the prediction tree ends, the three-dimensional data encoding device encodes child_count, pred_mode, and residual_value of each node selected in the depth-first order from the root node. Selecting a node in the depth-first order means that the three-dimensional data encoding device selects, as a node subsequent to a node selected, a child node that has not been selected yet of the one or more child nodes of the selected node. When the selected node has no child node, the three-dimensional data encoding device selects a child node that has not been selected yet of the parent node of the selected node.
Note that the order of encoding is not limited to the depth-first order, but may be the width-first order, for example. When selecting a node in the width-first order, the three-dimensional data encoding device selects, as a node subsequent to a node selected, a node that has not been selected yet of the one or more nodes at the same depth (layer) as the selected node. When there is no node at the same depth as the selected node, the three-dimensional data encoding device selects a node that has not been selected yet of the one or more nodes at the subsequent depth.
Note that points 0 to 3 are examples of three-dimensional points.
Note that although child_count, pred_mode, and residual_value are calculated when adding each point to the prediction tree in the three-dimensional data encoding method described above, the present invention is not necessarily limited to this, and they may be calculated after the generation of the prediction tree ends.
The three-dimensional data encoding device to which a plurality of three-dimensional points are input may re-order the input three-dimensional points in ascending or descending Morton order and process the three-dimensional points in the latter order. This allows the three-dimensional data encoding device to efficiently search for the nearest point of the three-dimensional point to be processed and improve the encoding efficiency. The three-dimensional data encoding device need not re-order the three-dimensional points and may process the three-dimensional points in the order of input. For example, the three-dimensional data encoding device may generate a prediction tree without a branch in the order of input of a plurality of three-dimensional points. Specifically, the three-dimensional data encoding device may add an input three-dimensional point subsequent to a predetermined three-dimensional point in the order of input of a plurality of three-dimensional points as a child node of the predetermined three-dimensional point.
Next, a first example of prediction modes will be described with reference to
As shown below, eight prediction modes may be set. As an example, a case where a predicted value for point c is calculated as shown in
A prediction mode whose prediction mode value is 0 (referred to as prediction mode 0, hereinafter) may be set without prediction. That is, in prediction mode 0, the three-dimensional data encoding device may calculate geometry information of input point c as a predicted value of point c.
A prediction mode whose prediction mode value is 1 (referred to as prediction mode 1, hereinafter) may be set for a differential prediction with respect to point p0. That is, the three-dimensional data encoding device may calculate geometry information of point p0, which is the parent node of point c, as a predicted value of point c.
A prediction mode whose prediction mode value is 2 (referred to as prediction mode 2, hereinafter) may be set for a linear prediction based on point p0 and point p1. That is, the three-dimensional data encoding device may calculate, as a predicted value of point c, a prediction result of a linear prediction based on geometry information of point p0, which is the parent node of point c, and geometry information of point p1, which is the grandparent node of point c.
Predicted value=2×p0−p1 (Equation T1)
In Equation T1, p0 denotes geometry information of point p0, and p1 denotes geometry information of point p1.
A prediction mode whose prediction mode value is 3 (referred to as prediction mode 3, hereinafter) may be set for a parallelogram prediction based on point p0, point p1, and point p2. That is, the three-dimensional data encoding device may calculate, as a predicted value of point c, a prediction result of a parallelogram prediction based on geometry information of point p0, which is the parent node of point c, geometry information of point p1, which is the grandparent node of point c, and geometry information of point p2, which is the great grandparent node of point c. Specifically, the three-dimensional data encoding device calculates a predicted value of point c in prediction mode 3 according to the following equation T2.
Predicted value=p0+p1−p2 (Equation T2)
In Equation T2, p0 denotes geometry information of point p0, p1 denotes geometry information of point p1, and p2 denotes geometry information of point p2.
A prediction mode whose prediction mode value is 4 (referred to as prediction mode 4, hereinafter) may be set for a differential prediction with respect to point p1. That is, the three-dimensional data encoding device may calculate geometry information of point p1, which is the grandparent node of point c, as a predicted value of point c.
A prediction mode whose prediction mode value is 5 (referred to as prediction mode 5, hereinafter) may be set for a differential prediction with respect to point p2. That is, the three-dimensional data encoding device may calculate geometry information of point p2, which is the great grandparent node of point c, as a predicted value of point c.
A prediction mode whose prediction mode value is 6 (referred to as prediction mode 6, hereinafter) may be set for an average of geometry information of any two or more of point p0, point p1, and point p2. That is, the three-dimensional data encoding device may calculate, as a predicted value of point c, an average value of any two or more of geometry information of point p0, which is the parent node of point c, geometry information of point p1, which is the grandparent node of point c, and geometry information of point p2, which is the great grandparent node of point c. For example, when the three-dimensional data encoding device uses geometry information of point p0 and geometry information of point p1 for calculation of a predicted value, the three-dimensional data encoding device calculates a predicted value of point c in prediction mode 6 according to the following Equation T3.
Predicted value=(p0+p1)/2 (Equation T3)
In Equation T3, p0 denotes geometry information of point p0, and p1 denotes geometry information of point p1.
A prediction mode whose prediction mode value is 7 (referred to as prediction mode 7, hereinafter) may be set for a non-linear prediction based on distance d0 between point p0 and point p1 and distance d1 between point p2 and point p1. That is, the three-dimensional data encoding device may calculate, as a predicted value of point c, a prediction result of a non-linear prediction based on distance d0 and distance d1.
Note that the prediction method assigned to each prediction mode is not limited to the example described above. The eight prediction modes described above and the eight prediction methods described above need not be combined in the manner described above, and can be combined in any manner. For example, when prediction modes are encoded by an entropy encoding, such as arithmetic encoding, a prediction method of high frequency of use may be assigned to prediction mode 0. In this way, the encoding efficiency can be improved. The three-dimensional data encoding device may can also improve the encoding efficiency by dynamically changing the assignment of prediction modes according to the frequency of use of the prediction modes while performing the encoding process. For example, the three-dimensional data encoding device may count the frequency of use of each prediction mode in the encoding and assign a prediction mode indicated by a smaller value to a prediction method of a higher frequency of use. In this way, the encoding efficiency can be improved. Note that M denotes a prediction mode count indicating the number of prediction modes, and in the example described above, there are eight prediction modes 0 to 7, and therefore, M=8.
As predicted values (px, py, pz) of geometry information (x, y, z) of a three-dimensional point, the three-dimensional data encoding device may calculate predicted values used for calculation of geometry information of a three-dimensional point to be encoded based on geometry information of a three-dimensional point that is at a short distance from the three-dimensional point to be encoded among peripheral three-dimensional points of the three-dimensional point to be encoded. The three-dimensional data encoding device may add prediction mode information (pred_mode) for each three-dimensional point so that a predicted value to be calculated can be selected according to the prediction mode.
For example, when the total number of prediction modes is M, it is possible that geometry information of nearest three-dimensional point p0 is assigned to prediction mode 0, . . . , and geometry information of three-dimensional point p2 is assigned to prediction mode M−1, and the prediction mode used for prediction is added for each three-dimensional point to the bitstream.
Note that prediction mode count M may be added to the bitstream. The value of prediction mode count M need not be added to the bitstream, and may be defined by profile, level or the like of a standard. The value of prediction mode count M calculated from number N of three-dimensional points used for prediction may also be used. For example, prediction mode count M may be calculated according to M=N+1.
The table shown in
In the second example, a predicted value of geometry information of point c is calculated based on geometry information of at least any one of point p0, point p1, and point p2. The prediction mode is added for each three-dimensional point to be encoded. The predicted value is calculated according to the prediction mode added.
For example, the three-dimensional data encoding device may select prediction mode 1 and encode geometry information (x, y, z) of a three-dimensional point to be encoded based on predicted values (p0x, p0y, p0z), respectively. In that case, “1”, which is a prediction mode value indicating selected prediction mode 1, is added to the bitstream.
As described, when selecting a prediction mode for calculating a predicted value of each of three elements included in the geometry information of the three-dimensional point to be encoded, the three-dimensional data encoding device may select a prediction mode common to the three elements.
The table shown in
In the third example, a predicted value of geometry information of point c is calculated based on geometry information of at least any one of point p0 and point p1. The prediction mode is added for each three-dimensional point to be encoded. The predicted value is calculated according to the prediction mode added.
Note that, when the number of peripheral three-dimensional points of point c (neighboring point count) is less than 3, as in the third example, any prediction mode to which no predicted value has been assigned may be set as “not available”. When a prediction mode set as “not available” occurs, another prediction method may be assigned to the prediction mode. For example, geometry information of point p2 may be assigned to the prediction mode as a predicted value. Alternatively, a predicted value assigned to another prediction mode may be assigned to the prediction mode. For example, geometry information of point p1, which is assigned to prediction mode 4, may be assigned to prediction mode 3, which is set as “not available”. In that case, geometry information of point p2 may be re-assigned to prediction mode 4. In this way, when a prediction mode set as “not available” occurs, the encoding efficiency can be improved by re-assigning a prediction method.
Note that when geometry information has three elements, such as in the case of the three-dimensional Cartesian coordinate system or the polar coordinate system, predicted values may be calculated in different modes for the three elements. For example, when the three elements are represented by x, y, and z of coordinates (x, y, z) in the three-dimensional Cartesian coordinate system, the predicted value of each of the three elements may be calculated in a prediction mode selected for the element. For example, prediction mode values of prediction mode pred_mode_x for calculating a predicted value of element x (that is, x coordinate), prediction mode pred_mode_y for calculating a predicted value of element y (that is, y coordinate), and prediction mode pred_mode_z for calculating a predicted value of element z (that is, z coordinate) may be selected. In that case, as the prediction mode values indicating the prediction modes of the elements, the values in the tables in
As described, when selecting a prediction mode for calculating a predicted value of each of three elements included in the geometry information of the three-dimensional point to be encoded, the three-dimensional data encoding device may select a different prediction mode for each of three elements.
Predicted values of two or more of a plurality of elements of geometry information may be calculated in a common prediction mode. For example, when the three elements are represented by x, y, and z of coordinates (x, y, z) in the three-dimensional Cartesian coordinate system, a prediction mode value of prediction mode pred_mode_x for calculating a predicted value of element x and prediction mode pred_mode_yz for calculating predicted values of elements y and z may be selected. In that case, as the prediction mode values indicating the prediction modes of the elements, the values in the tables in
As described, when selecting a prediction mode for calculating a predicted value of each of three elements included in the geometry information of the three-dimensional point to be encoded, the three-dimensional data encoding device may select a common prediction mode for two of the three elements and select a different prediction mode than the prediction mode for the two elements for the remaining one element.
As shown in
Note that when prediction mode pred_mode_x represented by a prediction mode value of “1” in the table of
As shown in
Note that when prediction mode pred_mode_y represented by a prediction mode value of “1” in the table of
As shown in
Note that when prediction mode pred_mode_z represented by a prediction mode value of “1” in the table of
As shown in
Note that when prediction mode pred_mode_yz represented by a prediction mode value of “1” in the table of
In the tables of the fourth to seventh examples, the correspondence between the prediction modes and the prediction methods for calculating predicted values are the same as the correspondence in the table of the second example described above.
The prediction mode in the encoding may be selected by RD optimization. For example, cost cost(P) in the case where certain prediction mode P is selected may be calculated, and prediction mode P for which cost(P) is at the minimum may be selected. Cost cost(P) may be calculated from prediction residual residual_value(P) in the case where the predicted value in prediction mode P is used, number of bits bit(P) required for encoding prediction mode P, and a X value, which is an adjustment parameter, according to equation D1.
cost(P)=abs(residual_value(P))+λ×bit(P) (Equation D1)
abs(x) denotes an absolute value of x.
Instead of abs(x), the square of x may be used.
By using above equation D1, a prediction mode can be selected by considering the balance between the magnitude of the prediction residual and the number of bits required for encoding the prediction mode. Note that the adjustment parameter X may be set to be different values according to the value of a quantization scale. For example, it is possible that when the quantization scale is small (when the bit rate is high), the X value is decreased so that a prediction mode in which prediction residual residual_value(P) is small is selected and the prediction precision is improved as far as possible, while when the quantization scale is large (when the bit rate is low), the X value is increased so that an appropriate prediction mode is selected by considering number of bits bit(P) required for encoding prediction mode P.
Note that the case where the quantization scale is small means a case where the quantization scale is smaller than a first quantization scale, for example. The case where the quantization scale is large means a case where the quantization scale is larger than a second quantization scale that is larger than or equal to the first quantization scale. The X value may be set to be smaller as the quantization scale is smaller.
Prediction residual residual_value(P) is calculated by subtracting the predicted value in prediction mode P from the geometry information of the three-dimensional point to be encoded. Note that instead of reflecting prediction residual residual_value(P) in the cost calculation, prediction residual residual_value(P) may be quantized, inverse-quantized, and added to the predicted value to determine a decoded value, and the difference (encoding error) between the original geometry information of the three-dimensional point and the decoded value obtained using prediction mode P may be reflected in the cost value. This allows a prediction mode with a small encoding error to be selected.
When a prediction mode is binarized and then encoded, for example, number of bits bit(P) required for encoding prediction mode P may be the bit count after the binarization.
For example, when prediction mode count M=5, as shown in
As described, the three-dimensional data encoding device may encode the prediction mode value representing selected prediction mode with the prediction mode count. Specifically, the three-dimensional data encoding device may encode a prediction mode value with a truncated unary code whose maximum value is the prediction mode count.
When the maximum value of the prediction mode count is not determined, as shown in
As the value of number of bits bit(P) required for encoding the prediction mode value representing prediction mode P, binary data of the prediction mode value representing prediction mode P may be arithmetically encoded, and the code amount of the arithmetically encoded binary data may be used. In that case, the cost can be calculated with more precise required bit count bit(P), so that a prediction mode can be more properly selected.
Note that
Note that
Note that
The prediction mode value representing the prediction mode (pred_mode) may be binarized and then arithmetically encoded before being added to the bitstream. The prediction mode value may be binarized with a truncated unary code using the value of prediction mode count M as described above, for example. In that case, the maximum bit count after the binarization of the prediction mode value is M−1.
The binary data resulting from the binarization may be arithmetically encoded using an encoding table. In that case, the encoding efficiency may be improved by encoding the binary data using a different encoding table for each bit. Furthermore, in order to reduce the number of encoding tables, the leading one bit of the binary data may be encoded using encoding table A for the leading bit, and each bit of the remaining bits of the binary data may be encoded using encoding table B for the remaining bits. For example, when encoding binary data “1110” whose prediction mode value is “3” shown in
Note that
In this way, the encoding efficiency can be improved by using a different encoding table depending on the position of the bit in the binary data, while reducing the number of encoding tables. Note that, when encoding the remaining bits, each bit may be arithmetically encoded using a different encoding table, or each bit may be decoded using a different encoding table based on the result of the arithmetic encoding.
When a prediction mode value is binarized and encoded with a truncated unary code using prediction mode count M, prediction mode count M used for the truncated unary code may be added to the header or the like of the bitstream, in order that the prediction mode can be identified from the binary data decoded on the decoder side. The header of the bitstream is a sequence parameter set (SPS), a geometry parameter set (GPS), or a slice header, for example. Maximum possible value MaxM of the prediction mode count may be defined by a standard or the like, and the value of MaxM−M (M<=MaxM) may be added to the header. Prediction mode count M need not be added to the stream, and may be defined by profile or level of a standard or the like.
Note that the prediction mode value binarized with a truncated unary code can be arithmetically encoded by using different encoding tables for the leading bit part and the remaining part as described above. Note that the probabilities of occurrence of 0 and 1 in each encoding table may be updated according to the value of the binary data that has actually occurred. The probabilities of occurrence of 0 and 1 in one of the encoding tables may be fixed. By reducing the number of updates of the probabilities of occurrence in this way, the processing amount can be reduced. For example, it is possible that the probabilities of occurrence for the leading bit part is updated, while the probabilities of occurrence for the remaining bit part is fixed.
As shown in
The binary data of the truncated unary code is then arithmetically encoded (S9702). In this way, the binary data is included in the bitstream as a prediction mode.
As shown in
A prediction mode value is then calculated from the binary data of the truncated unary code (S9712).
Although an example where a prediction mode value representing a prediction mode (pred_mode) is binarized with a truncated unary code using the value of prediction mode count M has been shown as a method of binarizing a prediction mode value representing a prediction mode (pred_mode), the present invention is not necessarily limited to this. For example, a prediction mode value may be binarized with a truncated unary code using number L (L<=M) of prediction modes to which a predicted value is assigned. For example, when prediction mode count M=5, if there is one peripheral three-dimensional point available for prediction of a certain three-dimensional point to be encoded, two prediction modes may be “available”, and the remaining three prediction modes may be “not available” as shown in
In that case, as shown in
The binary data resulting from the binarization may be arithmetically encoded using an encoding table. In that case, the encoding efficiency may be improved by encoding the binary data using a different encoding table for each bit. Furthermore, in order to reduce the number of encoding tables, the leading one bit of the binary data may be encoded using encoding table A for the leading bit, and each bit of the remaining bits of the binary data may be encoded using encoding table B for the remaining bits. For example, when encoding binary data “1” whose prediction mode value is “1” shown in
Note that
In this way, the encoding efficiency can be improved by using a different encoding table depending on the position of the bit in the binary data, while reducing the number of encoding tables. Note that, when encoding the remaining bits, each bit may be arithmetically encoded using a different encoding table, or each bit may be decoded using a different encoding table based on the result of the arithmetic encoding.
When a prediction mode value is binarized and encoded with a truncated unary code using number L of prediction modes to which a predicted value is assigned, a prediction mode may be decoded on the decoder side by assigning a predicted value to a prediction mode in the same manner as in the encoding to calculate number L and using calculated number L to decode the prediction mode, in order that the prediction mode can be identified from the binary data decoded on the decoder side.
Note that the prediction mode value binarized with a truncated unary code can be arithmetically encoded by using different encoding tables for the leading bit part and the remaining part as described above. Note that the probabilities of occurrence of 0 and 1 in each encoding table may be updated according to the value of the binary data that has actually occurred. The probabilities of occurrence of 0 and 1 in one of the encoding tables may be fixed. By reducing the number of updates of the probabilities of occurrence in this way, the processing amount can be reduced. For example, it is possible that the probabilities of occurrence for the leading bit part is updated, while the probabilities of occurrence for the remaining bit part is fixed.
As shown in
The prediction mode value is then binarized with a truncated unary code using number L (S9722).
The binary data of the truncated unary code is then arithmetically encoded (S9723).
As shown in
The bitstream is then arithmetically decoded using number L to generate binary data of a truncated unary code (S9732).
A prediction mode value is then calculated from the binary data of the truncated unary code (S9733).
The prediction mode value need not be added to every geometry information. For example, it is possible that when a certain condition is satisfied, the prediction mode is fixed, and no prediction mode value is added to the bitstream, while when the certain condition is not satisfied, a prediction mode is selected, and a prediction mode value is added to the bitstream. For example, it is possible that when condition A is satisfied, the prediction mode value is fixed at “2”, and the predicted value is calculated by linear prediction based on peripheral three-dimensional points, and when condition A is not satisfied, one prediction mode is selected from among a plurality of prediction modes, and the prediction mode value representing the selected prediction mode is added to the bitstream.
Certain condition A may be that distance d0 between point p1 and point p0 and distance d1 between point p2 and point p1 are calculated, and absolute difference value distdiff=|d0−d1| is less than threshold Thfix. When the absolute difference value is less than threshold Thfix, the three-dimensional data encoding device determines that the difference between the predicted value of the linear prediction and the geometry information of the point to be processed is small, fixes the prediction mode value at “2”, and encodes no prediction mode value. In this way, the three-dimensional data encoding device can generate an appropriate predicted value while reducing the code amount required for encoding the prediction mode. Note that when the absolute difference value is greater than or equal to threshold Thfix, the three-dimensional data encoding device may select a prediction mode and encode the prediction mode value representing the selected prediction mode.
Note that threshold Thfix may be added to the header or the like of the bitstream, and the encoder may be able to encode by changing the value of threshold Thfix. For example, in encoding at high bit rate, the encoder may set the value of threshold Thfix to be smaller than in encoding at low bit rate and add the value of threshold Thfix to the header, thereby increasing the cases where encoding is performed by selecting a prediction mode, so that the prediction residual is minimized. In encoding at low bit rate, the encoder sets the value of threshold Thfix to be greater than in encoding at high bit rate, adds the value of threshold Thfix to the header, and perform the encoding with a fixed prediction mode. In this way, by increasing the cases where encoding is performed with a fixed prediction mode in encoding at low bit rate, the encoding efficiency can be improved while reducing the bit amount involved with the encoding of the prediction mode. Threshold Thfix need not be added to the bitstream, and may be defined by profile or level of a standard.
N peripheral three-dimensional points of the three-dimensional point to be encoded that are used for prediction are N three-dimensional points encoded and decoded the distance from the three-dimensional point to be encoded is less than threshold THd. The maximum value of N may be added to the bitstream as NumNeighborPoint. The value of N need not always agree with the value of NumNeighborPoint, such as when the number of peripheral three-dimensional points encoded and decoded is less than the value of NumNeighborPoint.
Although an example has been shown where the prediction mode value is fixed at “2” when absolute difference value distdiff used for prediction is less than threshold Thfix[i], the present invention is not necessarily limited to this, and the prediction mode value may be fixed at any of “0” to “M−1”. The prediction mode value fixed may be added to the bitstream.
As shown in
The three-dimensional data encoding device then determines whether absolute difference value distdiff is less than threshold Thfix or not (S9742). Note that threshold Thfix may be encoded and added to the header or the like of the stream.
When absolute difference value distdiff is less than threshold Thfix (if Yes in S9742), the three-dimensional data encoding device determines the prediction mode value to be “2” (S9743).
On the other hand, when absolute difference value distdiff is greater than or equal to threshold Thfix (if No in S9742), the three-dimensional data encoding device sets one prediction mode from among a plurality of prediction modes (S9744).
The three-dimensional data encoding device then arithmetically encodes the prediction mode value representing the set prediction mode (S9745). Specifically, the three-dimensional data encoding device arithmetically encodes the prediction mode value by performing steps S9701 and S9702 described above with reference to
The three-dimensional data encoding device calculates a predicted value in the prediction mode determined in step S9743 or the prediction mode set in step S9745, and outputs the calculated predicted value (S9746). When using the prediction mode value determined in step S9743, the three-dimensional data encoding device calculates the predicted value in the prediction mode represented by the prediction mode value of “2” by linear prediction based on the geometry information of N peripheral three-dimensional points.
As shown in
The three-dimensional data decoding device then determines whether absolute difference value distdiff is less than threshold Thfix or not (S9752). Note that threshold Thfix may be set by decoding the header or the like of the stream.
When absolute difference value distdiff is less than threshold Thfix (if Yes in S9752), the three-dimensional data decoding device determines the prediction mode value to be “2” (S9753).
On the other hand, when absolute difference value distdiff is greater than or equal to threshold Thfix (if No in S9752), the three-dimensional data decoding device decodes the prediction mode value from the bitstream (S9754).
The three-dimensional data decoding device calculates a predicted value in the prediction mode represented by the prediction mode value determined in step S9753 or the prediction mode value decoded in step S9754, and outputs the calculated predicted value (S9755). When using the prediction mode value determined in step S9753, the three-dimensional data decoding device calculates the predicted value in the prediction mode represented by the prediction mode value of “2” by linear prediction based on the geometry information of N peripheral three-dimensional points.
NumNeighborPoint denotes an upper limit of the number of peripheral points used for generation of a predicted value of geometry information of a three-dimensional point. When number M of peripheral points is less than NumNeighborPoint (M<NumNeighborPoint), a predicted value may be calculated using the M peripheral points in the predicted value calculation process.
NumPredMode denotes total number M of prediction modes used for prediction of geometry information. Note that maximum possible value MaxM of the prediction mode count may be defined by a standard or the like. The three-dimensional data encoding device may add the value of (MaxM−M) (0<M<=MaxM) to the header as NumPredMode, and binarize and encode (MaxM−1) with a truncated unary code. Prediction mode count NumPredMode need not be added to the bitstream, and the value of NumPredMode may be defined by profile or level of a standard or the like. The prediction mode count may be defined as NumNeighborPoint+NumPredMode.
Thfix is a threshold for determining whether to fix the prediction mode or not. Distance d0 between point p1 and point p0 and distance d1 between point p2 and point p1 used for prediction are calculated, and the prediction mode is fixed to be α if absolute difference value distdiff=|d0−d1| is less than threshold Thfix[i]. α is a prediction mode for calculating a predicted value based on a linear prediction, and is “2” in the embodiment described here. Note that Thfix need not be added to the bitstream, and the value may be defined by profile or level of a standard or the like.
QP denotes a quantization parameter used for quantizing geometry information. The three-dimensional data encoding device may calculate a quantization step from the quantization parameter, and quantize geometry information using the calculated quantization step.
unique_point_per_leaf is information that indicates whether a duplicated point (a point having the same geometry information as another point) is included in the bitstream or not. When unique_point_per_leaf=1, it shows that there are no duplicated points in the bitstream. When unique_point_per_leaf=0, it shows that there is one or more duplicated points in the bitstream.
Note that although the determination of whether to fix the prediction mode or not has been described as being performed using the absolute difference value between distance d0 and distance d1 in this embodiment, the present invention is not limited to this, and the determination may be made in any manner. For example, the determination may be performed by calculating distance d0 between point p1 and point p0. Specifically, it may be determined that point p1 cannot be used for prediction and the prediction mode value may be fixed at “1” (a predicted value of p0) when distance d0 is greater than a threshold, and a prediction mode may be set otherwise. In this way, the encoding efficiency can be improved while reducing the overhead.
NumNeighborPoint, NumPredMode, Thfix, and unique_point_per_leaf described above may be entropy-encoded and added to the header. For example, these values may be binarized and arithmetically encoded. These values may be encoded with a fixed length, in order to reduce the processing amount.
NumOfPoint denotes the total number of three-dimensional points included in a bitstream.
child_count denotes the number of child nodes of an i-th three-dimensional point (node[i]).
pred_mode denotes a prediction mode for encoding or decoding geometry information of the i-th three-dimensional point. pred_mode assumes a value from 0 to M−1 (M denotes the total number of prediction modes). When pred_mode is not in the bitstream (when the condition that distdiff>=Thfix[i]&& NumPredMode>1 is not satisfied), pred_mode may be estimated to be fixed value α. α is a prediction mode for calculating a predicted value based on a linear prediction, and is “2” in the embodiment described here. Note that a is not limited to “2”, and any value of 0 to M−1 may be set as an estimated value. An estimated value in the case where pred_mode is not in the bitstream may be additionally added to the header or the like. pred_mode may be binarized and arithmetically encoded with a truncated unary code using the number of prediction modes to which a predicted value is assigned.
Note that when NumPredMode=1, that is, when the prediction mode count is 1, the three-dimensional data encoding device need not encode a prediction mode value representing a prediction mode and may generate a bitstream that includes no prediction mode value. When the three-dimensional data decoding device obtains a bitstream that includes no prediction mode value, the three-dimensional data decoding device may calculate a predicted value of a particular prediction mode in the predicted value calculation. The particular prediction mode is a previously determined prediction mode.
residual_value[j] denotes encoded data of a prediction residual between geometry information and a predicted value thereof, residual_value[0] may represent element x of the geometry information, residual_value[1] may represent element y of the geometry information, and residual_value[2] may represent element z of the geometry information.
As shown in
In Embodiment 5, unlike Embodiment 4, the depth of each node may be calculated when generating a prediction tree in the prediction tree generation method.
For example, the root of the prediction tree may be set at a depth=0, the child nodes of the root are set at a depth=1, and the child nodes of the child nodes may be set at a depth=2. Here, a possible value of pred_mode may be changed according to the value of the depth. That is, in setting the prediction mode, the three-dimensional data encoding device may set a prediction mode for predicting each three-dimensional point based on the depth of the three-dimensional point in the hierarchical structure. For example, pred_mode may be limited to a value smaller than or equal to the value of the depth. That is, the prediction mode value may be set to be a value smaller than or equal to the value of the depth of each three-dimensional point in the hierarchical structure.
When pred_mode is binarized and arithmetically encoded with a truncated unary code according to the prediction mode count, pred_mode may be binarized with a truncated unary code using the prediction mode count=min (depth, prediction mode count M). In this way, the bit length of the binary data of pred_mode in the case where depth<M can be reduced, and the encoding efficiency can be improved.
An example has been shown where, in the prediction tree generation method, when three-dimensional point A is added to the prediction tree, nearest point B thereof is searched for, and three-dimensional point A is added to the child nodes of three-dimensional point B. Here, as the method of searching for the nearest point, any method can be used. For example, the kd-tree method can be used to search for the nearest point. In that case, the nearest point can be efficiently searched for, and the encoding efficiency can be improved.
Alternatively, the nearest neighbor method may be used to search for the nearest point. In that case, the nearest point can be searched for while reducing the processing load, and the processing amount and the encoding efficiency can be balanced. When searching for the nearest point in the nearest neighbor method, a search range may be set. In that case, the processing amount can be reduced.
The three-dimensional data encoding device may quantize and encode prediction residual residual_value. For example, the three-dimensional data encoding device may add quantization parameter QP to the header of a slice or the like, quantize residual_value using Qstep calculated from QP, and binarize and arithmetically encode the quantized value. In that case, the three-dimensional data decoding device may decode the geometry information by applying an inverse quantization to the quantized value of residual_value using the same Qstep and adding the result to the predicted value. In that case, the decoded geometry information may be added to the prediction tree. In this way, even when the quantization is applied, the three-dimensional data encoding device or the three-dimensional data decoding device can calculate the predicted value from the decoded geometry information, so that the three-dimensional data encoding device can generate a bitstream that can be properly decoded by the three-dimensional data decoding device. Note that although an example has been shown where the nearest point of a three-dimensional point is searched for and added to the prediction tree when generating the prediction tree, the present invention is not necessarily limited to this, and the prediction tree can be generated in any method or in any order. For example, when the input three-dimensional points are data obtained by lidar, the prediction tree may be generated by adding the three-dimensional points in the order of scanning of lidar. In that case, the prediction precision can be improved, and the encoding efficiency can be improved.
residual_is_zero is information that indicates whether residual_value is 0 or not. For example, when residual_is_zero=1, it shows that residual_value is 0, and when residual_is_zero=0, it shows that residual_value is not 0. Note that when pred_mode=0 (without prediction, and the predicted value being 0), the possibility that residual_value is 0 is low, so that residual_is_zero need not be encoded and added to the bitstream. When pred_mode=0, the three-dimensional data decoding device need not decode residual_is_zero from the bitstream, and may estimate that residual_is_zero=0.
residual_sign is sign information (sign bit) that indicates whether residual_value is positive or negative. For example, when residual_sign=1, it shows that residual_value is negative, and when residual_sign=0, it shows that residual_value is positive.
Note that when pred_mode=0, the predicted value is 0, and therefore, residual_value is always positive or 0. Therefore, the three-dimensional data encoding device need not encode residual_sign and add residual_sign to the bitstream. That is, when a prediction mode in which the predicted value is calculated to be 0 is set, the three-dimensional data encoding device need not encode the sign information that indicates whether the prediction residual is positive or negative and may generate a bitstream including no sign information. When pred_mode=0, the three-dimensional data decoding device need not decode residual_sign from the bitstream, and may estimate that residual_sign=0. That is, when the three-dimensional data decoding device obtains a bitstream including no sign information that indicates whether the prediction residual is positive or negative, the three-dimensional data decoding device can regard the prediction residual as 0 or a positive value.
residual_bitcount_minus1 indicates a number obtained by subtracting 1 from the bit count of residual_bit. That is, residual_bitcount is equal to a number obtained by adding 1 to residual_bitcount_minus1.
residual_bit[k] denotes k-th bit information in the case where the absolute value of residual_value is binarized with a fixed length in accordance with the value of residual_bitcount.
Note that when condition A is defined as “unique_point_per_leaf=1 (there is no duplicated point) when geometry information of any one of point p0, point p1, and point p2 is directly used as a predicted value as in prediction mode 1”, all of residual_is_zero[0] for element x, residual_is_zero[1] for element y, and residual_is_zero[2] for element z are not 0 at the same time, and therefore, residual_is_zero for any one element need not be added to the bitstream.
For example, when condition A is true, and residual_is_zero[0] and residual_is_zero[1] are 0, the three-dimensional data encoding device need not add residual_is_zero[2] to the bitstream. In that case, the three-dimensional data decoding device may estimate that residual_is_zero[2], which has not been added to the bitstream, is 1.
(Modifications)
Although an example where a prediction tree is generated using geometry information (x, y, z) of three-dimensional points, and the geometry information is encoded and decoded has been shown in this embodiment, the present invention is not necessarily limited to this. For example, the predictive encoding using the prediction tree may be applied to the encoding of attribute information (such as color or reflectance) of three-dimensional points. The prediction tree generated in the encoding of geometry information may be used in the encoding of attribute information. In that case, a prediction tree does not have to be generated in the encoding of attribute information, and the processing amount can be reduced.
As shown in
Here, child_count may be shared by geometry information and attribute information. In this way, the overhead can be reduced, and the encoding efficiency can be improved.
Note that child_count may be independently added for each of geometry information and attribute information. In this way, the three-dimensional data decoding device can independently decode geometry information and attribute information. For example, the three-dimensional data decoding device can decode attribute information alone.
Note that the three-dimensional data encoding device may generate a different prediction tree for each of geometry information and attribute information. In this way, the three-dimensional data encoding device can generate an appropriate prediction tree for each of geometry information and attribute information and can improve the encoding efficiency. In that case, the three-dimensional data encoding device may add, to the bitstream, information (such as child_count) required by the three-dimensional data decoding device to reconstruct the prediction tree for each of the geometry information and the attribute information. Note that the three-dimensional data encoding device may add, to the header or the like, identification information that indicates whether or not the prediction tree is to be shared by the geometry information and the attribute information. In this way, whether the prediction tree is to be shared by the geometry information and the attribute information can be adaptively switched, and the balance between the encoding efficiency and the processing amount can be controlled.
The three-dimensional data encoding device generates a prediction tree using geometry information of a plurality of three-dimensional points (S9761).
The three-dimensional data encoding device then encodes node information included in each node in the prediction tree and a prediction residual of geometry information (S9762). Specifically, the three-dimensional data encoding device calculates a predicted value for predicting geometry information of each node, calculates a prediction residual, which is the difference between the calculated predicted value and the geometry information of the node, and encodes the node information and the prediction residual of the geometry information.
The three-dimensional data encoding device then encodes the node information included in each node in the prediction tree and a prediction residual of attribute information (S9763). Specifically, the three-dimensional data encoding device calculates a predicted value for predicting attribute information of each node, calculates a prediction residual, which is the difference between the calculated predicted value and the attribute information of the node, and encodes the node information and the prediction residual of the attribute information.
The three-dimensional data decoding device decodes node information to reconstruct the prediction tree (S9771).
The three-dimensional data decoding device then decodes geometry information of a node (S9772). Specifically, the three-dimensional data decoding device decodes geometry information of each node by calculating a predicted value for the geometry information and summing the calculated predicted value and the obtained prediction residual.
The three-dimensional data decoding device then decodes attribute information of a node (S9773). Specifically, the three-dimensional data decoding device decodes attribute information of each node by calculating a predicted value for the attribute information and summing the calculated predicted value and the obtained prediction residual.
The three-dimensional data decoding device then determines whether decoding of all nodes is completed or not (S9774). When decoding of all nodes is completed, the three-dimensional data decoding device ends the three-dimensional data decoding method. When decoding of all nodes is not completed, the three-dimensional data decoding device performs steps S9771 to S9773 for the node(s) yet to be processed.
NumNeighborPoint denotes an upper limit of the number of peripheral points used for generation of a predicted value of attribute information of a three-dimensional point. When number M of peripheral points is less than NumNeighborPoint (M<NumNeighborPoint), a predicted value may be calculated using the M peripheral points in the predicted value calculation process.
NumPredMode denotes total number M of prediction modes used for prediction of attribute information. Note that maximum possible value MaxM of the prediction mode count may be defined by a standard or the like. The three-dimensional data encoding device may add the value of (MaxM−M) (0<M<=MaxM) to the header as NumPredMode, and binarize and encode (MaxM−1) with a truncated unary code. Prediction mode count NumPredMode need not be added to the bitstream, and the value of NumPredMode may be defined by profile or level of a standard or the like. The prediction mode count may be defined as NumNeighborPoint+NumPredMode.
Thfix is a threshold for determining whether to fix the prediction mode or not. Distance d0 between point p1 and point p0 and distance d1 between point p2 and point p1 used for prediction are calculated, and the prediction mode is fixed to be α if absolute difference value distdiff=|d0−d1| is less than threshold Thfix[i]. α is a prediction mode for calculating a predicted value based on a linear prediction, and is “2” in the embodiment described here. Note that Thfix need not be added to the bitstream, and the value may be defined by profile or level of a standard or the like.
QP denotes a quantization parameter used for quantizing attribute information. The three-dimensional data encoding device may calculate a quantization step from the quantization parameter, and quantize attribute information using the calculated quantization step.
unique_point_per_leaf is information that indicates whether a duplicated point (a point having the same geometry information as another point) is included in the bitstream or not. When unique_point_per_leaf=1, it shows that there are no duplicated points in the bitstream. When unique_point_per_leaf=0, it shows that there is one or more duplicated points in the bitstream.
Note that although the determination of whether to fix the prediction mode or not has been described as being performed using the absolute difference value between distance d0 and distance d1 in this embodiment, the present invention is not limited to this, and the determination may be made in any manner. For example, the determination may be performed by calculating distance d0 between point p1 and point p0. Specifically, it may be determined that point p1 cannot be used for prediction and the prediction mode value may be fixed at “1” (a predicted value of p0) when distance d0 is greater than a threshold, and a prediction mode may be set otherwise. In this way, the encoding efficiency can be improved while reducing the overhead.
It is possible that NumNeighborPoint, NumPredMode, Thfix, or unique_point_per_leaf described above is shared with the geometry information and is not added to attribute_header. In this way, the overhead can be reduced.
NumNeighborPoint, NumPredMode, Thfix, and unique_point_per_leaf described above may be entropy-encoded and added to the header. For example, these values may be binarized and arithmetically encoded. These values may be encoded with a fixed length, in order to reduce the processing amount.
NumOfPoint denotes the total number of three-dimensional points included in a bitstream. NumOfPoint may be the same as NumOfPoint of the geometry information.
child_count denotes the number of child nodes of an i-th three-dimensional point (node[i]). Note that this child_count may be the same as child_count of the geometry information. When this child_count is the same as child_count of the geometry information, this child_count need not be added to attribute_data. In this way, the overhead can be reduced.
pred_mode denotes a prediction mode for encoding or decoding attribute information of the i-th three-dimensional point. pred_mode assumes a value from 0 to M−1 (M denotes the total number of prediction modes). When pred_mode is not in the bitstream (when the conditions that distdiff>=Thfix[i]&& NumPredMode>1 are not satisfied), pred_mode may be estimated to be fixed value α. α is a prediction mode for calculating a predicted value based on a linear prediction, and is “2” in the embodiment described here. Note that a is not limited to “2”, and any value of 0 to M−1 may be set as an estimated value. An estimated value in the case where pred_mode is not in the bitstream may be additionally added to the header or the like. pred_mode may be binarized and arithmetically encoded with a truncated unary code using the number of prediction modes to which a predicted value is assigned.
dimension is information that indicates the dimension of the attribute information. dimension may be added to the header, such as SPS. For example, dimension may be set at “3” when the attribute information is color, and may be set at “1” when the attribute information is reflectance.
residual_is_zero is information that indicates whether residual value is 0 or not. For example, when residual_is_zero=1, it shows that residual_value is 0, and when residual_is_zero=0, it shows that residual_value is not 0. Note that when pred_mode=0 (without prediction, and the predicted value being 0), the possibility that residual_value is 0 is low, so that residual_is_zero need not be encoded and added to the bitstream. When pred_mode=0, the three-dimensional data decoding device need not decode residual_is_zero from the bitstream, and may estimate that residual_is_zero=0.
residual_sign is sign information (sign bit) that indicates whether residual_value is positive or negative. For example, when residual_sign=1, it shows that residual_value is negative, and when residual_sign=0, it shows that residual_value is positive.
Note that when pred_mode=0 (without prediction, the predicted value being 0), residual_value is always positive, and therefore, the three-dimensional data encoding device need not encode residual_sign and add residual_sign to the bitstream. That is, when the prediction residual is positive, the three-dimensional data encoding device need not encode the sign information that indicates whether the prediction residual is positive or negative and may generate a bitstream including no sign information, and when the prediction residual is negative, the three-dimensional data encoding device may generate a bitstream including the sign information. When pred_mode=0, the three-dimensional data decoding device need not decode residual_sign from the bitstream, and may estimate that residual_sign=0. That is, the three-dimensional data decoding device can regard the prediction residual as a positive value when the three-dimensional data decoding device obtains a bitstream including no sign information that indicates whether the prediction residual is positive or negative, and can regard the prediction residual as a negative value when the three-dimensional data decoding device obtains a bitstream including the sign information.
residual_bitcount_minus1 indicates a number obtained by subtracting 1 from the bit count of residual_bit. That is, residual_bitcount is equal to a number obtained by adding 1 to residual_bitcount_minus1.
residual_bit[k] denotes k-th bit information in the case where the absolute value of residual_value is binarized with a fixed length in accordance with the value of residual_bitcount.
Note that when condition A is defined as “unique_point_per_leaf=1 (there is no duplicated point) when attribute information of any one of point p0, point p1, and point p2 is directly used as a predicted value as in prediction mode 1”, all of residual_is_zero[0] for element x, residual_is_zero[1] for element y, and residual_is_zero[2] for element z are not 0 at the same time, and therefore, residual_is_zero for any one element need not be added to the bitstream.
For example, when condition A is true, and residual_is_zero[0] and residual_is_zero[1] are 0, the three-dimensional data encoding device need not add residual_is_zero[2] to the bitstream. In that case, the three-dimensional data decoding device may estimate that residual_is_zero[2], which has not been added to the bitstream, is 1.
As shown in
As described above, the three-dimensional data encoding device according to one aspect of the present embodiment performs the process shown by
According to this, geometry information can be encoded using a predicted value in one prediction mode among two or more prediction modes that is set based on the depth in the hierarchical structure, so that the encoding efficiency of the geometry information can be improved.
For example, in the setting (S9784), the three-dimensional data encoding device sets a prediction mode value that is less than or equal to a value of the depth of the first three-dimensional point in the hierarchical structure. The prediction mode value indicates the one prediction mode.
For example, the first bitstream further includes a prediction mode count indicating a total number of the two or more prediction modes.
For example, in the generating (S9784), the three-dimensional data encoding device encodes a prediction mode value indicating the one prediction mode set using the prediction mode count. The first bitstream includes the prediction mode value encoded as the one prediction mode set.
For example, in the generating (S9784), the three-dimensional data encoding device encodes the prediction mode value using a truncated unary code in which the prediction mode count is set as a maximum value. Therefore, the code amount of the prediction mode value can be reduced.
For example, each of the item of first geometry information and the one or more items of second geometry information includes three elements. In the setting (S9781), the three-dimensional data encoding device sets, for the three elements in common, a prediction mode for calculating a predicted value of each of the three elements included in the item of first geometry information. Therefore, the code amount of the prediction mode value can be reduced.
For example, each of the item of first geometry information and the one or more items of second geometry information includes three elements. In the setting (S9781), the three-dimensional data encoding device sets, for the three elements independently of each other, a prediction mode for calculating a predicted value of each of the three elements included in the item of first geometry information. Therefore, the three-dimensional data decoding device can independently decode each element.
For example, each of the item of first geometry information and the one or more items of second geometry information includes three elements. In the setting (S9781), the three-dimensional data encoding device sets, for two elements among the three elements in common, a prediction mode for calculating a predicted value of each of the three elements included in the item of first geometry information, and sets the prediction mode for a remaining one element independently of the two elements. Therefore, the code amount of the prediction mode value can be reduced for the two elements. Therefore, the three-dimensional data decoding device can independently decode the remaining one element.
For example, in the generating (S9784), when the prediction mode count is 1, the three-dimensional data encoding device does not encode the prediction mode value, and generates a second bitstream not including the prediction mode value indicating the one prediction mode. Therefore, the code amount of the bitstream can be reduced.
For example, in the generating (S9784), when a prediction mode in which the predicted value calculated in the calculating is 0 is set, the three-dimensional data encoding device does not encode an item of positive and negative information, and generates a third bitstream not including the item of positive and negative information, the item of positive and negative information indicating whether the prediction residual is positive or negative. Therefore, the code amount of the bitstream can be reduced.
For example, the three-dimensional data encoding device includes a processor and memory, and the processor performs the above-described process using the memory.
The three-dimensional data decoding device according to one aspect of the present embodiment performs the process shown by
According to this, geometry information can be encoded using a predicted value in one prediction mode among two or more prediction modes that is set based on the depth in the hierarchical structure, so that the encoding efficiency of the geometry information can be improved.
For example, the prediction mode value indicating the encoded prediction mode included in the first bitstream is less than or equal to a value of the depth of the first three-dimensional point in the hierarchical structure.
For example, the first bitstream includes a prediction mode count indicating a total number of two or more prediction modes.
For example, in the decoding (S9792), the three-dimensional data decoding device decodes the prediction mode value using a truncated unary code in which the total number of the two or more prediction modes is set as a maximum value.
For example, each of the item of first geometry information and one or more items of second geometry information of one or more second three-dimensional points includes three elements, the one or more second three-dimensional points surrounding the first three-dimensional point. A prediction mode for calculating a predicted value of each of the three elements included in the item of first geometry information is set for the three elements in common.
For example, each of the item of first geometry information and one or more items of second geometry information of one or more second three-dimensional points includes three elements, the one or more second three-dimensional points surrounding the first three-dimensional point. A prediction mode for calculating a predicted value of each of the three elements included in the item of first geometry information is set for the three elements independently of each other.
For example, each of the item of first geometry information and one or more items of second geometry information of one or more second three-dimensional points includes three elements, the one or more second three-dimensional points surrounding the first three-dimensional point. A prediction mode for calculating a predicted value of each of the three elements included in the item of first geometry information is set for two elements among the three elements in common, and is set for a remaining one element independently of the two elements.
For example, in the obtaining (S9791), when a second bitstream not including the prediction mode value is obtained in the obtaining, the three-dimensional data decoding device calculates a predicted value of a specific prediction mode in the calculating of the predicted value.
For example, in the obtaining (S9791), when a third bitstream not including positive and negative information is obtained in the obtaining, the three-dimensional data decoding device uses the prediction residual as 0 or a positive number in the calculating of the item of first geometry information (S9794).
For example, the three-dimensional data decoding device includes a processor and memory, and the processor performs the above-described process using the memory.
In this embodiment, there will be described a three-dimensional data encoding method of performing predictive encoding of geometry information of a node (three-dimensional point) included in each prediction tree when a plurality of prediction trees is generated when encoding a three-dimensional point cloud. When performing predictive encoding of geometry information of a three-dimensional point cloud using a prediction tree, if a parent node of a three-dimensional point (query node) to be encoded is not found because the three-dimensional point does not satisfy predetermined conditions, a plurality of prediction trees is generated as illustrated in
The predetermined conditions may include a first condition that there is one or more parent node candidates within a predetermined range (that is, within a predetermined distance) from the three-dimensional point (query node) to be encoded, for example. When the first condition is true, that is, when there is one or more parent nodes within a specific range from the three-dimensional point to be encoded, the three-dimensional data encoding device constructs and encodes a prediction tree by determining the three-dimensional point to be encoded to be a child node of any of the one or more parent nodes. When the first condition is false, that is, when there is not one or more parent nodes within a specific range from the three-dimensional point to be encoded, the three-dimensional data encoding device may generate a new prediction tree by determining the three-dimensional point to be encoded to be a root node. In this way, the three-dimensional data encoding device can generate a prediction tree in which distances between parent nodes and child nodes fall within a specific range, and can improve the prediction efficiency and the encoding efficiency.
The predetermined conditions may include a second condition that there is one or more parent node candidates that can have a further child node, provided that parent nodes can have a limited number of child nodes, for example. That is, the second condition is a condition that, among the parent node candidates for the three-dimensional point to be encoded, there is a parent node candidate the number of the child nodes already set for which has not reached the limit. When the second condition is true, that is, when the three-dimensional point to be encoded has one or more parent node candidates that can have a further child node, the three-dimensional data encoding device performs constructs and encodes a prediction tree by determining the three-dimensional point to be encoded to be a child node of any of the one or more parent node candidates. When the second condition is false, that is, when the three-dimensional point to be encoded does not have one or more parent node candidates that can have a further child node, the three-dimensional data encoding device may generate a new prediction tree by determining the three-dimensional point to be encoded to be a root node. In this way, the three-dimensional data encoding device can generate a prediction tree in which the number of child nodes of a parent node is limited to a specific number or less, thereby reducing the code amount of information indicating the number of child nodes and thus improving the encoding efficiency.
When encoding or decoding the three-dimensional point to be encoded as a root node, the three-dimensional data encoding device or three-dimensional data decoding device may perform encoding or decoding by setting a prediction mode for the three-dimensional point to be encoded to be a no-prediction mode (pred_mode=0). In this way, the three-dimensional data encoding device or three-dimensional data decoding device can encode or decode the three-dimensional point to be encoded without depending on the other nodes, that is, can independently encode or decode the three-dimensional point to be encoded.
Alternatively, when encoding or decoding the three-dimensional point to be encoded as a root node, the three-dimensional data encoding device or three-dimensional data decoding device may perform encoding or decoding by setting a prediction mode for the three-dimensional point to be encoded to be a differential prediction mode for a root node. Here, the differential prediction mode for a root node means performing predictive encoding or predictive decoding a root node using a predetermined predicted value. That is, the predicted value in the differential prediction mode for a root node is a predetermined predicted value. In this way, the three-dimensional data encoding device or three-dimensional data decoding device performs differential encoding of three-dimensional geometry information of a root node, and therefore can improve the encoding efficiency. The differential prediction mode for a root node may be a prediction mode indicated by a value of 0 (pred_mode=0). In this embodiment the differential prediction mode for a root node will be described.
As described above, by generating a plurality of prediction trees and dividing a plurality of three-dimensional points included in an input three-dimensional point cloud among the plurality of prediction trees, a proper balance of the processing load of encoding or decoding can be attained between the prediction trees. The three-dimensional data encoding device can achieve encoding with low delay by transmitting a bitstream (sub-stream) for each prediction tree to the three-dimensional data decoding device when encoding of the prediction tree is completed and the bitstream for the prediction tree is generated. The three-dimensional data decoding device can perform decoding for each prediction tree (for each sub-stream) when the sub-stream for the prediction tree is received, and thus can achieve decoding with low delay.
The three-dimensional data encoding device can perform predictive encoding of not only a three-dimensional point set as a root node of a prediction tree but also a three-dimensional point (node) included in a prediction tree. That is, in predictive encoding of one or more three-dimensional points, the three-dimensional data encoding device calculates a prediction residual, which is the difference between geometry information of each three-dimensional point and a predicted value in a specific prediction mode. In this way, one or more prediction residuals corresponding to the one or more three-dimensional points are obtained. The specific prediction mode may be the same as the differential prediction mode for the root node of the one or more three-dimensional points. That is, the value (prediction mode value) indicating the specific prediction mode may be 0.
A first method in the differential prediction mode for a root node will be described.
In the first method, when the three-dimensional point to be encoded is a root node, and predictive encoding of the root node is to be performed in the differential prediction mode, for example, the three-dimensional data encoding device may perform differential encoding by using, as a predicted value, the geometry information of the root node of the previous prediction tree as described above. For example, the three-dimensional data encoding device may encode geometry information (x, y, z) of root node RNP2 of a second prediction tree by using difference value D1 as a prediction residual for root node RNP2, difference value D1 being the difference between the geometry information (x, y, z) and a predicted value, which is the geometry information of the previous root node, that is, geometry information (xp, yp, zp) of root node RNP1 of a first prediction tree, which is the previous prediction tree. Note that difference value D1 is D1(x−xp, y−yp, z−zp). In this way, the value to be encoded can be reduced, and the encoding efficiency can be improved.
Note that the previous root node may be the root node encoded immediately before the root node to be encoded in the encoding order, for example. That is, the previous root node may be the root node of the prediction tree encoded immediately before the prediction tree of the root node to be encoded. In this way, the three-dimensional data encoding device can perform predictive encoding of the root node to be encoded by storing, in a memory or the like, the geometry information of the root node immediately before the root node, so that the encoding efficiency can be improved while reducing the increase of the utilization of the memory.
In the differential prediction mode for the root node to be encoded, the three-dimensional data encoding device may perform differential encoding by using, as a predicted value, geometry information of the three-dimensional point (node) encoded immediately before the root node in the encoding order. For example, when the three-dimensional point encoded immediately before root node RNP2 is three-dimensional point NP1, the three-dimensional data encoding device may encode the geometry information (x, y, z) of root node RNP2 by using difference value D1 as a prediction residual for root node RNP2, difference value D1 being the difference between the geometry information (x, y, z) and a predicted value, which is geometry information (xnp, ynp, znp) of three-dimensional point NP1. Note that difference value D1 in this case is D1(x−xnp, y−ynp, z−znp). In this way, the value to be encoded can be reduced, and the encoding efficiency can be improved. Furthermore, the three-dimensional data encoding device can perform predictive encoding of the root node to be encoded by storing, in a memory or the like, the geometry information of the three-dimensional point encoded immediately before the root node, so that the encoding efficiency can be improved while reducing the increase of the utilization of the memory.
Although the differential prediction mode for the root node has been described above as a prediction mode for encoding, the differential prediction mode may be used as a prediction mode for decoding. This allows a bitstream generated using the differential prediction mode for the root node to be properly decoded on the decoder side. Note that the predicted value for the first root node to be encoded or decoded may be set at 0.
The predicted value for the root node is not limited to the examples described above. For example, as the predicted value for the root node to be encoded, geometry information of a three-dimensional point included in a prediction tree encoded or decoded before the prediction tree to which the root node belongs may be set. Alternatively, for example, as the predicted value for the root node to be encoded, a mean value of geometry information of a plurality of three-dimensional points included in a prediction tree encoded or decoded before the prediction tree to which the root node belongs may be set. Alternatively, when the root node to be encoded is root node RNP2, for example, as the predicted value for the root node, a mean value of geometry information of three-dimensional points included in the first prediction tree may be set. In this way, the prediction efficiency of the root node can be improved, and the encoding efficiency can be improved.
The three-dimensional data encoding device generates a prediction tree using a plurality of three-dimensional points included in a data unit (S11201).
The three-dimensional data encoding device then encodes a root node using the prediction tree (S11202). For example, the three-dimensional data encoding device encodes geometry information of the root node by using geometry information of the root node of the immediately preceding prediction tree as a predicted value, calculating the difference between the predicted value and geometry information of the root node, and encoding the calculated difference.
Note that as another example of the encoding method in the differential prediction mode with respect to the root node of the immediately preceding prediction tree, encoding may be performed by using, as a predicted value, geometry information of the immediately preceding three-dimensional point in the encoding order, for example. The encoding efficiency can be improved by performing the differential encoding in this way.
The three-dimensional data decoding device decodes the root node by using the decoded prediction tree and adding the decoded difference (prediction residual) to the geometry information of the root node of the immediately preceding prediction tree (S11211).
Note that as another example of the decoding method in the differential prediction mode for the root node to be decoded, a decoded value of the root node may be calculated by adding the decoded prediction residual to geometry information of the three-dimensional point decoded immediately before the root node in the decoding order. In this way, the three-dimensional data decoding device can properly decode the bitstream encoded by differential encoding using, as a predicted value, the geometry information of the three-dimensional point encoded immediately before the root node in the encoding order.
Next, a second method in the differential prediction mode for a root node will be described.
The predicted value for calculating difference Dn with respect to the geometry information of root node RNPn in the differential prediction mode may be (a) a mean value of geometry information of a plurality of three-dimensional points, (b), a median value of geometry information of a plurality of three-dimensional points, (c), a minimum value of geometry information of a plurality of three-dimensional points, or (d) a maximum value of geometry information of a plurality of three-dimensional points, for example.
The predicted value in the differential prediction mode for the root node to be encoded may be a value calculated using geometry information of a three-dimensional point encoded or decoded before the prediction tree to which the root node to be encoded belongs, for example. For example, the three-dimensional data encoding device may calculate any one of the values (a) to (d) described above, and determine the calculated value to be a predicted value. That is, provided that a plurality of three-dimensional points from three-dimensional point Pl to three-dimensional point Pm (l<m<n) are three-dimensional points encoded before the root node to be encoded, the three-dimensional data encoding device may determine any one of (a) a mean value, (b) a median value, (c) a minimum value, and (d) a maximum value of geometry information of three-dimensional points Pl to Pm to be a predicted value. In this way, the precision of the predicted value can be improved, and the encoding efficiency can be improved.
Note that the geometry information of the plurality of three-dimensional points from three-dimensional point Pl to three-dimensional point Pm (l<m<n) may be decoded geometry information of three-dimensional points encoded before the root node to be encoded. In this way, the three-dimensional data decoding device can also generate the same predicted value as that in the three-dimensional data encoding device, and can properly decode the bitstream.
The geometry information of the plurality of three-dimensional points from three-dimensional point Pl to three-dimensional point Pm (l<m<n) may be geometry information of root nodes encoded before the root node to be encoded. In this way, the three-dimensional data encoding device or three-dimensional data decoding device can generate a predicted value using an encoded or decoded root node, and can improve the encoding efficiency since the predicted value can be generated according to the characteristics of the root node.
Next, a third method in the differential prediction mode for a root node will be described.
The predicted value for calculating difference Dn with respect to the geometry information of root node RNPn in the differential prediction mode may be (a) a mean value of geometry information of a plurality of three-dimensional points included in a predetermined data unit, (b) a median value of geometry information of a plurality of three-dimensional points included in a predetermined data unit, (c) a maximum value or minimum value of geometry information of a plurality of three-dimensional points included in a predetermined data unit, (d) a central position between a plurality of three-dimensional points included in a predetermined data unit, or (e) a pose (geometry information) of LiDAR, for example. Provided that the total number of three-dimensional points to be encoded or decoded in a predetermined data unit (slice) is denoted as NumPoint, α=0, and β=NumPoint−1, a plurality of three-dimensional points from three-dimensional point Pa to three-dimensional point Pβ are all the three-dimensional points in the predetermined data unit.
The predicted value in the differential prediction mode for the root node to be encoded may be a value calculated using input geometry information of some or all of the plurality of three-dimensional points, for example. For example, the three-dimensional data encoding device may calculate any one of the values (a) to (d) described above, and determine the calculated value to be a predicted value. For example, provided that the total number of three-dimensional points to be encoded or decoded in a predetermined data unit (slice) is denoted as NumPoint, α=0, and β=NumPoint−1, any one of the values (a) to (d) may be calculated using the geometry information of all the three-dimensional points in the slice, and the calculated value may be determined to be a predicted value. In this way, the precision of the predicted value can be improved, and the encoding efficiency can be improved.
The three-dimensional data encoding device may add the calculated predicted value for the root node to a header (a slice header, for example) of the predetermined data unit. In this way, the three-dimensional data decoding device can obtain the predicted value for the root node by decoding the header of the predetermined data unit, and can properly decode the bitstream in which the root node is encoded in the differential prediction mode while reducing the processing amount.
Note that the three-dimensional data encoding device may add, to the header or the like of the predetermined data unit, as many predicted values as the number of the prediction trees including the plurality of input three-dimensional points. In this case, as illustrated in
Although
The three-dimensional data encoding device may calculate the value (e) described above as a predicted value in the differential prediction mode for the root node to be encoded. That is, the three-dimensional data encoding device may improve the encoding efficiency of the geometry information of three-dimensional points by using, as a predicted value, geometry information from a LiDAR device. The geometry information from a LiDAR device may be added to the header or the like of the predetermined data unit. In this way, the three-dimensional data decoding device can obtain the predicted value for the root node by decoding the header of the predetermined data unit or the like, and can properly decode the bitstream in which the root node is encoded in the differential prediction mode while reducing the processing amount.
The three-dimensional data encoding device may calculate any one of the values (a) to (d) described above, and determine the calculated value to be a predicted value in the differential prediction mode for the root node to be encoded. For example, provided that the total number of three-dimensional points to be encoded or decoded in a predetermined data unit (slice) is denoted as NumRootPoint, α=0, and β=NumRootPoint−1, any one of the values (a) to (d) may be calculated using the geometry information of the three-dimensional points of all the root nodes in the slice, and the calculated value may be determined to be a predicted value. In this way, the precision of the predicted value can be improved, and the encoding efficiency can be improved.
The three-dimensional data encoding device may add the calculated predicted value for the root node to a header (a slice header, for example) of the predetermined data unit. In this way, the three-dimensional data decoding device can obtain the predicted value for the root node by decoding the header of the predetermined data unit, and can properly decode the bitstream in which the root node is encoded in the differential prediction mode while reducing the processing amount.
As in the case described above, the three-dimensional data encoding device may add, to the header or the like of the predetermined data unit, a predicted value for the root node of each of the prediction trees including the plurality of input three-dimensional points. In this case, as illustrated in
The predicted value for the root node to be encoded is not limited to the values (a) to (e) described above. For example, the predicted value for the root node to be encoded may be any one of the mean value, the median value, the maximum value, and the minimum value of the geometry information of all or part of the three-dimensional points (nodes) included in the prediction tree including the root node. In this way, a predicted value in which characteristics of the geometry information of the prediction tree of the root node are reflected can be generated, and the encoding efficiency can be improved. Furthermore, the three-dimensional data encoding device may add the generated predicted value to the header (slice header) or the like of the predetermined data unit or the like. In this way, the three-dimensional data decoding device can obtain the predicted value for the root node by decoding the header of the predetermined data unit, and can properly decode the bitstream in which the root node is encoded in the differential prediction mode while reducing the processing amount. The prediction tree count numPT described above may have an upper limit value or lower limit value defined according to a profile or level of a standard. In this way, the prediction tree count can be controlled to be equal to or smaller than a specific value or to be equal to or greater than a specific value, and the processing load on the three-dimensional data encoding device or three-dimensional data decoding device can be controlled.
The three-dimensional data encoding device may obtain a predicted value in a specific prediction mode from a header of a predetermined data unit. Then, the three-dimensional data encoding device calculates one or more prediction residuals for each of one or more three-dimensional points, the prediction residual being the difference between the geometry information of the three-dimensional point and the predicted value.
The three-dimensional data encoding device generates a prediction tree using a plurality of three-dimensional points included in a data unit (S11221).
The three-dimensional data encoding device then calculates a predicted value according to the method described above (S11222). For example, the three-dimensional data encoding device calculates any of the values (a) to (e) described above as the predicted value.
Although the three-dimensional data encoding device has been described as calculating a predicted value from all root nodes, the present disclosure is not limited to this. For example, the three-dimensional data encoding device may calculate a predicted value using part of the root nodes. In this way, the precision of the predicted value can be improved, and the encoding efficiency can be improved. Alternatively, the three-dimensional data encoding device need not calculate a predicted value using root nodes, and may calculate a predicted value using root nodes or nodes other than the root nodes. In this way, the precision of the predicted value can be improved, and the encoding efficiency can be improved.
The three-dimensional data encoding device may add the calculated predicted value for the root node to the header (slice header, for example) of the predetermined data unit. In this way, the three-dimensional data decoding device can obtain the predicted value for the root node by decoding the header of the predetermined data unit, and can properly decode the bitstream in which the root node is encoded in the differential prediction mode while reducing the processing amount. The predicted value for the root node may be calculated when the prediction tree is generated. In this way, the processing amount can be reduced.
The three-dimensional data encoding device then encodes a root node using the prediction tree (S11223).
The three-dimensional data decoding device decodes the predicted value included in the header (S11231).
The three-dimensional data decoding device then decodes the root node by using the decoded prediction tree and adding the decoded difference (prediction residual) to the predicted value (S11232).
Next, a fourth method in the differential prediction mode will be described.
Difference Dn in the differential prediction mode may be indicated by the difference between three-dimensional point Pn to be processed and three-dimensional point P of the root node (nearest root node) that is the nearest to the three-dimensional point.
In a method of difference prediction for a root node to be encoded, the three-dimensional data encoding device may generate one or more prediction trees using a plurality of input three-dimensional points, and perform encoding after re-ordering the encoding order of the prediction trees so that the predicted difference values of the geometry information of the root nodes decrease. For example, the three-dimensional data encoding device encodes geometry information PTRNP0 among geometry information (distance information) PTRNP0, PTRNP1, and PTRNP2 of root nodes of generated prediction trees PT0, PT1, and PT2.
The three-dimensional data encoding device then compares the difference between geometry information PTRNP0 and geometry information PTRNP1 with the difference between geometry information PTRNP0 and geometry information PTRNP2, and encodes prediction tree PT2 when the latter is smaller. In this processing, differential encoding of geometry information PTRNP2 of the root node of prediction tree PT2 may be performed using geometry information PTRNP0 as a predicted value.
After encoding geometry information PTRNP2 of the root node of prediction tree PT2, the three-dimensional data encoding device encodes geometry information PTRNP1 of the root node of prediction tree PT1. In this way, the three-dimensional data encoding device can make the predicted difference value for each root node smaller by re-ordering the encoding order of the prediction trees based on the values of the geometry information of the root nodes after generating the prediction trees, thereby improving the encoding efficiency.
The three-dimensional data decoding device can re-order the encoding order of the prediction trees based on the values of the geometry information of the root nodes after generating the prediction trees, by decoding the prediction trees whose root nodes are included in the bitstream in the order of encoding. In this way, the three-dimensional data decoding device can properly decode the bitstream that is improved in encoding efficiency by making the predicted difference values for the root nodes smaller.
The three-dimensional data encoding device generates a prediction tree (S11241).
The three-dimensional data encoding device then encodes a root node using the prediction tree (S11242). For example, the three-dimensional data encoding device encodes geometry information of a root node of a prediction tree to be processed by using, as a predicted value, geometry information of a remaining root node whose geometry information is the nearest to the geometry information of the root node, calculating the difference between the predicted value and the geometry information of the root node, and encoding the calculated difference. In this process, the three-dimensional data encoding device may perform encoding after re-ordering the generated one or more prediction trees based on the values of the geometry information of the root nodes thereof. For example, the three-dimensional data encoding device may perform encoding after re-ordering the one or more prediction trees so that the predicted difference values of the geometry information of the root nodes decrease. In this way, the encoding efficiency can be improved.
The three-dimensional data encoding device then determines, for all the prediction trees, whether encoding of the three-dimensional points included in those prediction trees is completed (S11243). The three-dimensional data encoding device ends this process if encoding of the three-dimensional points of all the prediction trees is completed (Yes in S11243), and performs the processing of Step S11242 for the root nodes of the remaining prediction trees otherwise (No in S11243).
The three-dimensional data decoding device decodes the root node by using the decoded prediction tree and adding the decoded difference (prediction residual) to the geometry information of the root node of the immediately preceding prediction tree (S11251).
In this drawing, root_node_differential_flag is information indicating whether to apply differential encoding to a root node. If the value of this information is 1, it indicates to apply differential encoding to a root node. If the value of this information is 0, it indicates to encode a root node in the no-prediction mode.
reference_root_node_x indicates a predicted value of an x component of the geometry information of the root node when differential encoding is to be applied to the root node. reference_root_node_y indicates a predicted value of a y component of the geometry information of the root node when differential encoding is to be applied to the root node. reference_root_node_z indicates a predicted value of a z component of the geometry information of the root node when differential encoding is to be applied to the root node. As the predicted value (x, y, z) for the root node, (a) a mean value of geometry information of a plurality of three-dimensional points included in a predetermined data unit, (b) a median value of geometry information of a plurality of three-dimensional points included in a predetermined data unit, (c) a maximum value or minimum value of geometry information of a plurality of three-dimensional points included in a predetermined data unit, (d) a central position between a plurality of three-dimensional points included in a predetermined data unit, or (e) a pose (geometry information) of LiDAR may be used.
root_node_differential_flag, reference_root_node_x, reference_root_node_y, or reference_root_node_z may be added to a sequence parameter set (SPS), a geometry information parameter set (GPS), or a header (slice header) or the like of a predetermined data unit, and the values thereof may be changed on a sequence basis, on a frame basis, or on a slice basis. In this way, a proper balance between the increase of the code amount of the header and the improvement of the encoding efficiency can be attained.
When the predicted value (x, y, z) for the root node is geometry information of LiDAR as in the case (e) described above, if the geometry information of LiDAR is already added to another header, such as GPS, the added geometry information of LiDAR can be used. In that case, the three-dimensional data encoding device need not add reference_root_node_x, reference_root_node_y, and reference_root_node_z to the header. In that case, the three-dimensional data encoding device may add, to the header, information indicating whether reference_root_node_x, reference_root_node_y, and reference_root_node_z are added to the header. By avoiding adding reference_root_node_x, reference_root_node_y, and reference_root_node_z to the header, the code amount of the header can be reduced.
residual_sign is information (code bit) indicating whether residual_value (prediction residua) is a positive value or a negative value. If the value of this information is 1, it indicates that the value of residual_value is negative, and if the value of this information is 0, it indicates that the value of residual_value is positive. When the value indicating the prediction mode is 0 (pred_mode=0 (root node)), and root_node_differential_flag=0, residual_value is a positive value, and therefore, the three-dimensional data encoding device need not encode and add residual_sign to the bitstream. In that case, that is, when the value indicating the prediction mode is 0 (pred_mode=0 (root node)), and root_node_differential_flag=0, the three-dimensional data decoding device need not decode residual_sing from the bitstream and may estimate the value of residual_sing to be 0.
Although, in this embodiment, an example has been shown in which the three-dimensional data encoding device switches the encoding method for residual_sign when the value indicating the prediction mode is 0 (pred_mode=0 (root node)), the present disclosure is not necessarily limited to this, and the processing may be switched based on whether the value indicating the prediction mode is 0 (pred_mode=0 (root node)). For example, when the value indicating the prediction mode is 0 (pred_mode=0 (root node)), and the geometry information of the root node is to be encoded without prediction, the difference value can be greater than the difference values for the nodes other than the root node and can have a tendency different from those of the other nodes. To cope with this, an encoding table for arithmetic encoding of parameters relating to information on the difference value in the case where the value indicating the prediction mode is 0 (pred_mode=0 (root node)) and an encoding table for arithmetic encoding of parameters relating to information on the difference value in the case where the value indicating the prediction mode is greater than 0 (pred_mode>0) may be separately prepared, and the three-dimensional data encoding device may perform encoding by switching between these encoding tables according to the value of pred_mode. In this way, the encoding efficiency can be improved.
Similarly, if a decoding table for arithmetic decoding of parameters relating to information on the difference value in the case where the value indicating the prediction mode is 0 (pred_mode=0 (root node)) and a decoding table for arithmetic decoding of parameters relating to information on the difference value in the case where the value indicating the prediction mode is greater than 0 (pred_mode>0) are separately prepared, and the three-dimensional data decoding device performs decoding by using a different decoding table according to the decoded value of pred_mode, the three-dimensional data decoding device can properly decode the bitstream improved in encoding efficiency by being encoded by switching between the encoding table for pred_mode=0 (root node) and the encoding table for pred_mode>0. Here, the parameters relating to the information on the difference value include residual_is_zero, residual_sign, residual_bitcount_minus1, and residual_bit, for example.
As described above, the three-dimensional data encoding device according to one aspect of the present embodiment performs the process shown in
According to this method, the geometry information can be encoded using the predicted value in the specific prediction mode obtained from the header, and therefore, the encoding efficiency of the geometry information can be improved.
For example, the one or more three-dimensional points include a three-dimensional point set to a root node of the prediction tree including the one or more three-dimensional points. Therefore, the geometry information of the three-dimensional point set to a root node can be encoded using the predicted value in the specific prediction mode obtained from the header, and therefore, the encoding efficiency of the geometry information of the root node can be improved.
For example, a prediction mode value indicating the specific prediction mode is 0.
For example, the prediction value in the specific prediction mode is a minimum value among position information items of the three-dimensional points.
For example, the three-dimensional data encoding device includes a processor and memory, and the processor performs the above process using the memory.
The three-dimensional data decoding device according to one aspect of the present embodiment performs the process shown in
According to this method, the geometry information encoded using the predicted value in the specific prediction mode obtained from the header can be properly decoded.
For example, the one or more three-dimensional points include a three-dimensional point set to a root node of the prediction tree including the one or more three-dimensional points. Therefore, the geometry information of the three-dimensional point set to a root node can be encoded using the predicted value in the specific prediction mode obtained from the header, and therefore, the geometry information of the root node can be properly decoded.
For example, a prediction mode value indicating the specific prediction mode is 0.
For example, the prediction value in the specific prediction mode is a minimum value among position information items of the three-dimensional points.
For example, the three-dimensional data decoding device includes a processor and memory, and the processor performs the above process using the memory.
The following describes the structure of three-dimensional data creation device 810 according to the present embodiment.
Three-dimensional data creation device 810 includes data receiver 811, communication unit 812, reception controller 813, format converter 814, a plurality of sensors 815, three-dimensional data creator 816, three-dimensional data synthesizer 817, three-dimensional data storage 818, communication unit 819, transmission controller 820, format converter 821, and data transmitter 822.
Data receiver 811 receives three-dimensional data 831 from a cloud-based traffic monitoring system or a preceding vehicle. Three-dimensional data 831 includes, for example, information on a region undetectable by sensors 815 of the own vehicle, such as a point cloud, visible light video, depth information, sensor position information, and speed information.
Communication unit 812 communicates with the cloud-based traffic monitoring system or the preceding vehicle to transmit a data transmission request, etc. to the cloud-based traffic monitoring system or the preceding vehicle.
Reception controller 813 exchanges information, such as information on supported formats, with a communications partner via communication unit 812 to establish communication with the communications partner.
Format converter 814 applies format conversion, etc. on three-dimensional data 831 received by data receiver 811 to generate three-dimensional data 832. Format converter 814 also decompresses or decodes three-dimensional data 831 when three-dimensional data 831 is compressed or encoded.
A plurality of sensors 815 are a group of sensors, such as visible light cameras and infrared cameras, that obtain information on the outside of the vehicle and generate sensor information 833. Sensor information 833 is, for example, three-dimensional data such as a point cloud (point group data), when sensors 815 are laser sensors such as LiDARs. Note that a single sensor may serve as a plurality of sensors 815.
Three-dimensional data creator 816 generates three-dimensional data 834 from sensor information 833. Three-dimensional data 834 includes, for example, information such as a point cloud, visible light video, depth information, sensor position information, and speed information.
Three-dimensional data synthesizer 817 synthesizes three-dimensional data 834 created on the basis of sensor information 833 of the own vehicle with three-dimensional data 832 created by the cloud-based traffic monitoring system or the preceding vehicle, etc., thereby forming three-dimensional data 835 of a space that includes the space ahead of the preceding vehicle undetectable by sensors 815 of the own vehicle.
Three-dimensional data storage 818 stores generated three-dimensional data 835, etc.
Communication unit 819 communicates with the cloud-based traffic monitoring system or the following vehicle to transmit a data transmission request, etc. to the cloud-based traffic monitoring system or the following vehicle.
Transmission controller 820 exchanges information such as information on supported formats with a communications partner via communication unit 819 to establish communication with the communications partner. Transmission controller 820 also determines a transmission region, which is a space of the three-dimensional data to be transmitted, on the basis of three-dimensional data formation information on three-dimensional data 832 generated by three-dimensional data synthesizer 817 and the data transmission request from the communications partner.
More specifically, transmission controller 820 determines a transmission region that includes the space ahead of the own vehicle undetectable by a sensor of the following vehicle, in response to the data transmission request from the cloud-based traffic monitoring system or the following vehicle. Transmission controller 820 judges, for example, whether a space is transmittable or whether the already transmitted space includes an update, on the basis of the three-dimensional data formation information to determine a transmission region. For example, transmission controller 820 determines, as a transmission region, a region that is: a region specified by the data transmission request; and a region, corresponding three-dimensional data 835 of which is present. Transmission controller 820 then notifies format converter 821 of the format supported by the communications partner and the transmission region.
Of three-dimensional data 835 stored in three-dimensional data storage 818, format converter 821 converts three-dimensional data 836 of the transmission region into the format supported by the receiver end to generate three-dimensional data 837. Note that format converter 821 may compress or encode three-dimensional data 837 to reduce the data amount.
Data transmitter 822 transmits three-dimensional data 837 to the cloud-based traffic monitoring system or the following vehicle. Such three-dimensional data 837 includes, for example, information on a blind spot, which is a region hidden from view of the following vehicle, such as a point cloud ahead of the own vehicle, visible light video, depth information, and sensor position information.
Note that an example has been described in which format converter 814 and format converter 821 perform format conversion, etc., but format conversion may not be performed.
With the above structure, three-dimensional data creation device 810 obtains, from an external device, three-dimensional data 831 of a region undetectable by sensors 815 of the own vehicle, and synthesizes three-dimensional data 831 with three-dimensional data 834 that is based on sensor information 833 detected by sensors 815 of the own vehicle, thereby generating three-dimensional data 835. Three-dimensional data creation device 810 is thus capable of generating three-dimensional data of a range undetectable by sensors 815 of the own vehicle.
Three-dimensional data creation device 810 is also capable of transmitting, to the cloud-based traffic monitoring system or the following vehicle, etc., three-dimensional data of a space that includes the space ahead of the own vehicle undetectable by a sensor of the following vehicle, in response to the data transmission request from the cloud-based traffic monitoring system or the following vehicle.
The following describes the steps performed by three-dimensional data creation device 810 of transmitting three-dimensional data to a following vehicle.
First, three-dimensional data creation device 810 generates and updates three-dimensional data 835 of a space that includes space on the road ahead of the own vehicle (S801). More specifically, three-dimensional data creation device 810 synthesizes three-dimensional data 834 created on the basis of sensor information 833 of the own vehicle with three-dimensional data 831 created by the cloud-based traffic monitoring system or the preceding vehicle, etc., for example, thereby forming three-dimensional data 835 of a space that also includes the space ahead of the preceding vehicle undetectable by sensors 815 of the own vehicle.
Three-dimensional data creation device 810 then judges whether any change has occurred in three-dimensional data 835 of the space included in the space already transmitted (S802).
When a change has occurred in three-dimensional data 835 of the space included in the space already transmitted due to, for example, a vehicle or a person entering such space from outside (Yes in S802), three-dimensional data creation device 810 transmits, to the cloud-based traffic monitoring system or the following vehicle, the three-dimensional data that includes three-dimensional data 835 of the space in which the change has occurred (S803).
Three-dimensional data creation device 810 may transmit three-dimensional data in which a change has occurred, at the same timing of transmitting three-dimensional data that is transmitted at a predetermined time interval, or may transmit three-dimensional data in which a change has occurred soon after the detection of such change. Stated differently, three-dimensional data creation device 810 may prioritize the transmission of three-dimensional data of the space in which a change has occurred to the transmission of three-dimensional data that is transmitted at a predetermined time interval.
Also, three-dimensional data creation device 810 may transmit, as three-dimensional data of a space in which a change has occurred, the whole three-dimensional data of the space in which such change has occurred, or may transmit only a difference in the three-dimensional data (e.g., information on three-dimensional points that have appeared or vanished, or information on the displacement of three-dimensional points).
Three-dimensional data creation device 810 may also transmit, to the following vehicle, meta-data on a risk avoidance behavior of the own vehicle such as hard breaking warning, before transmitting three-dimensional data of the space in which a change has occurred. This enables the following vehicle to recognize at an early stage that the preceding vehicle is to perform hard braking, etc., and thus to start performing a risk avoidance behavior at an early stage such as speed reduction.
When no change has occurred in three-dimensional data 835 of the space included in the space already transmitted (No in S802), or after step S803, three-dimensional data creation device 810 transmits, to the cloud-based traffic monitoring system or the following vehicle, three-dimensional data of the space included in the space having a predetermined shape and located ahead of the own vehicle by distance L (S804).
The processes of step S801 through step S804 are repeated, for example at a predetermined time interval.
When three-dimensional data 835 of the current space to be transmitted includes no difference from the three-dimensional map, three-dimensional data creation device 810 may not transmit three-dimensional data 837 of the space.
In the present embodiment, a client device transmits sensor information obtained through a sensor to a server or another client device.
A structure of a system according to the present embodiment will first be described.
Client device 902 is, for example, a vehicle-mounted device equipped in a mobile object such as a vehicle. Server 901 is, for example, a cloud-based traffic monitoring system, and is capable of communicating with the plurality of client devices 902.
Server 901 transmits the three-dimensional map formed by a point cloud to client device 902. Note that a structure of the three-dimensional map is not limited to a point cloud, and may also be another structure expressing three-dimensional data such as a mesh structure.
Client device 902 transmits the sensor information obtained by client device 902 to server 901. The sensor information includes, for example, at least one of information obtained by LiDAR, a visible light image, an infrared image, a depth image, sensor position information, or sensor speed information.
The data to be transmitted and received between server 901 and client device 902 may be compressed in order to reduce data volume, and may also be transmitted uncompressed in order to maintain data precision. When compressing the data, it is possible to use a three-dimensional compression method on the point cloud based on, for example, an octree structure. It is possible to use a two-dimensional image compression method on the visible light image, the infrared image, and the depth image. The two-dimensional image compression method is, for example, MPEG-4 AVC or HEVC standardized by MPEG.
Server 901 transmits the three-dimensional map managed by server 901 to client device 902 in response to a transmission request for the three-dimensional map from client device 902. Note that server 901 may also transmit the three-dimensional map without waiting for the transmission request for the three-dimensional map from client device 902. For example, server 901 may broadcast the three-dimensional map to at least one client device 902 located in a predetermined space. Server 901 may also transmit the three-dimensional map suited to a position of client device 902 at fixed time intervals to client device 902 that has received the transmission request once. Server 901 may also transmit the three-dimensional map managed by server 901 to client device 902 every time the three-dimensional map is updated.
Client device 902 sends the transmission request for the three-dimensional map to server 901. For example, when client device 902 wants to perform the self-location estimation during traveling, client device 902 transmits the transmission request for the three-dimensional map to server 901.
Note that in the following cases, client device 902 may send the transmission request for the three-dimensional map to server 901. Client device 902 may send the transmission request for the three-dimensional map to server 901 when the three-dimensional map stored by client device 902 is old. For example, client device 902 may send the transmission request for the three-dimensional map to server 901 when a fixed period has passed since the three-dimensional map is obtained by client device 902.
Client device 902 may also send the transmission request for the three-dimensional map to server 901 before a fixed time when client device 902 exits a space shown in the three-dimensional map stored by client device 902. For example, client device 902 may send the transmission request for the three-dimensional map to server 901 when client device 902 is located within a predetermined distance from a boundary of the space shown in the three-dimensional map stored by client device 902. When a movement path and a movement speed of client device 902 are understood, a time when client device 902 exits the space shown in the three-dimensional map stored by client device 902 may be predicted based on the movement path and the movement speed of client device 902.
Client device 902 may also send the transmission request for the three-dimensional map to server 901 when an error during alignment of the three-dimensional data and the three-dimensional map created from the sensor information by client device 902 is at least at a fixed level.
Client device 902 transmits the sensor information to server 901 in response to a transmission request for the sensor information from server 901. Note that client device 902 may transmit the sensor information to server 901 without waiting for the transmission request for the sensor information from server 901. For example, client device 902 may periodically transmit the sensor information during a fixed period when client device 902 has received the transmission request for the sensor information from server 901 once. Client device 902 may determine that there is a possibility of a change in the three-dimensional map of a surrounding area of client device 902 having occurred, and transmit this information and the sensor information to server 901, when the error during alignment of the three-dimensional data created by client device 902 based on the sensor information and the three-dimensional map obtained from server 901 is at least at the fixed level.
Server 901 sends a transmission request for the sensor information to client device 902. For example, server 901 receives position information, such as GPS information, about client device 902 from client device 902. Server 901 sends the transmission request for the sensor information to client device 902 in order to generate a new three-dimensional map, when it is determined that client device 902 is approaching a space in which the three-dimensional map managed by server 901 contains little information, based on the position information about client device 902. Server 901 may also send the transmission request for the sensor information, when wanting to (i) update the three-dimensional map, (ii) check road conditions during snowfall, a disaster, or the like, or (iii) check traffic congestion conditions, accident/incident conditions, or the like.
Client device 902 may set an amount of data of the sensor information to be transmitted to server 901 in accordance with communication conditions or bandwidth during reception of the transmission request for the sensor information to be received from server 901. Setting the amount of data of the sensor information to be transmitted to server 901 is, for example, increasing/reducing the data itself or appropriately selecting a compression method.
Client device 902 includes data receiver 1011, communication unit 1012, reception controller 1013, format converter 1014, sensors 1015, three-dimensional data creator 1016, three-dimensional image processor 1017, three-dimensional data storage 1018, format converter 1019, communication unit 1020, transmission controller 1021, and data transmitter 1022.
Data receiver 1011 receives three-dimensional map 1031 from server 901. Three-dimensional map 1031 is data that includes a point cloud such as a WLD or a SWLD. Three-dimensional map 1031 may include compressed data or uncompressed data.
Communication unit 1012 communicates with server 901 and transmits a data transmission request (e.g., transmission request for three-dimensional map) to server 901.
Reception controller 1013 exchanges information, such as information on supported formats, with a communications partner via communication unit 1012 to establish communication with the communications partner.
Format converter 1014 performs a format conversion and the like on three-dimensional map 1031 received by data receiver 1011 to generate three-dimensional map 1032. Format converter 1014 also performs a decompression or decoding process when three-dimensional map 1031 is compressed or encoded. Note that format converter 1014 does not perform the decompression or decoding process when three-dimensional map 1031 is uncompressed data.
Sensors 1015 are a group of sensors, such as LiDARs, visible light cameras, infrared cameras, or depth sensors that obtain information about the outside of a vehicle equipped with client device 902, and generate sensor information 1033. Sensor information 1033 is, for example, three-dimensional data such as a point cloud (point group data) when sensors 1015 are laser sensors such as LiDARs. Note that a single sensor may serve as sensors 1015.
Three-dimensional data creator 1016 generates three-dimensional data 1034 of a surrounding area of the own vehicle based on sensor information 1033. For example, three-dimensional data creator 1016 generates point cloud data with color information on the surrounding area of the own vehicle using information obtained by LiDAR and visible light video obtained by a visible light camera.
Three-dimensional image processor 1017 performs a self-location estimation process and the like of the own vehicle, using (i) the received three-dimensional map 1032 such as a point cloud, and (ii) three-dimensional data 1034 of the surrounding area of the own vehicle generated using sensor information 1033. Note that three-dimensional image processor 1017 may generate three-dimensional data 1035 about the surroundings of the own vehicle by merging three-dimensional map 1032 and three-dimensional data 1034, and may perform the self-location estimation process using the created three-dimensional data 1035.
Three-dimensional data storage 1018 stores three-dimensional map 1032, three-dimensional data 1034, three-dimensional data 1035, and the like.
Format converter 1019 generates sensor information 1037 by converting sensor information 1033 to a format supported by a receiver end. Note that format converter 1019 may reduce the amount of data by compressing or encoding sensor information 1037. Format converter 1019 may omit this process when format conversion is not necessary. Format converter 1019 may also control the amount of data to be transmitted in accordance with a specified transmission range.
Communication unit 1020 communicates with server 901 and receives a data transmission request (transmission request for sensor information) and the like from server 901.
Transmission controller 1021 exchanges information, such as information on supported formats, with a communications partner via communication unit 1020 to establish communication with the communications partner.
Data transmitter 1022 transmits sensor information 1037 to server 901. Sensor information 1037 includes, for example, information obtained through sensors 1015, such as information obtained by LiDAR, a luminance image obtained by a visible light camera, an infrared image obtained by an infrared camera, a depth image obtained by a depth sensor, sensor position information, and sensor speed information.
A structure of server 901 will be described next.
Server 901 includes data receiver 1111, communication unit 1112, reception controller 1113, format converter 1114, three-dimensional data creator 1116, three-dimensional data merger 1117, three-dimensional data storage 1118, format converter 1119, communication unit 1120, transmission controller 1121, and data transmitter 1122.
Data receiver 1111 receives sensor information 1037 from client device 902. Sensor information 1037 includes, for example, information obtained by LiDAR, a luminance image obtained by a visible light camera, an infrared image obtained by an infrared camera, a depth image obtained by a depth sensor, sensor position information, sensor speed information, and the like.
Communication unit 1112 communicates with client device 902 and transmits a data transmission request (e.g., transmission request for sensor information) and the like to client device 902.
Reception controller 1113 exchanges information, such as information on supported formats, with a communications partner via communication unit 1112 to establish communication with the communications partner.
Format converter 1114 generates sensor information 1132 by performing a decompression or decoding process when received sensor information 1037 is compressed or encoded. Note that format converter 1114 does not perform the decompression or decoding process when sensor information 1037 is uncompressed data.
Three-dimensional data creator 1116 generates three-dimensional data 1134 of a surrounding area of client device 902 based on sensor information 1132. For example, three-dimensional data creator 1116 generates point cloud data with color information on the surrounding area of client device 902 using information obtained by LiDAR and visible light video obtained by a visible light camera.
Three-dimensional data merger 1117 updates three-dimensional map 1135 by merging three-dimensional data 1134 created based on sensor information 1132 with three-dimensional map 1135 managed by server 901.
Three-dimensional data storage 1118 stores three-dimensional map 1135 and the like.
Format converter 1119 generates three-dimensional map 1031 by converting three-dimensional map 1135 to a format supported by the receiver end. Note that format converter 1119 may reduce the amount of data by compressing or encoding three-dimensional map 1135. Format converter 1119 may omit this process when format conversion is not necessary. Format converter 1119 may also control the amount of data to be transmitted in accordance with a specified transmission range.
Communication unit 1120 communicates with client device 902 and receives a data transmission request (transmission request for three-dimensional map) and the like from client device 902.
Transmission controller 1121 exchanges information, such as information on supported formats, with a communications partner via communication unit 1120 to establish communication with the communications partner.
Data transmitter 1122 transmits three-dimensional map 1031 to client device 902. Three-dimensional map 1031 is data that includes a point cloud such as a WLD or a SWLD. Three-dimensional map 1031 may include one of compressed data and uncompressed data.
An operational flow of client device 902 will be described next.
Client device 902 first requests server 901 to transmit the three-dimensional map (point cloud, etc.) (S1001). At this point, by also transmitting the position information about client device 902 obtained through GPS and the like, client device 902 may also request server 901 to transmit a three-dimensional map relating to this position information.
Client device 902 next receives the three-dimensional map from server 901 (S1002). When the received three-dimensional map is compressed data, client device 902 decodes the received three-dimensional map and generates an uncompressed three-dimensional map (S1003).
Client device 902 next creates three-dimensional data 1034 of the surrounding area of client device 902 using sensor information 1033 obtained by sensors 1015 (S1004). Client device 902 next estimates the self-location of client device 902 using three-dimensional map 1032 received from server 901 and three-dimensional data 1034 created using sensor information 1033 (S1005).
An operational flow of server 901 will be described next.
The following describes variations of the present embodiment.
Server 901 creates three-dimensional data 1134 of a vicinity of a position of client device 902 using sensor information 1037 received from client device 902. Server 901 next calculates a difference between three-dimensional data 1134 and three-dimensional map 1135, by matching the created three-dimensional data 1134 with three-dimensional map 1135 of the same area managed by server 901. Server 901 determines that a type of anomaly has occurred in the surrounding area of client device 902, when the difference is greater than or equal to a predetermined threshold. For example, it is conceivable that a large difference occurs between three-dimensional map 1135 managed by server 901 and three-dimensional data 1134 created based on sensor information 1037, when land subsidence and the like occurs due to a natural disaster such as an earthquake.
Sensor information 1037 may include information indicating at least one of a sensor type, a sensor performance, and a sensor model number. Sensor information 1037 may also be appended with a class ID and the like in accordance with the sensor performance. For example, when sensor information 1037 is obtained by LiDAR, it is conceivable to assign identifiers to the sensor performance. A sensor capable of obtaining information with precision in units of several millimeters is class 1, a sensor capable of obtaining information with precision in units of several centimeters is class 2, and a sensor capable of obtaining information with precision in units of several meters is class 3. Server 901 may estimate sensor performance information and the like from a model number of client device 902. For example, when client device 902 is equipped in a vehicle, server 901 may determine sensor specification information from a type of the vehicle. In this case, server 901 may obtain information on the type of the vehicle in advance, and the information may also be included in the sensor information. Server 901 may change a degree of correction with respect to three-dimensional data 1134 created using sensor information 1037, using obtained sensor information 1037. For example, when the sensor performance is high in precision (class 1), server 901 does not correct three-dimensional data 1134. When the sensor performance is low in precision (class 3), server 901 corrects three-dimensional data 1134 in accordance with the precision of the sensor. For example, server 901 increases the degree (intensity) of correction with a decrease in the precision of the sensor.
Server 901 may simultaneously send the transmission request for the sensor information to the plurality of client devices 902 in a certain space. Server 901 does not need to use all of the sensor information for creating three-dimensional data 1134 and may, for example, select sensor information to be used in accordance with the sensor performance, when having received a plurality of pieces of sensor information from the plurality of client devices 902. For example, when updating three-dimensional map 1135, server 901 may select high-precision sensor information (class 1) from among the received plurality of pieces of sensor information, and create three-dimensional data 1134 using the selected sensor information.
Server 901 is not limited to only being a server such as a cloud-based traffic monitoring system, and may also be another (vehicle-mounted) client device.
For example, client device 902C sends a transmission request for sensor information to client device 902A located nearby, and obtains the sensor information from client device 902A. Client device 902C then creates three-dimensional data using the obtained sensor information of client device 902A, and updates a three-dimensional map of client device 902C. This enables client device 902C to generate a three-dimensional map of a space that can be obtained from client device 902A, and fully utilize the performance of client device 902C. For example, such a case is conceivable when client device 902C has high performance.
In this case, client device 902A that has provided the sensor information is given rights to obtain the high-precision three-dimensional map generated by client device 902C. Client device 902A receives the high-precision three-dimensional map from client device 902C in accordance with these rights.
Server 901 may send the transmission request for the sensor information to the plurality of client devices 902 (client device 902A and client device 902B) located nearby client device 902C. When a sensor of client device 902A or client device 902B has high performance, client device 902C is capable of creating the three-dimensional data using the sensor information obtained by this high-performance sensor.
Client device 902 includes three-dimensional map decoding processor 1211 and sensor information compression processor 1212. Three-dimensional map decoding processor 1211 receives encoded data of the compressed three-dimensional map, decodes the encoded data, and obtains the three-dimensional map. Sensor information compression processor 1212 compresses the sensor information itself instead of the three-dimensional data created using the obtained sensor information, and transmits the encoded data of the compressed sensor information to server 901. With this structure, client device 902 does not need to internally store a processor that performs a process for compressing the three-dimensional data of the three-dimensional map (point cloud, etc.), as long as client device 902 internally stores a processor that performs a process for decoding the three-dimensional map (point cloud, etc.). This makes it possible to limit costs, power consumption, and the like of client device 902.
As stated above, client device 902 according to the present embodiment is equipped in the mobile object, and creates three-dimensional data 1034 of a surrounding area of the mobile object using sensor information 1033 that is obtained through sensor 1015 equipped in the mobile object and indicates a surrounding condition of the mobile object. Client device 902 estimates a self-location of the mobile object using the created three-dimensional data 1034. Client device 902 transmits obtained sensor information 1033 to server 901 or another client device 902.
This enables client device 902 to transmit sensor information 1033 to server 901 or the like. This makes it possible to further reduce the amount of transmission data compared to when transmitting the three-dimensional data. Since there is no need for client device 902 to perform processes such as compressing or encoding the three-dimensional data, it is possible to reduce the processing amount of client device 902. As such, client device 902 is capable of reducing the amount of data to be transmitted or simplifying the structure of the device.
Client device 902 further transmits the transmission request for the three-dimensional map to server 901 and receives three-dimensional map 1031 from server 901. In the estimating of the self-location, client device 902 estimates the self-location using three-dimensional data 1034 and three-dimensional map 1032.
Sensor information 1033 includes at least one of information obtained by a laser sensor, a luminance image, an infrared image, a depth image, sensor position information, or sensor speed information.
Sensor information 1033 includes information that indicates a performance of the sensor.
Client device 902 encodes or compresses sensor information 1033, and in the transmitting of the sensor information, transmits sensor information 1037 that has been encoded or compressed to server 901 or another client device 902. This enables client device 902 to reduce the amount of data to be transmitted.
For example, client device 902 includes a processor and memory. The processor performs the above processes using the memory.
Server 901 according to the present embodiment is capable of communicating with client device 902 equipped in the mobile object, and receives sensor information 1037 that is obtained through sensor 1015 equipped in the mobile object and indicates a surrounding condition of the mobile object. Server 901 creates three-dimensional data 1134 of a surrounding area of the mobile object using received sensor information 1037.
With this, server 901 creates three-dimensional data 1134 using sensor information 1037 transmitted from client device 902. This makes it possible to further reduce the amount of transmission data compared to when client device 902 transmits the three-dimensional data. Since there is no need for client device 902 to perform processes such as compressing or encoding the three-dimensional data, it is possible to reduce the processing amount of client device 902. As such, server 901 is capable of reducing the amount of data to be transmitted or simplifying the structure of the device.
Server 901 further transmits a transmission request for the sensor information to client device 902.
Server 901 further updates three-dimensional map 1135 using the created three-dimensional data 1134, and transmits three-dimensional map 1135 to client device 902 in response to the transmission request for three-dimensional map 1135 from client device 902.
Sensor information 1037 includes at least one of information obtained by a laser sensor, a luminance image, an infrared image, a depth image, sensor position information, or sensor speed information.
Sensor information 1037 includes information that indicates a performance of the sensor.
Server 901 further corrects the three-dimensional data in accordance with the performance of the sensor. This enables the three-dimensional data creation method to improve the quality of the three-dimensional data.
In the receiving of the sensor information, server 901 receives a plurality of pieces of sensor information 1037 received from a plurality of client devices 902, and selects sensor information 1037 to be used in the creating of three-dimensional data 1134, based on a plurality of pieces of information that each indicates the performance of the sensor included in the plurality of pieces of sensor information 1037. This enables server 901 to improve the quality of three-dimensional data 1134.
Server 901 decodes or decompresses received sensor information 1037, and creates three-dimensional data 1134 using sensor information 1132 that has been decoded or decompressed. This enables server 901 to reduce the amount of data to be transmitted.
For example, server 901 includes a processor and memory. The processor performs the above processes using the memory.
The following will describe a variation of the present embodiment.
Client device 2002A and client device 2002B are each provided in a mobile object such as a vehicle, and transmit sensor information to server 2001. Server 2001 transmits a three-dimensional map (a point cloud) to client device 2002A and client device 2002B.
Client device 2002A includes sensor information obtainer 2011, storage 2012, and data transmission possibility determiner 2013. It should be noted that client device 2002B has the same configuration. Additionally, when client device 2002A and client device 2002B are not particularly distinguished below, client device 2002A and client device 2002B are also referred to as client device 2002.
Sensor information obtainer 2011 obtains a variety of sensor information using sensors (a group of sensors) provided in a mobile object. In other words, sensor information obtainer 2011 obtains sensor information obtained by the sensors (the group of sensors) provided in the mobile object and indicating a surrounding state of the mobile object. Sensor information obtainer 2011 also stores the obtained sensor information into storage 2012. This sensor information includes at least one of information obtained by LiDAR, a visible light image, an infrared image, or a depth image. Additionally, the sensor information may include at least one of sensor position information, speed information, obtainment time information, or obtainment location information. Sensor position information indicates a position of a sensor that has obtained sensor information. Speed information indicates a speed of the mobile object when a sensor obtained sensor information. Obtainment time information indicates a time when a sensor obtained sensor information. Obtainment location information indicates a position of the mobile object or a sensor when the sensor obtained sensor information.
Next, data transmission possibility determiner 2013 determines whether the mobile object (client device 2002) is in an environment in which the mobile object can transmit sensor information to server 2001 (S2002). For example, data transmission possibility determiner 2013 may specify a location and a time at which client device 2002 is present using GPS information etc., and may determine whether data can be transmitted. Additionally, data transmission possibility determiner 2013 may determine whether data can be transmitted, depending on whether it is possible to connect to a specific access point.
When client device 2002 determines that the mobile object is in the environment in which the mobile object can transmit the sensor information to server 2001 (YES in S2002), client device 2002 transmits the sensor information to server 2001 (S2003). In other words, when client device 2002 becomes capable of transmitting sensor information to server 2001, client device 2002 transmits the sensor information held by client device 2002 to server 2001. For example, an access point that enables high-speed communication using millimeter waves is provided in an intersection or the like. When client device 2002 enters the intersection, client device 2002 transmits the sensor information held by client device 2002 to server 2001 at high speed using the millimeter-wave communication.
Next, client device 2002 deletes from storage 2012 the sensor information that has been transmitted to server 2001 (S2004). It should be noted that when sensor information that has not been transmitted to server 2001 meets predetermined conditions, client device 2002 may delete the sensor information. For example, when an obtainment time of sensor information held by client device 2002 precedes a current time by a certain time, client device 2002 may delete the sensor information from storage 2012. In other words, when a difference between the current time and a time when a sensor obtained sensor information exceeds a predetermined time, client device 2002 may delete the sensor information from storage 2012. Besides, when an obtainment location of sensor information held by client device 2002 is separated from a current location by a certain distance, client device 2002 may delete the sensor information from storage 2012. In other words, when a difference between a current position of the mobile object or a sensor and a position of the mobile object or the sensor when the sensor obtained sensor information exceeds a predetermined distance, client device 2002 may delete the sensor information from storage 2012. Accordingly, it is possible to reduce the capacity of storage 2012 of client device 2002.
When client device 2002 does not finish obtaining sensor information (NO in S2005), client device 2002 performs step S2001 and the subsequent steps again. Further, when client device 2002 finishes obtaining sensor information (YES in S2005), client device 2002 completes the process.
Client device 2002 may select sensor information to be transmitted to server 2001, in accordance with communication conditions. For example, when high-speed communication is available, client device 2002 preferentially transmits sensor information (e.g., information obtained by LiDAR) of which the data size held in storage 2012 is large. Additionally, when high-speed communication is not readily available, client device 2002 transmits sensor information (e.g., a visible light image) which has high priority and of which the data size held in storage 2012 is small. Accordingly, client device 2002 can efficiently transmit sensor information held in storage 2012, in accordance with network conditions
Client device 2002 may obtain, from server 2001, time information indicating a current time and location information indicating a current location. Moreover, client device 2002 may determine an obtainment time and an obtainment location of sensor information based on the obtained time information and location information. In other words, client device 2002 may obtain time information from server 2001 and generate obtainment time information using the obtained time information. Client device 2002 may also obtain location information from server 2001 and generate obtainment location information using the obtained location information.
For example, regarding time information, server 2001 and client device 2002 perform clock synchronization using a means such as the Network Time Protocol (NTP) or the Precision Time Protocol (PTP). This enables client device 2002 to obtain accurate time information. What's more, since it is possible to synchronize clocks between server 2001 and client devices 2002, it is possible to synchronize times included in pieces of sensor information obtained by separate client devices 2002. As a result, server 2001 can handle sensor information indicating a synchronized time. It should be noted that a means of synchronizing clocks may be any means other than the NTP or PTP. In addition, GPS information may be used as the time information and the location information.
Server 2001 may specify a time or a location and obtain pieces of sensor information from client devices 2002. For example, when an accident occurs, in order to search for a client device in the vicinity of the accident, server 2001 specifies an accident occurrence time and an accident occurrence location and broadcasts sensor information transmission requests to client devices 2002. Then, client device 2002 having sensor information obtained at the corresponding time and location transmits the sensor information to server 2001. In other words, client device 2002 receives, from server 2001, a sensor information transmission request including specification information specifying a location and a time. When sensor information obtained at a location and a time indicated by the specification information is stored in storage 2012, and client device 2002 determines that the mobile object is present in the environment in which the mobile object can transmit the sensor information to server 2001, client device 2002 transmits, to server 2001, the sensor information obtained at the location and the time indicated by the specification information. Consequently, server 2001 can obtain the pieces of sensor information pertaining to the occurrence of the accident from client devices 2002, and use the pieces of sensor information for accident analysis etc.
It should be noted that when client device 2002 receives a sensor information transmission request from server 2001, client device 2002 may refuse to transmit sensor information. Additionally, client device 2002 may set in advance which pieces of sensor information can be transmitted. Alternatively, server 2001 may inquire of client device 2002 each time whether sensor information can be transmitted.
A point may be given to client device 2002 that has transmitted sensor information to server 2001. This point can be used in payment for, for example, gasoline expenses, electric vehicle (EV) charging expenses, a highway toll, or rental car expenses. After obtaining sensor information, server 2001 may delete information for specifying client device 2002 that has transmitted the sensor information. For example, this information is a network address of client device 2002. Since this enables the anonymization of sensor information, a user of client device 2002 can securely transmit sensor information from client device 2002 to server 2001. Server 2001 may include servers. For example, by servers sharing sensor information, even when one of the servers breaks down, the other servers can communicate with client device 2002. Accordingly, it is possible to avoid service outage due to a server breakdown.
A specified location specified by a sensor information transmission request indicates an accident occurrence location etc., and may be different from a position of client device 2002 at a specified time specified by the sensor information transmission request. For this reason, for example, by specifying, as a specified location, a range such as within XX meters of a surrounding area, server 2001 can request information from client device 2002 within the range. Similarly, server 2001 may also specify, as a specified time, a range such as within N seconds before and after a certain time. As a result, server 2001 can obtain sensor information from client device 2002 present for a time from t−N to t+N and in a location within XX meters from absolute position S. When client device 2002 transmits three-dimensional data such as LiDAR, client device 2002 may transmit data created immediately after time t.
Server 2001 may separately specify information indicating, as a specified location, a location of client device 2002 from which sensor information is to be obtained, and a location at which sensor information is desirably obtained. For example, server 2001 specifies that sensor information including at least a range within YY meters from absolute position S is to be obtained from client device 2002 present within XX meters from absolute position S. When client device 2002 selects three-dimensional data to be transmitted, client device 2002 selects one or more pieces of three-dimensional data so that the one or more pieces of three-dimensional data include at least the sensor information including the specified range. Each of the one or more pieces of three-dimensional data is a random-accessible unit of data. In addition, when client device 2002 transmits a visible light image, client device 2002 may transmit pieces of temporally continuous image data including at least a frame immediately before or immediately after time t.
When client device 2002 can use physical networks such as 5G, Wi-Fi, or modes in 5G for transmitting sensor information, client device 2002 may select a network to be used according to the order of priority notified by server 2001. Alternatively, client device 2002 may select a network that enables client device 2002 to ensure an appropriate bandwidth based on the size of transmit data. Alternatively, client device 2002 may select a network to be used, based on data transmission expenses etc. A transmission request from server 2001 may include information indicating a transmission deadline, for example, performing transmission when client device 2002 can start transmission by time t. When server 2001 cannot obtain sufficient sensor information within a time limit, server 2001 may issue a transmission request again.
Sensor information may include header information indicating characteristics of sensor data along with compressed or uncompressed sensor data. Client device 2002 may transmit header information to server 2001 via a physical network or a communication protocol that is different from a physical network or a communication protocol used for sensor data. For example, client device 2002 transmits header information to server 2001 prior to transmitting sensor data. Server 2001 determines whether to obtain the sensor data of client device 2002, based on a result of analysis of the header information. For example, header information may include information indicating a point cloud obtainment density, an elevation angle, or a frame rate of LiDAR, or information indicating, for example, a resolution, an SN ratio, or a frame rate of a visible light image. Accordingly, server 2001 can obtain the sensor information from client device 2002 having the sensor data of determined quality.
As stated above, client device 2002 is provided in the mobile object, obtains sensor information that has been obtained by a sensor provided in the mobile object and indicates a surrounding state of the mobile object, and stores the sensor information into storage 2012. Client device 2002 determines whether the mobile object is present in an environment in which the mobile object is capable of transmitting the sensor information to server 2001, and transmits the sensor information to server 2001 when the mobile object is determined to be present in the environment in which the mobile object is capable of transmitting the sensor information to server 2001.
Additionally, client device 2002 further creates, from the sensor information, three-dimensional data of a surrounding area of the mobile object, and estimates a self-location of the mobile object using the three-dimensional data created.
Besides, client device 2002 further transmits a transmission request for a three-dimensional map to server 2001, and receives the three-dimensional map from server 2001. In the estimating, client device 2002 estimates the self-location using the three-dimensional data and the three-dimensional map.
It should be noted that the above process performed by client device 2002 may be realized as an information transmission method for use in client device 2002.
In addition, client device 2002 may include a processor and memory. Using the memory, the processor may perform the above process.
Next, a sensor information collection system according to the present embodiment will be described.
Data collection server 2024 collects data such as sensor data obtained by a sensor included in terminal 2021 as position-related data in which the data is associated with a position in a three-dimensional space.
Sensor data is data obtained by, for example, detecting a surrounding state of terminal 2021 or an internal state of terminal 2021 using a sensor included in terminal 2021. Terminal 2021 transmits, to data collection server 2024, one or more pieces of sensor data collected from one or more sensor devices in locations at which direct communication with terminal 2021 is possible or at which communication with terminal 2021 is possible by the same communication system or via one or more relay devices.
Data included in position-related data may include, for example, information indicating an operating state, an operating log, a service use state, etc. of a terminal or a device included in the terminal. In addition, the data include in the position-related data may include, for example, information in which an identifier of terminal 2021 is associated with a position or a movement path etc. of terminal 2021.
Information indicating a position included in position-related data is associated with, for example, information indicating a position in three-dimensional data such as three-dimensional map data. The details of information indicating a position will be described later.
Position-related data may include at least one of the above-described time information or information indicating an attribute of data included in the position-related data or a type (e.g., a model number) of a sensor that has created the data, in addition to position information that is information indicating a position. The position information and the time information may be stored in a header area of the position-related data or a header area of a frame that stores the position-related data. Further, the position information and the time information may be transmitted and/or stored as metadata associated with the position-related data, separately from the position-related data.
Map server 2025 is connected to, for example, network 2023, and transmits three-dimensional data such as three-dimensional map data in response to a request from another device such as terminal 2021. Besides, as described in the aforementioned embodiments, map server 2025 may have, for example, a function of updating three-dimensional data using sensor information transmitted from terminal 2021.
Data collection server 2024 is connected to, for example, network 2023, collects position-related data from another device such as terminal 2021, and stores the collected position-related data into a storage of data collection server 2024 or a storage of another server. In addition, data collection server 2024 transmits, for example, metadata of collected position-related data or three-dimensional data generated based on the position-related data, to terminal 2021 in response to a request from terminal 2021.
Network 2023 is, for example, a communication network such as the Internet. Terminal 2021 is connected to network 2023 via communication device 2022. Communication device 2022 communicates with terminal 2021 using one communication system or switching between communication systems. Communication device 2022 is a communication satellite that performs communication using, for example, (1) a base station compliant with Long-Term Evolution (LTE) etc., (2) an access point (AP) for Wi-Fi or millimeter-wave communication etc., (3) a low-power wide-area (LPWA) network gateway such as SIGFOX, LoRaWAN, or Wi-SUN, or (4) a satellite communication system such as DVB-S2.
It should be noted that a base station may communicate with terminal 2021 using a system classified as an LPWA network such as Narrowband Internet of Things (NB IoT) or LTE-M, or switching between these systems.
Here, although, in the example given, terminal 2021 has a function of communicating with communication device 2022 that uses two types of communication systems, and communicates with map server 2025 or data collection server 2024 using one of the communication systems or switching between the communication systems and between communication devices 2022 to be a direct communication partner; a configuration of the sensor information collection system and terminal 2021 is not limited to this. For example, terminal 2021 need not have a function of performing communication using communication systems, and may have a function of performing communication using one of the communication systems. Terminal 2021 may also support three or more communication systems. Additionally, each terminal 2021 may support a different communication system.
Terminal 2021 includes, for example, the configuration of client device 902 illustrated in
Position information appended to position-related data indicates, for example, a position in a coordinate system used for three-dimensional data. For example, the position information is coordinate values represented using a value of a latitude and a value of a longitude. Here, terminal 2021 may include, in the position information, a coordinate system serving as a reference for the coordinate values and information indicating three-dimensional data used for location estimation, along with the coordinate values. Coordinate values may also include altitude information.
The position information may be associated with a data unit or a space unit usable for encoding the above three-dimensional data. Such a unit is, for example, WLD, GOS, SPC, VLM, or VXL. Here, the position information is represented by, for example, an identifier for identifying a data unit such as the SPC corresponding to position-related data. It should be noted that the position information may include, for example, information indicating three-dimensional data obtained by encoding a three-dimensional space including a data unit such as the SPC or information indicating a detailed position within the SPC, in addition to the identifier for identifying the data unit such as the SPC. The information indicating the three-dimensional data is, for example, a file name of the three-dimensional data.
As stated above, by generating position-related data associated with position information based on location estimation using three-dimensional data, the system can give more accurate position information to sensor information than when the system appends position information based on a self-location of a client device (terminal 2021) obtained using a GPS to sensor information. As a result, even when another device uses the position-related data in another service, there is a possibility of more accurately determining a position corresponding to the position-related data in an actual space, by performing location estimation based on the same three-dimensional data.
It should be noted that although the data transmitted from terminal 2021 is the position-related data in the example given in the present embodiment, the data transmitted from terminal 2021 may be data unassociated with position information. In other words, the transmission and reception of three-dimensional data or sensor data described in the other embodiments may be performed via network 2023 described in the present embodiment.
Next, a different example of position information indicating a position in a three-dimensional or two-dimensional actual space or in a map space will be described. The position information appended to position-related data may be information indicating a relative position relative to a keypoint in three-dimensional data. Here, the keypoint serving as a reference for the position information is encoded as, for example, SWLD, and notified to terminal 2021 as three-dimensional data.
The information indicating the relative position relative to the keypoint may be, for example, information that is represented by a vector from the keypoint to the point indicated by the position information, and indicates a direction and a distance from the keypoint to the point indicated by the position information. Alternatively, the information indicating the relative position relative to the keypoint may be information indicating an amount of displacement from the keypoint to the point indicated by the position information along each of the x axis, the y axis, and the z axis. Additionally, the information indicating the relative position relative to the keypoint may be information indicating a distance from each of three or more keypoints to the point indicated by the position information. It should be noted that the relative position need not be a relative position of the point indicated by the position information represented using each keypoint as a reference, and may be a relative position of each keypoint represented with respect to the point indicated by the position information. Examples of position information based on a relative position relative to a keypoint include information for identifying a keypoint to be a reference, and information indicating the relative position of the point indicated by the position information and relative to the keypoint. When the information indicating the relative position relative to the keypoint is provided separately from three-dimensional data, the information indicating the relative position relative to the keypoint may include, for example, coordinate axes used in deriving the relative position, information indicating a type of the three-dimensional data, and/or information indicating a magnitude per unit amount (e.g., a scale) of a value of the information indicating the relative position.
The position information may include, for each keypoint, information indicating a relative position relative to the keypoint. When the position information is represented by relative positions relative to keypoints, terminal 2021 that intends to identify a position in an actual space indicated by the position information may calculate candidate points of the position indicated by the position information from positions of the keypoints each estimated from sensor data, and may determine that a point obtained by averaging the calculated candidate points is the point indicated by the position information. Since this configuration reduces the effects of errors when the positions of the keypoints are estimated from the sensor data, it is possible to improve the estimation accuracy for the point in the actual space indicated by the position information. Besides, when the position information includes information indicating relative positions relative to keypoints, if it is possible to detect any one of the keypoints regardless of the presence of keypoints undetectable due to a limitation such as a type or performance of a sensor included in terminal 2021, it is possible to estimate a value of the point indicated by the position information.
A point identifiable from sensor data can be used as a keypoint. Examples of the point identifiable from the sensor data include a point or a point within a region that satisfies a predetermined keypoint detection condition, such as the above-described three-dimensional feature or feature of visible light data is greater than or equal to a threshold value.
Moreover, a marker etc. placed in an actual space may be used as a keypoint. In this case, the maker may be detected and located from data obtained using a sensor such as LiDAR or a camera. For example, the marker may be represented by a change in color or luminance value (degree of reflection), or a three-dimensional shape (e.g., unevenness). Coordinate values indicating a position of the marker, or a two-dimensional bar code or a bar code etc. generated from an identifier of the marker may be also used.
Furthermore, a light source that transmits an optical signal may be used as a marker. When a light source of an optical signal is used as a marker, not only information for obtaining a position such as coordinate values or an identifier but also other data may be transmitted using an optical signal. For example, an optical signal may include contents of service corresponding to the position of the marker, an address for obtaining contents such as a URL, or an identifier of a wireless communication device for receiving service, and information indicating a wireless communication system etc. for connecting to the wireless communication device. The use of an optical communication device (a light source) as a marker not only facilitates the transmission of data other than information indicating a position but also makes it possible to dynamically change the data.
Terminal 2021 finds out a correspondence relationship of keypoints between mutually different data using, for example, a common identifier used for the data, or information or a table indicating the correspondence relationship of the keypoints between the data. When there is no information indicating a correspondence relationship between keypoints, terminal 2021 may also determine that when coordinates of a keypoint in three-dimensional data are converted into a position in a space of another three-dimensional data, a keypoint closest to the position is a corresponding keypoint.
When the position information based on the relative position described above is used, terminal 2021 that uses mutually different three-dimensional data or services can identify or estimate a position indicated by the position information with respect to a common keypoint included in or associated with each three-dimensional data. As a result, terminal 2021 that uses the mutually different three-dimensional data or the services can identify or estimate the same position with higher accuracy.
Even when map data or three-dimensional data represented using mutually different coordinate systems are used, since it is possible to reduce the effects of errors caused by the conversion of a coordinate system, it is possible to coordinate services based on more accurate position information.
Hereinafter, an example of functions provided by data collection server 2024 will be described. Data collection server 2024 may transfer received position-related data to another data server. When there are data servers, data collection server 2024 determines to which data server received position-related data is to be transferred, and transfers the position-related data to a data server determined as a transfer destination.
Data collection server 2024 determines a transfer destination based on, for example, transfer destination server determination rules preset to data collection server 2024. The transfer destination server determination rules are set by, for example, a transfer destination table in which identifiers respectively associated with terminals 2021 are associated with transfer destination data servers.
Terminal 2021 appends an identifier associated with terminal 2021 to position-related data to be transmitted, and transmits the position-related data to data collection server 2024. Data collection server 2024 determines a transfer destination data server corresponding to the identifier appended to the position-related data, based on the transfer destination server determination rules set out using the transfer destination table etc.; and transmits the position-related data to the determined data server. The transfer destination server determination rules may be specified based on a determination condition set using a time, a place, etc. at which position-related data is obtained. Here, examples of the identifier associated with transmission source terminal 2021 include an identifier unique to each terminal 2021 or an identifier indicating a group to which terminal 2021 belongs.
The transfer destination table need not be a table in which identifiers associated with transmission source terminals are directly associated with transfer destination data servers. For example, data collection server 2024 holds a management table that stores tag information assigned to each identifier unique to terminal 2021, and a transfer destination table in which the pieces of tag information are associated with transfer destination data servers. Data collection server 2024 may determine a transfer destination data server based on tag information, using the management table and the transfer destination table. Here, the tag information is, for example, control information for management or control information for providing service assigned to a type, a model number, an owner of terminal 2021 corresponding to the identifier, a group to which terminal 2021 belongs, or another identifier. Moreover, in the transfer destination able, identifiers unique to respective sensors may be used instead of the identifiers associated with transmission source terminals 2021. Furthermore, the transfer destination server determination rules may be set by client device 2026.
Data collection server 2024 may determine data servers as transfer destinations, and transfer received position-related data to the data servers. According to this configuration, for example, when position-related data is automatically backed up or when, in order that position-related data is commonly used by different services, there is a need to transmit the position-related data to a data server for providing each service, it is possible to achieve data transfer as intended by changing a setting of data collection server 2024. As a result, it is possible to reduce the number of steps necessary for building and changing a system, compared to when a transmission destination of position-related data is set for each terminal 2021.
Data collection server 2024 may register, as a new transfer destination, a data server specified by a transfer request signal received from a data server; and transmit position-related data subsequently received to the data server, in response to the transfer request signal.
Data collection server 2024 may store position-related data received from terminal 2021 into a recording device, and transmit position-related data specified by a transmission request signal received from terminal 2021 or a data server to request source terminal 2021 or the data server in response to the transmission request signal.
Data collection server 2024 may determine whether position-related data is suppliable to a request source data server or terminal 2021, and transfer or transmit the position-related data to the request source data server or terminal 2021 when determining that the position-related data is suppliable. When data collection server 2024 receives a request for current position-related data from client device 2026, even if it is not a timing for transmitting position-related data by terminal 2021, data collection server 2024 may send a transmission request for the current position-related data to terminal 2021, and terminal 2021 may transmit the current position-related data in response to the transmission request.
Although terminal 2021 transmits position information data to data collection server 2024 in the above description, data collection server 2024 may have a function of managing terminal 2021 such as a function necessary for collecting position-related data from terminal 2021 or a function used when collecting position-related data from terminal 2021.
Data collection server 2024 may have a function of transmitting, to terminal 2021, a data request signal for requesting transmission of position information data, and collecting position-related data.
Management information such as an address for communicating with terminal 2021 from which data is to be collected or an identifier unique to terminal 2021 is registered in advance in data collection server 2024. Data collection server 2024 collects position-related data from terminal 2021 based on the registered management information. Management information may include information such as types of sensors included in terminal 2021, the number of sensors included in terminal 2021, and communication systems supported by terminal 2021.
Data collection server 2024 may collect information such as an operating state or a current position of terminal 2021 from terminal 2021.
Registration of management information may be instructed by client device 2026, or a process for the registration may be started by terminal 2021 transmitting a registration request to data collection server 2024. Data collection server 2024 may have a function of controlling communication between data collection server 2024 and terminal 2021.
Communication between data collection server 2024 and terminal 2021 may be established using a dedicated line provided by a service provider such as a mobile network operator (MNO) or a mobile virtual network operator (MVNO), or a virtual dedicated line based on a virtual private network (VPN). According to this configuration, it is possible to perform secure communication between terminal 2021 and data collection server 2024.
Data collection server 2024 may have a function of authenticating terminal 2021 or a function of encrypting data to be transmitted and received between data collection server 2024 and terminal 2021. Here, the authentication of terminal 2021 or the encryption of data is performed using, for example, an identifier unique to terminal 2021 or an identifier unique to a terminal group including terminals 2021, which is shared in advance between data collection server 2024 and terminal 2021. Examples of the identifier include an international mobile subscriber identity (IMSI) that is a unique number stored in a subscriber identity module (SIM) card. An identifier for use in authentication and an identifier for use in encryption of data may be identical or different.
The authentication or the encryption of data between data collection server 2024 and terminal 2021 is feasible when both data collection server 2024 and terminal 2021 have a function of performing the process. The process does not depend on a communication system used by communication device 2022 that performs relay. Accordingly, since it is possible to perform the common authentication or encryption without considering whether terminal 2021 uses a communication system, the user's convenience of system architecture is increased. However, the expression “does not depend on a communication system used by communication device 2022 that performs relay” means a change according to a communication system is not essential. In other words, in order to improve the transfer efficiency or ensure security, the authentication or the encryption of data between data collection server 2024 and terminal 2021 may be changed according to a communication system used by a relay device.
Data collection server 2024 may provide client device 2026 with a User Interface (UI) that manages data collection rules such as types of position-related data collected from terminal 2021 and data collection schedules. Accordingly, a user can specify, for example, terminal 2021 from which data is to be collected using client device 2026, a data collection time, and a data collection frequency. Additionally, data collection server 2024 may specify, for example, a region on a map from which data is to be desirably collected, and collect position-related data from terminal 2021 included in the region.
When the data collection rules are managed on a per terminal 2021 basis, client device 2026 presents, on a screen, a list of terminals 2021 or sensors to be managed. The user sets, for example, a necessity for data collection or a collection schedule for each item in the list.
When a region on a map from which data is to be desirably collected is specified, client device 2026 presents, on a screen, a two-dimensional or three-dimensional map of a region to be managed. The user selects the region from which data is to be collected on the displayed map. Examples of the region selected on the map include a circular or rectangular region having a point specified on the map as the center, or a circular or rectangular region specifiable by a drag operation. Client device 2026 may also select a region in a preset unit such as a city, an area or a block in a city, or a main road, etc. Instead of specifying a region using a map, a region may be set by inputting values of a latitude and a longitude, or a region may be selected from a list of candidate regions derived based on inputted text information. Text information is, for example, a name of a region, a city, or a landmark.
Moreover, data may be collected while the user dynamically changes a specified region by specifying one or more terminals 2021 and setting a condition such as within 100 meters of one or more terminals 2021.
When client device 2026 includes a sensor such as a camera, a region on a map may be specified based on a position of client device 2026 in an actual space obtained from sensor data. For example, client device 2026 may estimate a self-location using sensor data, and specify, as a region from which data is to be collected, a region within a predetermined distance from a point on a map corresponding to the estimated location or a region within a distance specified by the user. Client device 2026 may also specify, as the region from which the data is to be collected, a sensing region of the sensor, that is, a region corresponding to obtained sensor data. Alternatively, client device 2026 may specify, as the region from which the data is to be collected, a region based on a location corresponding to sensor data specified by the user. Either client device 2026 or data collection server 2024 may estimate a region on a map or a location corresponding to sensor data.
When a region on a map is specified, data collection server 2024 may specify terminal 2021 within the specified region by collecting current position information of each terminal 2021, and may send a transmission request for position-related data to specified terminal 2021. When data collection server 2024 transmits information indicating a specified region to terminal 2021, determines whether terminal 2021 is present within the specified region, and determines that terminal 2021 is present within the specified region, rather than specifying terminal 2021 within the region, terminal 2021 may transmit position-related data.
Data collection server 2024 transmits, to client device 2026, data such as a list or a map for providing the above-described User Interface (UI) in an application executed by client device 2026. Data collection server 2024 may transmit, to client device 2026, not only the data such as the list or the map but also an application program. Additionally, the above UI may be provided as contents created using HTML displayable by a browser. It should be noted that part of data such as map data may be supplied from a server, such as map server 2025, other than data collection server 2024.
When client device 2026 receives an input for notifying the completion of an input such as pressing of a setup key by the user, client device 2026 transmits the inputted information as configuration information to data collection server 2024. Data collection server 2024 transmits, to each terminal 2021, a signal for requesting position-related data or notifying position-related data collection rules, based on the configuration information received from client device 2026, and collects the position-related data.
Next, an example of controlling operation of terminal 2021 based on additional information added to three-dimensional or two-dimensional map data will be described.
In the present configuration, object information that indicates a position of a power feeding part such as a feeder antenna or a feeder coil for wireless power feeding buried under a road or a parking lot is included in or associated with three-dimensional data, and such object information is provided to terminal 2021 that is a vehicle or a drone.
A vehicle or a drone that has obtained the object information to get charged automatically moves so that a position of a charging part such as a charging antenna or a charging coil included in the vehicle or the drone becomes opposite to a region indicated by the object information, and such vehicle or a drone starts to charge itself. It should be noted that when a vehicle or a drone has no automatic driving function, a direction to move in or an operation to perform is presented to a driver or an operator by using an image displayed on a screen, audio, etc. When a position of a charging part calculated based on an estimated self-location is determined to fall within the region indicated by the object information or a predetermined distance from the region, an image or audio to be presented is changed to a content that puts a stop to driving or operating, and the charging is started.
Object information need not be information indicating a position of a power feeding part, and may be information indicating a region within which placement of a charging part results in a charging efficiency greater than or equal to a predetermined threshold value. A position indicated by object information may be represented by, for example, the central point of a region indicated by the object information, a region or a line within a two-dimensional plane, or a region, a line, or a plane within a three-dimensional space.
According to this configuration, since it is possible to identify the position of the power feeding antenna unidentifiable by sensing data of LiDAR or an image captured by the camera, it is possible to highly accurately align a wireless charging antenna included in terminal 2021 such as a vehicle with a wireless power feeding antenna buried under a road. As a result, it is possible to increase a charging speed at the time of wireless charging and improve the charging efficiency.
Object information may be an object other than a power feeding antenna. For example, three-dimensional data includes, for example, a position of an AP for millimeter-wave wireless communication as object information. Accordingly, since terminal 2021 can identify the position of the AP in advance, terminal 2021 can steer a directivity of beam to a direction of the object information and start communication. As a result, it is possible to improve communication quality such as increasing transmission rates, reducing the duration of time before starting communication, and extending a communicable period.
Object information may include information indicating a type of an object corresponding to the object information. In addition, when terminal 2021 is present within a region in an actual space corresponding to a position in three-dimensional data of the object information or within a predetermined distance from the region, the object information may include information indicating a process to be performed by terminal 2021.
Object information may be provided by a server different from a server that provides three-dimensional data. When object information is provided separately from three-dimensional data, object groups in which object information used by the same service is stored may be each provided as separate data according to a type of a target service or a target device.
Three-dimensional data used in combination with object information may be point cloud data of WLD or keypoint data of SWLD.
In the three-dimensional data encoding device, when attribute information of a current three-dimensional point to be encoded is layer-encoded using Levels of Detail (LoDs), the three-dimensional data decoding device may decode the attribute information in layers down to LoD required by the three-dimensional data decoding device and need not decode the attribute information in layers not required. For example, when the total number of LoDs for the attribute information in a bitstream generated by the three-dimensional data encoding device is N, the three-dimensional data decoding device may decode M LoDs (M<N), i.e., layers from the uppermost layer LoD0 to LoD(M−1), and need not decode the remaining LoDs, i.e., layers down to LoD(N−1). With this, while reducing the processing load, the three-dimensional data decoding device can decode the attribute information in layers from LoD0 to LoD(M−1) required by the three-dimensional data decoding device.
The following describes an example of the operation in this case. First, the server encodes the geometry information of the three-dimensional map using an octree structure or the like. Then, the sever layer-encodes the attribute information of the three-dimensional map using N LoDs established based on the geometry information. The server stores a bitstream of the three-dimensional map obtained by the layer-encoding.
Next, in response to a send request for the map information from the client device in the area managed by the server, the server sends the bitstream of the encoded three-dimensional map to the client device.
The client device receives the bitstream of the three-dimensional map sent from the server, and decodes the geometry information and the attribute information of the three-dimensional map in accordance with the intended use of the client device. For example, when the client device performs highly accurate estimation of the self-position using the geometry information and the attribute information in N LoDs, the client device determines that a decoding result to the dense three-dimensional points is necessary as the attribute information, and decodes all the information in the bitstream.
Moreover, when the client device displays the three-dimensional map information to a user or the like, the client device determines that a decoding result to the sparse three-dimensional points is necessary as the attribute information, and decodes the geometry information and the attribute information in M LoDs (M<N) starting from an upper layer LoD0.
In this way, the processing load of the client device can be reduced by changing LoDs for the attribute information to be decoded in accordance with the intended use of the client device.
In the example shown in
Client device A performs highly accurate estimation of the self-position. In this case, client device A determines that all the geometry information and all the attribute information are necessary, and decodes all the geometry information and all the attribute information constructed from N LoDs in the bitstream.
Client device B displays the three-dimensional map to a user. In this case, client device B determines that the geometry information and the attribute information in M LoDs (M<N) are necessary, and decodes the geometry information and the attribute information constructed from M LoDs in the bitstream.
It is to be noted that the server may broadcast the three-dimensional map to the client devices, or multicast or unicast the three-dimensional map to the client devices.
The following describes a variation of the system according to the present embodiment. In the three-dimensional data encoding device, when attribute information of a current three-dimensional point to be encoded is layer-encoded using LoDs, the three-dimensional data encoding device may encode the attribute information in layers down to LoD required by the three-dimensional data decoding device and need not encode the attribute information in layers not required. For example, when the total number of LoDs is N, the three-dimensional data encoding device may generate a bitstream by encoding M LoDs (M<N), i.e., layers from the uppermost layer LoD0 to LoD(M−1), and not encoding the remaining LoDs, i.e., layers down to LoD(N−1). With this, in response to a request from the three-dimensional data decoding device, the three-dimensional data encoding device can provide a bitstream in which the attribute information from LoD0 to LoD(M−1) required by the three-dimensional data decoding device is encoded.
The following describes an example of the operation in this case. First, the server encodes the geometry information of the three-dimensional map using an octree structure, or the like. Then, the sever generates a bitstream of three-dimensional map A by layer-encoding the attribute information of the three-dimensional map using N LoDs established based on the geometry information, and stores the generated bitstream in the server. The sever also generates a bitstream of three-dimensional map B by layer-encoding the attribute information of the three-dimensional map using M LoDs (M<N) established based on the geometry information, and stores the generated bitstream in the server.
Next, the client device requests the server to send the three-dimensional map in accordance with the intended use of the client device. For example, when the client device performs highly accurate estimation of the self-position using the geometry information and the attribute information in N LoDs, the client device determines that a decoding result to the dense three-dimensional points is necessary as the attribute information, and requests the server to send the bitstream of three-dimensional map A. Moreover, when the client device displays the three-dimensional map information to a user or the like, the client device determines that a decoding result to the sparse three-dimensional points is necessary as the attribute information, and requests the server to send the bitstream of three-dimensional map B including the geometry information and the attribute information in M LoDs (M<N) starting from an upper layer LoD0. Then, in response to the send request for the map information from the client device, the server sends the bitstream of encoded three-dimensional map A or B to the client device.
The client device receives the bitstream of three-dimensional map A or B sent from the server in accordance with the intended use of the client device, and decodes the received bitstream. In this way, the server changes a bitstream to be sent, in accordance with the intended use of the client device. With this, it is possible to reduce the processing load of the client device.
In the example shown in
The server also generates three-dimensional map B by encoding the geometry information of the three-dimensional map using, for example, an octree structure, and encoding the attribute information of the three-dimensional map using M LoDs. In other words, NumLoD included in the bitstream of three-dimensional map B indicates M.
Client device A performs highly accurate estimation of the self-position. In this case, client device A determines that all the geometry information and all the attribute information are necessary, and requests the server to send three-dimensional map A including all the geometry information and the attribute information constructed from N LoDs. Client device A receives three-dimensional map A, and decodes all the geometry information and the attribute information constructed from N LoDs.
Client device B displays the three-dimensional map to a user. In this case, client device B determines that all the geometry information and the attribute information in M LoDs (M<N) are necessary, and requests the server to send three-dimensional map B including all the geometry information and the attribute information constructed from M LoDs. Client device B receives three-dimensional map B, and decodes all the geometry information and the attribute information constructed from M LoDs.
It is to be noted that in addition to three-dimensional map B, the server (the three-dimensional data encoding device) may generate three-dimensional map C in which attribute information in the remaining N-M LoDs is encoded, and send three-dimensional map C to client device B in response to the request from client device B. Moreover, client device B may obtain the decoding result of N LoDs using the bitstreams of three-dimensional maps B and C.
Hereinafter, an example of an application process will be described.
Next, the three-dimensional data demultiplexing device analyzes the general configuration information in the ISOBMFF file, and specifies the data to be used for the application (S7302). For example, the three-dimensional data demultiplexing device obtains data that is used for processing, and does not obtain data that is not used for processing.
Next, the three-dimensional data demultiplexing device extracts one or more pieces of data to be used for the application, and analyzes the configuration information on the data (S7303).
When the type of the data is encoded data (encoded data in S7304), the three-dimensional data demultiplexing device converts the ISOBMFF to an encoded stream, and extracts a timestamp (S7305). Additionally, the three-dimensional data demultiplexing device refers to, for example, the flag indicating whether or not the synchronization between data is aligned to determine whether or not the synchronization between data is aligned, and may perform a synchronization process when not aligned.
Next, the three-dimensional data demultiplexing device decodes the data with a predetermined method according to the timestamp and the other instructions, and processes the decoded data (S7306).
On the other hand, when the type of the data is RAW data (RAW data in S7304), the three-dimensional data demultiplexing device extracts the data and timestamp (S7307). Additionally, the three-dimensional data demultiplexing device may refer to, for example, the flag indicating whether or not the synchronization between data is aligned to determine whether or not the synchronization between data is aligned, and may perform a synchronization process when not aligned. Next, the three-dimensional data demultiplexing device processes the data according to the timestamp and the other instructions (S7308).
For example, an example will be described in which the sensor signals obtained by a beam LiDAR, a FLASH LiDAR, and a camera are encoded and multiplexed with respective different encoding schemes.
In the case of an application that integrally handles a LiDAR point cloud, the three-dimensional data demultiplexing device refers to the general configuration information, and extracts and decodes the encoded data of the beam LiDAR and the FLASH LiDAR. Additionally, the three-dimensional data demultiplexing device does not extract camera images.
According to the timestamps of the beam LiDAR and the FLASH LiDAR, the three-dimensional data demultiplexing device simultaneously processes the respective encoded data of the time of the same timestamp.
For example, the three-dimensional data demultiplexing device may present the processed data with a presentation device, may synthesize the point cloud data of the beam LiDAR and the FLASH LiDAR, or may perform a process such as rendering.
Additionally, in the case of an application that performs calibration between data, the three-dimensional data demultiplexing device may extract sensor geometry information, and use the sensor geometry information in the application.
For example, the three-dimensional data demultiplexing device may select whether to use beam LiDAR information or FLASH LiDAR information in the application, and may switch the process according to the selection result.
In this manner, since it is possible to adaptively change the obtaining of data and the encoding process according to the process of the application, the processing amount and the power consumption can be reduced.
Hereinafter, a use case in automated driving will be described.
In this system, edge 7360 downloads large data, which is large point-cloud map data accumulated in cloud server 7350. Edge 7360 performs a self-position estimation process of edge 7360 (a vehicle or a terminal) by matching the large data with the sensor information obtained by edge 7360. Additionally, edge 7360 uploads the obtained sensor information to cloud server 7350, and updates the large data to the latest map data.
Additionally, in various applications that handle point cloud data in the system, point cloud data with different encoding methods are handled.
Cloud server 7350 encodes and multiplexes large data. Specifically, encoder 7357 performs encoding by using a third encoding method suitable for encoding a large point cloud. Additionally, encoder 7357 multiplexes encoded data. Large data accumulator 7354 accumulates the data encoded and multiplexed by encoder 7357.
Edge 7360 performs sensing. Specifically, point cloud data generator 7362A generates first point cloud data (geometry information (geometry) and attribute information) by using the sensing information obtained by sensor 7361A. Point cloud data generator 7362B generates second point cloud data (geometry information and attribute information) by using the sensing information obtained by sensor 7361B. The generated first point cloud data and second point cloud data are used for the self-position estimation or vehicle control of automated driving, or for map updating. In each process, a part of information of the first point cloud data and the second point cloud data may be used.
Edge 7360 performs the self-position estimation. Specifically, edge 7360 downloads large data from cloud server 7350. Demultiplexer 7367 obtains encoded data by demultiplexing the large data in a file format. Decoder 7368 obtains large data, which is large point-cloud map data, by decoding the obtained encoded data.
Self-position estimator 7370 estimates the self-position in the map of a vehicle by matching the obtained large data with the first point cloud data and the second point cloud data generated by point cloud data generators 7362A and 7362B. Additionally, driving controller 7371 uses the matching result or the self-position estimation result for driving control.
Note that self-position estimator 7370 and driving controller 7371 may extract specific information, such as geometry information, of the large data, and may perform processes by using the extracted information. Additionally, filter 7369 performs a process such as correction or decimation on the first point cloud data and the second point cloud data. Self-position estimator 7370 and driving controller 7371 may use the first point cloud data and second point cloud data on which the process has been performed. Additionally, self-position estimator 7370 and driving controller 7371 may use the sensor signals obtained by sensors 7361A and 7361B.
Synchronizer 7363 performs time synchronization and geometry correction between a plurality of sensor signals or the pieces of data of a plurality of pieces of point cloud data. Additionally, synchronizer 7363 may correct the geometry information on the sensor signal or point cloud data to match the large data, based on geometry correction information on the large data and sensor data generated by the self-position estimation process.
Note that synchronization and geometry correction may be performed not by edge 7360, but by cloud server 7350. In this case, edge 7360 may multiplex the synchronization information and the geometry information to transmit the synchronization information and the geometry information to cloud server 7350.
Edge 7360 encodes and multiplexes the sensor signal or point cloud data. Specifically, the sensor signal or point cloud data is encoded by using a first encoding method or a second encoding method suitable for encoding each signal. For example, encoder 7364A generates first encoded data by encoding first point cloud data by using the first encoding method. Encoder 7364B generates second encoded data by encoding second point cloud data by using the second encoding method.
Multiplexer 7365 generates a multiplexed signal by multiplexing the first encoded data, the second encoded data, the synchronization information, and the like. Update data accumulator 7366 accumulates the generated multiplexed signal. Additionally, update data accumulator 7366 uploads the multiplexed signal to cloud server 7350.
Cloud server 7350 synthesizes the point cloud data. Specifically, demultiplexer 7351 obtains the first encoded data and the second encoded data by demultiplexing the multiplexed signal uploaded to cloud server 7350. Decoder 7352A obtains the first point cloud data (or sensor signal) by decoding the first encoded data. Decoder 7352B obtains the second point cloud data (or sensor signal) by decoding the second encoded data.
Point cloud data synthesizer 7353 synthesizes the first point cloud data and the second point cloud data with a predetermined method. When the synchronization information and the geometry correction information are multiplexed in the multiplexed signal, point cloud data synthesizer 7353 may perform synthesis by using these pieces of information.
Decoder 7355 demultiplexes and decodes the large data accumulated in large data accumulator 7354. Comparator 7356 compares the point cloud data generated based on the sensor signal obtained by edge 7360 with the large data held by cloud server 7350, and determines the point cloud data that needs to be updated. Comparator 7356 updates the point cloud data that is determined to need to be updated of the large data to the point cloud data obtained from edge 7360.
Encoder 7357 encodes and multiplexes the updated large data, and accumulates the obtained data in large data accumulator 7354.
As described above, the signals to be handled may be different, and the signals to be multiplexed or encoding methods may be different, according to the usage or applications to be used. Even in such a case, flexible decoding and application processes are enabled by multiplexing data of various encoding schemes by using the present embodiment. Additionally, even in a case where the encoding schemes of signals are different, by conversion to an encoding scheme suitable for demultiplexing, decoding, data conversion, encoding, and multiplexing processing, it becomes possible to build various applications and systems, and to offer of flexible services.
Hereinafter, an example of decoding and application of divided data will be described. First, the information on divided data will be described.
Note that the general information of divided data illustrated in
The general information of divided data may be stored in SPS, GPS, or APS, which is the metadata, or may be stored in SEI, which is the metadata not required for encoding. Additionally, at the time of multiplexing, the three-dimensional data encoding device stores the SEI in a file of ISOBMFF. The three-dimensional data decoding device can obtain desired divided data based on the metadata.
In
Next, an application example of divided data will be described. An example of application will be described in which an arbitrary point cloud is selected, and the selected point cloud is presented.
As illustrated in
First, based on an operation by the user on input UI 8661, the point cloud information that the user wants to display is selected (S8631). Specifically, by selecting button 8663, the point cloud based on sensor 1 is selected. By selecting button 8664, the point cloud based on sensor 2 is selected. Alternatively, by selecting both button 8663 and button 8664, the point cloud based on sensor 1 and the point cloud based on sensor 2 are selected. Note that it is an example of the selection method of point cloud, and it is not limited to this.
Next, the three-dimensional data decoding device analyzes the general information of divided data included in the multiplexed signal (bitstream) or encoded data, and specifies the data ID (data_id) of the divided data constituting the selected point cloud from the sensor ID (sensor_id) of the selected sensor (S8632). Next, the three-dimensional data decoding device extracts, from the multiplexed signal, the encoded data including the specified and desired data ID, and decodes the extracted encoded data to decode the point cloud based on the selected sensor (S8633). Note that the three-dimensional data decoding device does not decode the other encoded data.
Lastly, the three-dimensional data decoding device presents (for example, displays) the decoded point cloud (S8634).
A three-dimensional data encoding device, a three-dimensional data decoding device, and the like according to the embodiments of the present disclosure have been described above, but the present disclosure is not limited to these embodiments.
Note that each of the processors included in the three-dimensional data encoding device, the three-dimensional data decoding device, and the like according to the above embodiments is typically implemented as a large-scale integrated (LSI) circuit, which is an integrated circuit (IC). These may take the form of individual chips, or may be partially or entirely packaged into a single chip.
Such IC is not limited to an LSI, and thus may be implemented as a dedicated circuit or a general-purpose processor. Alternatively, a field programmable gate array (FPGA) that allows for programming after the manufacture of an LSI, or a reconfigurable processor that allows for reconfiguration of the connection and the setting of circuit cells inside an LSI may be employed.
Moreover, in the above embodiments, the structural components may be implemented as dedicated hardware or may be realized by executing a software program suited to such structural components. Alternatively, the structural components may be implemented by a program executor such as a CPU or a processor reading out and executing the software program recorded in a recording medium such as a hard disk or a semiconductor memory.
The present disclosure may also be implemented as a three-dimensional data encoding method, a three-dimensional data decoding method, or the like executed by the three-dimensional data encoding device, the three-dimensional data decoding device, and the like.
Also, the divisions of the functional blocks shown in the block diagrams are mere examples, and thus a plurality of functional blocks may be implemented as a single functional block, or a single functional block may be divided into a plurality of functional blocks, or one or more functions may be moved to another functional block. Also, the functions of a plurality of functional blocks having similar functions may be processed by single hardware or software in a parallelized or time-divided manner.
Also, the processing order of executing the steps shown in the flowcharts is a mere illustration for specifically describing the present disclosure, and thus may be an order other than the shown order. Also, one or more of the steps may be executed simultaneously (in parallel) with another step.
A three-dimensional data encoding device, a three-dimensional data decoding device, and the like according to one or more aspects have been described above based on the embodiments, but the present disclosure is not limited to these embodiments. The one or more aspects may thus include forms achieved by making various modifications to the above embodiments that can be conceived by those skilled in the art, as well forms achieved by combining structural components in different embodiments, without materially departing from the spirit of the present disclosure.
Although only some exemplary embodiments of the present disclosure have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of the present disclosure. Accordingly, all such modifications are intended to be included within the scope of the present disclosure.
The present disclosure is applicable to a three-dimensional data encoding device and a three-dimensional data decoding device.
This application is a U.S. continuation application of PCT International Patent Application Number PCT/JP2021/015215 filed on Apr. 12, 2021, claiming the benefit of priority of U.S. Provisional Patent Application No. 63/009,662 filed on Apr. 14, 2020, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
63009662 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2021/015215 | Apr 2021 | US |
Child | 17964432 | US |