The accompanying drawings, which are included to provide a further understanding of embodiments of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of embodiments of the invention, in which:
Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. The invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art. In the drawings, the thicknesses of layers and regions are exaggerated for clarity. Like reference numerals in the drawings denote like elements.
The display device 1 can be a flat panel display device, such as a liquid crystal display LCD, a field emission display FED, a plasma display panel PDP, or an organic light emitting diode. In the display device 1, data signal lines and scan signal lines are formed to cross each other to define sub-pixels. Active switch devices controlled by scan signals from signal lines are positioned at the crossing to switch data from the data lines to each of the sub-pixels. The display device 1 displays a two-dimensional plane image or a three-dimensional stereoscopic image, where left image data and right image data are provided, in accordance with an image source and a 2D/3D mode selection signal, which can be input from a user.
In the display device 1, the right image data of red R, green G, blue B, white W are separately displayed by sub-pixels that are disposed in even-numbered sub-pixel columns (or, an odd-numbered sub-pixel columns) SPR1 and SPR2. For example, the left image data of red R, green G, blue B, white W are separately displayed by the sub-pixels that are disposed in odd-numbered sub-pixel columns SPL1 and SPL2 while the right image data of red R, green G, blue B, white W are separately displayed by the sub-pixels that are disposed in even-numbered sub-pixel columns SPR and SPR2. The odd-numbered sub-pixel columns SPL1 and SPL2 and the even-numbered sub-pixel columns SPR1 and SPR2 are alternately disposed.
The slit barrier 2 is a device that screens the light from the display device 1 in response to an electrical control signal so as to screen light from the display device 1. For example, the slit barrier 2 can be a liquid crystal display device. The slit barrier 2 forms optical transmission slits, which each can be as wide as a sub-pixel, at a distance to provide separate respective progress paths for the light of the left image and the light of the right image which are emitted from the display device 1. The light of the sub-pixels for one pixel of an image pass through two slots of the slit barrier 2 to provide the images on the screen 3. More specifically, the light of two sub-pixels pass through a first slot of the slit barrier 2 and the light of two other sub-pixels pass through a second slot of the slit barrier 2 to a provide the light of one pixel. The left image and the right image, separately provided to the screen 1, are respectively perceived by the left eye and the right eye of the observer. Thus, the slit barrier 2 transmits all of the light from the sub-pixels for pixel of the left and right images from the two-dimensional plane image of the display device 1. Because the two-dimensional image display device includes the white W sub-pixel in each of the pixels, the brightness of the three-dimensional image is increased.
The arrangement of the sub-pixels of
The three-dimensional image display device according to embodiments of the invention use the slit barrier method such that conversion between the two-dimensional plane image and the three-dimensional stereoscopic image can be made easy. In addition, a single white sub-pixel is in the sub-pixels of the left image and another single white sub-pixels is in the sub-pixels of the right image, thereby increasing the brightness of the three-dimensional image. Further, embodiments of the invention makes the color arrangement different between the odd-numbered sub-pixel columns and between the even-numbered sub-pixel columns to make the light of R, Q B and W colors incident to both the left eye and right eye of the observer, thereby increasing the uniformity of brightness and minimizing chromaticity differences for both the left eye and the right eye.
Although the invention has been explained in reference to the embodiments shown in the drawings described above, it should be understood to the ordinary skilled person in the art that the invention is not limited to the embodiments, but rather that various changes or modifications thereof are possible without departing from the spirit of the invention. Accordingly, the scope of the invention shall be determined only by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2006-0054840 | Jun 2006 | KR | national |