The present application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2008-122103 filed on 8 May 2008, with the Japanese Patent Office, the entire contents of which are incorporated herein by reference.
The disclosures herein generally relate to three-dimensional filters and tunable filter apparatuses using three-dimensional filters, and particularly relate to a three-dimensional filter and a tunable filter apparatus suitable for transmission of high frequency signals.
A bandpass filter designed to be used for a conventional electrical power level may be utilized for a high frequency transmission system using a microwave band in a radio base station. To this end, it is desirable for a bandpass filter to tolerate high electrical power, to have a high Q factor, and to have a passband whose center frequency is variable over a wide range. It is not easy, however, to simultaneously satisfy these conditions.
Among RF filters for use in a base station using frequencies lower than a few GHz, a receiving filter that employs a signal power smaller than a few watts (W) may be one of a coaxial resonator type, a dielectric resonator type, and a superconductor resonator type. Such a receiving filter is not so much required to have a compact size as required to have high frequency selectivity. In term of frequency selectivity, a receiving filter equipped with a resonator circuit utilizing an oxide high-temperature superconductor film is advantageous in that it provides a high unloaded Q factor.
In the case of a superconductor-type transmitting filter using high electrical power, it is not easy to simultaneously achieve size compactness and proper electrical power characteristics (such as power tolerance). This presents a major challenge.
Among various superconducting filters, a filter having a planer-circuit structure has a resonator pattern formed of a superconductive material on a dielectric substrate. Attempts that have been made to achieve size compactness and improve power characteristics for such a planar-circuit-type superconducting filter include:
(a) forming the pattern of the superconductor film of the resonator circuit in a patch shape such as a circular shape or polygon shape to reduce the concentration of electrical current density; and
(b) attempting to control grain boundary, impurities, and the like to develop a higher-quality oxide high-temperature superconductor film.
It is also known to those skilled in the art to use a dielectric block in addition to the dielectric substrate on which a resonator pattern is formed. The provision of such a dielectric block can, to some extent, reduce the concentration of electrical current density on the superconductor.
Various studies on the three-dimensional structure of a superconducting filter have been made, including studies on a resonator as part of the basic structure and studies on application to an acceleration cavity. In the case of a resonator utilizing an oxide high-temperature superconductor, a high unloaded Q factor exceeding a few hundred thousands has been reported with regard to a structure in which superconductor films are provided at the top and bottom of a dielectric block (see Non-Patent Document 1 and Non-Patent Document 2, for example).
There has also been a report that studies a method of making an oxide-superconductor-based resonator tunable. As an example of such an attempt, it is known to those skilled in the art to use a configuration in which a dielectric plate is arranged above a planar resonator pattern formed of an oxide superconductor film, and the elevation of the dielectric plate is adjusted (see Patent Document 1, for example). In this configuration, the elevation of the dielectric film is controlled by adjusting a voltage applied to a piezoelectric element.
The tunable filter having a configuration as disclosed in the above cited publications tends to cause degradation in Q characteristics. Further, it remains to be a challenge to drive such a filter with a power higher than a few tens watts (W) in a configuration in which plural stages are utilized to achieve a frequency cutoff characteristic that is sufficiently steep for practical purposes.
It may be thus desirable to provide a tunable filter structure for a high-frequency filter that can provide improvements for the problems described above.
According to an aspect of the present disclosures, a three-dimensional filter includes a pair of superconductor films opposed to each other, and a three-dimensional resonator made of dielectric and situated between the superconductor films, wherein one of the superconductor films is movable relative to the three-dimensional resonator.
According to an aspect of the present disclosures, a tunable filter apparatus includes a conductor case, a three-dimensional filter including a pair of superconductor films opposed to each other and a three-dimensional resonator situated between the superconductor films, wherein one of the superconductor films is configured to be movable inside the conductor case, and first and second waveguides coupled to the conductor case along a direction perpendicular to a direction in which the one of the superconductor films is movable.
According to an aspect of the present disclosures, a tunable filter apparatus includes first and second conductor cases arranged adjacent to each other, an opening formed through adjacent faces of the first and second conductor cases, first and second three-dimensional filters placed in the first and second conductor cases, respectively, and a shutter configured to be inserted into a space between the first and second conductor cases to adjust an area size of the opening.
According to at least one embodiment, a three-dimensional filter and a tunable filter apparatus that are suitable for a microwave electrical power and have tunable frequency characteristics are provided.
The object and advantages of the embodiment will be realized and attained by means of the elements and combinations particularly pointed out in the claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the invention, as claimed.
Prior to providing a description of preferred embodiments with the accompanying drawings, a description of a basic configuration will be given first. In the embodiments, a dielectric block is used as a three-dimensional resonator to constitute a three-dimensional filter. Superconductor films are arranged on the two sides of the dielectric block (i.e., three-dimensional resonator) such that one of the two sides is opposite to the other side along a line perpendicular to the signal travel direction, e.g., arranged over and under the dielectric block. The position of one of the superconductor films relative to the dielectric block is changed to achieve a variable resonance frequency.
The movable superconductor film 13b is formed on the surface of a dielectric substrate 13a that faces the dielectric block 11. The dielectric substrate 13a and the superconductor film 13b together constitute a superconductor-film-covered dielectric substrate 13. A superconductor film 12 situated under the dielectric block 11 is formed on the back surface of a dielectric substrate 10, and is fixed as to its position. A pair of the superconductor films 12 and 13b and the dielectric block 11 together constitute a three-dimensional filter 5. The three-dimensional filter 5 is placed inside a conductor case 22 made of copper, aluminum, an alloy thereof, or the like. The interior side walls of the conductor case 22 are preferably covered with superconductor-film-covered dielectric substrates. In the example illustrated in
The superconductor-film-covered dielectric substrate 13 is coupled to the drive mechanism 29. The drive mechanism 29 includes a movable rod 24 penetrating through the conductor case 22 to couple to the superconductor-film-covered dielectric substrate 13, a spring 25, an actuator 27, an actuator movable part (displaceable part) 26 which moves in a direction illustrated by a vertical double headed arrow, and a ball joint 23. The actuator 27 is an oil-less piezoelectric actuator (either of a rotating type or a linear type) utilizing PZT or the like. The ball joint 23 compensates for movement associated with axial misalignment between the actuator 27 and the movable rod 24. When a configuration that directly connects the actuator 27 to the movable rod 24 is employed, there is no need to provide the ball joint 23 and the spring 25.
The three-dimensional filter 5 illustrated in
The waveguide tubes 30A and 30B may be a rectangular waveguide tube, and signals propagate therein in a TE mode. The electromagnetic wave entering the conductor case 22 through the opening 31A is placed in a TM mode at the dielectric block 11, so that the resonating electrical field is concentrated on the dielectric block 11. This suppresses the pinpoint concentration of electrical fields on the superconductor film 13b. This arrangement is thus more advantageous in terms of power tolerance compared with a planar-circuit-type superconductor resonator.
The opening 31A of the conductor case 22 is configured to be narrower than the cross-section (i.e., the cross-section perpendicular to the travel direction) of the waveguide tube 30A in order to cause the signal having propagated through the waveguide tube 30A to resonate upon entering the conductor case 22. Namely, only microwaves having particular frequencies satisfying the resonance conditions can enter the conductor case 22 through the opening 31A. The same applies to the opening 31B and the waveguide tube 30B on the output side.
The entirety of the tunable filter apparatus 1 is placed in a cooling case. The tunable filter apparatus 1 function as an electromagnetic-field resonator having a high unloaded Q factor at temperature sufficiently lower than a superconductivity critical temperature Tc.
Alternately, as shown in
The dielectric block 11 was made of high purity Al2O3 having a permittivity ∈r of 9.8 as illustrated in
Under the conditions as described above, the elevation of the superconductor film 13b was adjusted to change a distance Lup (uptune) (illustrated in
As can be seen from
A design that uses the conditions of the sample apparatus shown in
In the following, a description will be given of a tunable filter apparatus 50 according to a second embodiment with reference to
As in the first embodiment, each three-dimensional filter 55A (or 55B) includes a dielectric block 61A (or 61B), a superconductor film 62A (or 62B) formed on the back surface of a dielectric substrate 60A (or 60B) situated on the lower side, and a superconductor film 53b (or 53b′) formed on a dielectric substrate 53a (or 53a′) disposed on the upper side to be vertically movable. The dielectric substrate 53a (or 53a′) and the superconductor film 53b (53b′) together constitute a superconductor-film-covered dielectric substrate 53A (or 53B). The material and configuration of the dielectric block 61A (or 61B) and the material of the superconductor film are the same as those used in the first embodiment, and a description thereof will be omitted.
The adjacent faces of the conductor cases 52A and 52B have orifices (openings) 114A and 114B, respectively. A slit 115 is provided between the conductor cases 52A and 52B. A shutter 113 is inserted into the slit 115 to adjust the area size of the orifices 114A and 114B. In the illustrated example, the shutter 113 is a dielectric substrate having both surfaces thereof covered with superconductor films.
A drive mechanism for driving the shutter 113 may include an oil-less piezoelectric actuator 102 such as PZT, a movable rod 126 (which moves in a direction illustrated by a vertical double headed arrow), guides 104 for guiding the vertical movement of the movable rod 126, and springs 125. The vertical movement of the shutter 113 makes it possible to adjust the strength of electromagnetic field coupling between the three-dimensional filters (i.e., between the dielectric blocks 61A and 61B serving as resonators). Such adjustment mechanism is not limited to the shutter 113 and the disclosed drive mechanism. Any type of adjustment mechanism that can change the electromagnetic field coupling through the orifices 114A and 114B may be used. In the example illustrated in
In the same manner as in the first embodiment, the superconductor-film-covered dielectric substrates 53A and 53B held inside the respective conductor cases 52A and 52B are connected to respective drive mechanisms 69A and 69B to be adjustable as to their positions relative to the dielectric blocks 61A and 61B, respectively. This arrangement makes it possible to adjust and align the resonance frequencies of the three-dimensional filters. The configuration of the drive mechanisms 69A and 69B is the same as that used in the first embodiment. The drive mechanisms 69A and 69B mainly include movable rods 64A and 64B, springs 65A and 65B, ball joints 63A and 63B, piezoelectric actuators 67A and 67B, and actuator movable parts (displaceable parts) 66A and 66B (which move in a direction illustrated by vertical double headed arrows), respectively. A detailed description of these elements will be omitted.
Openings 51A and 51B are provided on the opposite side of the conductor cases 52A and 52B to the side where the orifices 114A and 114B are provided, respectively. The openings 51A and 52B are connected to the waveguide tubes 30A and 30B, respectively. In the same manner as in the first embodiment, the interior side walls of the conductor cases 52A and 52B are covered with superconductor-film-covered dielectric substrates 112.
The flow of signals through the multi-stage filter of the second embodiment is as follows. A signal propagating through the waveguide tube 30A as illustrated in
As previously described, the resonance frequencies of the first and second three-dimensional resonators (dielectric blocks) 61A and 61B are adjusted to be equal to each other by controlling the positions of the superconductor films 53b and 53b′. Further, resonating electromagnetic field coupling between the dielectric blocks 61A and 61B is adjusted by controlling the area size of the orifices 114A and 114B through the adjustment of the position of the shutter 113, thereby adjusting the bandwidth. In this manner, the two-stage bandbass filter according to the second embodiment is provided with a tunable center frequency and a tunable bandwidth.
The entirety of such two-stage bandpass filter is placed in a vacuum cooling chamber (not shown). Each of the dielectric blocks 61A and 61B functions as an electromagnetic-field resonator having a high unloaded Q factor at temperature sufficiently lower than a superconductivity critical temperature Tc. When the dielectric blocks 61A and 61B are formed as a cylinder, the electrical field of the incoming electromagnetic waves will be concentrated, thereby preventing the pinpoint concentration of electrical fields on the superconductor films.
The dielectric blocks 61A and 61B were made of high purity Al2O3 having a permittivity ∈r of 9.8 as illustrated in
As illustrated in
Coupling adjustment plates (corresponding to the shutter 113 illustrated in
In
In this manner, the two-stage three-dimensional filter configuration can adjust at least one of the center frequency and the bandwidth during the ongoing operation of the tunable filter apparatus 50. Such adjustment can be made by adjusting at least one of the position of the superconductor films 53b and 53b′ relative to the respective dielectric blocks 61A and 61B and the width of the orifice situated between the three-dimensional filters. Although the embodiments have been described heretofore by referring to particular examples of configurations, the present invention is not limited to these examples. For example, the dielectric blocks 11, 61A, and 61B are not limited to a cylindrical shape, but may be a rectangular solid. The superconductor film is not limited to YBCO, but may be a metal superconductor such as Nb, Nb—Ti, Nb3Sn, Pb, or Pb alloy, or may be an oxide high-temperature superconductor such as RBCO (R: Nd, Sm, Ho, Gd) or BSCCO. The dielectric block used as a resonator may be made of crystal including an oxide of one or more materials selected from Mg, Al, Ti, and Sr, or may be made of ceramic material.
The embodiments described heretofore provide the following advantages:
the use of a three-dimensional filter including a superconductor film having small conduction loss and a dielectric block resonator having small dielectric loss can provide a high unloaded Q factor (Qu);
the use of a configuration in which resonating electrical fields concentrate on the dielectric block can suppress the pinpoint concentration of electromagnetic fields on the superconductor film, thereby providing better power tolerance when compared with a planar-circuit-type superconductor resonator; and
tunable bandpass characteristics are obtained to allow the adjustment of the center frequency and width of the passband.
Such a three-dimensional filter and tunable filter apparatus 1 are suitable for the sharing of radio waves that has been gradually put into practical use in radio communication systems, i.e., suitable for efficient utilization of radio resources that actively utilizes available frequencies.
All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the invention and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to a showing of the superiority and inferiority of the invention. Although the embodiment(s) of the present inventions have been described in detail, it should be understood that the various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2008-122103 | May 2008 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4307352 | Shinkawa et al. | Dec 1981 | A |
4613838 | Wada et al. | Sep 1986 | A |
5179074 | Fiedziuszko et al. | Jan 1993 | A |
5324713 | Shen | Jun 1994 | A |
5391543 | Higaki et al. | Feb 1995 | A |
5608363 | Cameron et al. | Mar 1997 | A |
5805033 | Liang et al. | Sep 1998 | A |
6143697 | Tatekawa et al. | Nov 2000 | A |
6185441 | Wikborg et al. | Feb 2001 | B1 |
6470198 | Kintaka et al. | Oct 2002 | B1 |
6778042 | Terashima et al. | Aug 2004 | B2 |
20050128031 | Wilber et al. | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
54-81247 | Jun 1979 | JP |
55-44232 | Mar 1980 | JP |
61-61503 | Mar 1986 | JP |
1-126709 | Aug 1989 | JP |
4-167607 | Jun 1992 | JP |
7-500956 | Jan 1995 | JP |
10-178301 | Jun 1998 | JP |
11-507786 | Jul 1999 | JP |
2000-63120 | Feb 2000 | JP |
2001-521712 | Nov 2001 | JP |
2002-141705 | May 2002 | JP |
2002-204102 | Jul 2002 | JP |
2003-234601 | Aug 2003 | JP |
2004-200892 | Jul 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20090280991 A1 | Nov 2009 | US |