This application claims the benefit of the Korean Patent Application No. P06-0054840 filed on Jun. 19, 2006, which is hereby incorporated by reference in its entirety.
1. Field of the Invention
Embodiments of the invention relate to a display device, and more particularly to a three-dimensional image display device. Although embodiments of the invention are suitable for a wide scope of applications, it is particularly suitable for that is adaptive for conversion between a two-dimensional plane image and a three-dimensional stereoscopic image while minimizing brightness deterioration.
2. Description of the Related Art
A three-dimensional image display device stereoscopically displays an image by using the perspective difference perceived by two eyes. The three-dimensional image display device is mainly classified by the type of method, such as a binocular method and an autostereoscopic method. In the binocular method, which uses binocular disparity, an the image is taken with a camera having a lens corresponding to the left eye perspective and another lens corresponding to the right eye perspective, and then displays a left image incident to the left eye and a right image incident to the right eye to realize a three-dimensional stereoscopic image. The stereoscopic image display device using the binocular method is classified as a slit barrier type or a lenticular lens type.
Accordingly, embodiments of the invention are directed to a three-dimensional image display device that substantially obviates one or more of the problems due to limitations and disadvantages of the related art.
An object of the present invention to provide a three-dimensional image display device and a pixel arranging method thereof that easily converts between a two-dimensional plane image and a three-dimensional stereoscopic image without decreased brightness.
Additional features and advantages of embodiments of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of embodiments of the invention. The objectives and other advantages of the embodiments of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
To achieve these and other advantages and in accordance with the purpose of embodiments of the invention, as embodied and broadly described, a three-dimensional image display device includes a display device having odd-numbered sub-pixel columns for displaying a left image and even-numbered sub-pixel columns for displaying a right image, a first set of sub-pixels disposed in a same first horizontal line of adjacent odd-numbered sub-pixel columns have different colors, a second set of sub-pixels disposed in a same second horizontal line of adjacent even-numbered sub-pixels column have different colors, a screen positioned away from the display device for displaying the right and left images, and a slit barrier disposed between the display device and the screen for screening light from the display device.
In another aspect, a three-dimensional image display device includes a display device having odd-numbered sub-pixel columns for displaying a left image and even-numbered sub-pixel columns for displaying a right image, wherein a first set of red, green, blue and white sub-pixels are separately disposed in the odd-numbered sub-pixel columns, and a second set of red, green, blue and white sub-pixels are separately disposed in the even-numbered sub-pixel columns, a screen positioned away from the display device for displaying the right and left images, and a slit barrier disposed between the display device and the screen for screening light from the display device.
In another aspect, a three-dimensional image display device includes a first odd-numbered sub-pixel column and a second odd-numbered sub-pixel column for displaying a left pixel image, and a first even-numbered sub-pixel column and a second even-numbered sub-pixel column for displaying a right pixel image, wherein each of the left pixel image and the right pixel image contain a white sub-pixel, a screen positioned away from the display device for displaying the right and left images, and a slit barrier disposed between the display device and the screen for screening light from the display device
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of embodiments of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of embodiments of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of embodiments of the invention, in which:
Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. The invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art. In the drawings, the thicknesses of layers and regions are exaggerated for clarity. Like reference numerals in the drawings denote like elements.
The display device 1 can be a flat panel display device, such as a liquid crystal display LCD, a field emission display FED, a plasma display panel PDP, or an organic light emitting diode. In the display device 1, data signal lines and scan signal lines are formed to cross each other to define sub-pixels. Active switch devices controlled by scan signals from signal lines are positioned at the crossing to switch data from the data lines to each of the sub-pixels. The display device 1 displays a two-dimensional plane image or a three-dimensional stereoscopic image, where left image data and right image data are provided, in accordance with an image source and a 2D/3D mode selection signal, which can be input from a user.
In the display device 1, the right image data of red R, green G, blue B, white W are separately displayed by sub-pixels that are disposed in even-numbered sub-pixel columns (or, an odd-numbered sub-pixel columns) SPR1 and SPR2. For example, the left image data of red R, green G, blue B, white W are separately displayed by the sub-pixels that are disposed in odd-numbered sub-pixel columns SPL1 and SPL2 while the right image data of red R, green G, blue B, white W are separately displayed by the sub-pixels that are disposed in even-numbered sub-pixel columns SPR and SPR2. The odd-numbered sub-pixel columns SPL1 and SPL2 and the even-numbered sub-pixel columns SPR1 and SPR2 are alternately disposed.
The slit barrier 2 is a device that screens the light from the display device 1 in response to an electrical control signal so as to screen light from the display device 1. For example, the slit barrier 2 can be a liquid crystal display device. The slit barrier 2 forms optical transmission slits, which each can be as wide as a sub-pixel, at a distance to provide separate respective progress paths for the light of the left image and the light of the right image which are emitted from the display device 1. The light of the sub-pixels for one pixel of an image pass through two slots of the slit barrier 2 to provide the images on the screen 3. More specifically, the light of two sub-pixels pass through a first slot of the slit barrier 2 and the light of two other sub-pixels pass through a second slot of the slit barrier 2 to a provide the light of one pixel. The left image and the right image, separately provided to the screen 1, are respectively perceived by the left eye and the right eye of the observer. Thus, the slit barrier 2 transmits all of the light from the sub-pixels for pixel of the left and right images from the two-dimensional plane image of the display device 1. Because the two-dimensional image display device includes the white W sub-pixel in each of the pixels, the brightness of the three-dimensional image is increased.
The arrangement of the sub-pixels of
The three-dimensional image display device according to embodiments of the invention use the slit barrier method such that conversion between the two-dimensional plane image and the three-dimensional stereoscopic image can be made easy. In addition, a single white sub-pixel is in the sub-pixels of the left image and another single white sub-pixels is in the sub-pixels of the right image, thereby increasing the brightness of the three-dimensional image. Further, embodiments of the invention makes the color arrangement different between the odd-numbered sub-pixel columns and between the even-numbered sub-pixel columns to make the light of R, Q B and W colors incident to both the left eye and right eye of the observer, thereby increasing the uniformity of brightness and minimizing chromaticity differences for both the left eye and the right eye.
Although the invention has been explained in reference to the embodiments shown in the drawings described above, it should be understood to the ordinary skilled person in the art that the invention is not limited to the embodiments, but rather that various changes or modifications thereof are possible without departing from the spirit of the invention. Accordingly, the scope of the invention shall be determined only by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2006-0054840 | Jun 2006 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
6590605 | Eichenlaub | Jul 2003 | B1 |
7426068 | Woodgate et al. | Sep 2008 | B2 |
20040178969 | Zhang et al. | Sep 2004 | A1 |
20050001787 | Montgomery et al. | Jan 2005 | A1 |
Number | Date | Country |
---|---|---|
1534328 | Oct 2004 | CN |
0752610 | Jan 1997 | EP |
WO2004092812 | Oct 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20070291054 A1 | Dec 2007 | US |