Three dimensional lead-frames for reduced crosstalk

Information

  • Patent Grant
  • 10122124
  • Patent Number
    10,122,124
  • Date Filed
    Monday, March 21, 2016
    8 years ago
  • Date Issued
    Tuesday, November 6, 2018
    5 years ago
Abstract
A connector (400), such as a plug or a receptacle, has reduced cross-talk. The connector has a conductive plate (305), first and second insulators (310A, 310B) on either side of the conductive plate, leads (115) outside of the insulators, the leads being formed from first and second lead-frames, at least one of the leads (115, 315) having at least one tab or extension (320) which capacitively or conductively couples the lead to the conductive plate. The plate (305) may include an extension shaft (540), and a lateral extension (320) from a lead may be placed into contact with the shaft. A lateral extension (320E) formed on a rear portion of a lead may be placed into contact with a rear portion of the conductive plate (305B1) or with an opposing lead. Some of the leads may include severable tie bars (705).
Description
BACKGROUND

The small spacing between conductors in connectors may provide for undesired cross-talk between conductors.


SUMMARY

A connector, such as a plug or a receptacle, which has reduced cross-talk, is described. The connector has a conductive plate, first and second insulators on either side of the conductive plate, leads (wires or conductors) formed from first and second lead-frames, the leads being outside of the insulators, at least one lead having at least one tab or extension which capacitively or conductively couples the lead to the conductive plate.


A method of making a connector, such as a receptacle, which has reduced cross-talk, is also described. A first lead-frame is provided, a first insulating material is placed on the first lead-frame, a conductive plate is placed on the first insulating material, a second insulating material is placed on the conductive plate, and a second lead-frame is placed on the second insulating material. The first lead-frame and the second lead-frame each have a plurality of leads joined by links and at least one lead of the first lead-frame or the second lead-frame has a tab extending laterally therefrom. The tab is formed toward the conductive plate. A least a portion of the first lead-frame, the second lead-frame, the first insulating material, the second insulating material, and the conductive plate may be overmolded, and at least some of the links in the first lead-frame and the links in the second lead-frame are severed.


A lead-frame is described. The lead-frame has a plurality of lead wires. Each lead wire is joined to at least one other lead wire by at least one severable link. At least one lead wire has a tab extending laterally therefrom.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 illustrates the pinout for a typical Universal Serial Bus (USB) 3.1 Type-C connector system.



FIG. 2 illustrates a typical USB 3.1 lead-frame receptacle configuration showing leads on the upper row and on the lower row.



FIG. 3 illustrates an edge view diagram of an exemplary connector with a conductive plate or shield placed between insulating layers of the connector.



FIG. 4 illustrates an edge view diagram of an exemplary connector with the conductive plate being grounded.



FIG. 5 illustrates a connector system with an exemplary plug and an exemplary receptacle.



FIG. 6 is an edge view diagram of a connector system having a plate with an extension knob or shaft extending from a side of the plate.



FIG. 7 is an illustration of an exemplary lead-frame with leads and lateral extensions.





DETAILED DESCRIPTION


FIG. 1 and TABLE 1 illustrate the pinout for a typical Universal Serial Bus (USB) 3.1 Type-C connector system 100. The transmit (TX) and receive (RX) signal pairs are configured in a tandem fashion, i.e., the transmit and receive lines are in rows 105, 110 which are on opposite sides of the connector, separated by an insulating body 120, such as but not limited to a plastic plate, sheet, or film. The transmit lines, such as TX1+ and TX1−, are side-by-side (edge-to-edge) on one row of connector pins, such as the upper row 105, and the receive lines, such as RX1+ and RX1−, are side-by-side on another row of connector pins, such as the lower row 110. Thus, a transmit line, such as TX1+, faces its corresponding receive line, such as RX1+. This forms a dual row 105, 110 connector system, where differential or balanced signals are delivered across a connector boundary, such as a plug-receptacle interface boundary 520 (FIG. 5). The transmit lines are placed in this side-by-side manner and the receive lines are also placed in this side-by-side manner, with a transmit line facing its corresponding receive line. Such a dual row connector system has reduced crosstalk as compared to connector systems where a transmit line is located side-by-side with a receive line in the same row, such as where transmit lines face each other and receive lines face each other.












TABLE I





PIN
NAME
PIN
NAME







A1
GND (Ground return)
B12
GND


A2
TX1+ (SuperSpeed differential
B11
RX1+



pair #1)


A3
TX1−
B10
RX1−


A4
VBUS (Bus power)
B9
VBUS


A5
CC (Configuration channel)
B8
SBU2


A6
D+ (USB 2.0 differential pair)
B7
D−


A7
D−
B6
D+


A8
SBU1 (Sideband use)
B5
VCONN (Configuration





channel power)


A9
VBUS
B4
VBUS


A10
RX2− (SuperSpeed differential
B3
TX2−



pair #2)


A11
RX2+
B2
TX2+


A12
GND
B1
GND










FIG. 2 illustrates a typical USB 3.1 lead-frame receptacle configuration showing the leads 115 on the upper row 105 and some of the leads 115 on the lower row 110. The leads (wires, conductors) 115 are produced using a lead-frame, also sometimes referred to as a wire-lead frame. A plastic plate, sheet, or film 120, separates the leads 115 in the upper row 105 from the leads 115 in the lower row 110. There may, however, be capacitive and/or inductive coupling between leads, which may result in an unacceptable level of crosstalk.



FIG. 3 illustrates an edge view diagram of an exemplary connector 300 with a conductive plate or shield 305 between insulating layers (tongues) 310A, 310B of the connector 300, and with the conductive leads 115 (e.g., TX lines, RX lines, VBUS, GND, etc.) being outside the insulating tongues 310A, 310B. The conductive plate 305 further reduces the crosstalk between the conductive leads 115, for example, but not limited to, the crosstalk between the TX1+ and the RX1− leads shown in FIG. 1. There is, however, a limit to how much this conductive plate 305 can reduce the crosstalk, especially if the conductive plate 305 is electrically floating. A connector 300 also typically includes an overmold 125, such as an insulating plastic, which holds the various components in place. For convenience of illustration, an overmold 125 is only shown in FIGS. 3 and 4.


A further reduction of crosstalk may be obtained, as disclosed herein, by use of a modified lead for the RF neutral, power, or ground leads of the connector 300, so as to provide an RF ground (and possibly an electrical ground) for the conductive plate 305. One method of grounding the conductive plate 305 is to connect it to a signal or radio frequency (RF) neutral pin, such as a ground pin (e.g., GND) or a power pin (e.g., VBUS, VCONN).



FIG. 4 illustrates an edge view diagram of an exemplary connector 400 with the conductive plate 305 being grounded. A modified lead 115 has a lateral extension 320 which is then “folded” or “rolled”, which creates a “three-dimensional” lead. The lateral extension 320 may be a wing, a tab, or other protrusion or component off the side of the lead 115. A lead-frame, and a lead 115 thereof, may be considered to be a two-dimensional (e.g., flat) object having a length and a width because the third dimension, i.e., the height (thickness) of a lead, is typically much smaller than the width of the lead or the length of the lead. The tab 320, however, once folded or rolled, extends significantly into this third dimension, so the modified lead 115 now may be considered to have three dimensions—length, width, and now, resulting from the tab 320, a height.


This folded or rolled tab or extension component 320 provides an RF ground, and possibly an electrical ground, for the conductive plate 305. Preferably, but not necessarily, the modification is applied to an outer lead 115 (that is, one of the GND leads). This modification can be, and preferably is, applied to both a lead in the receptacle and a lead in the plug of a connection system. The modification may be applied to any lead which provides an RF ground, such as, for example, the VBUS lead and the VCONN lead, which are internal leads. Use of such extensions 320 on such internal leads 115 may be less desirable, however, as this may involve compressing or even perforating an insulator 310A or 310B to provide the desired connection between the lead 115 and the conductive plate 305.


A lead 115, preferably but not necessarily, an outer lead, such as any of pins A1, A12, B1, or B12 of FIG. 1, is modified to a three dimensional form forming it with a lateral extension or tab 320, and then by folding or rolling the lateral extension 320 in the direction toward the conductive plate 305. Addition of a lateral extension 320 of a lead 115 is applied to at least one of, and preferably to both of, the receptacle and the plug of the connection system. The tab 320 may be, and preferably is, in direct physical and electrical contact (conductive coupling) with the conductive plate 305. The lateral extension 320 may, however, be placed extremely close to the conductive plate 305 so as to provide a low impedance RF path between the plate 305 and the tab 320 of the lead 115. That is, the conductive plate 305 and the tab 320 may be capacitively coupled due to the minimal thickness and/or dielectric characteristics of the insulating material (e.g., 310A, 310B and/or air) separating the plate 305 and the tab 320. “Capacitively coupled”, as used herein, means that the impedance between the conductive plate 305 and the lead with the extension 320 will be sufficiently small at the RF frequencies of interest that the conductive plate 305 is effectively connected to an RF ground and reduces crosstalk to the desired extent.



FIG. 5 illustrates a connector system 500 with an exemplary plug 500A and an exemplary receptacle 500B, and an exaggerated connector boundary 520 therebetween. The term “connector” includes both a plug 500A and a receptacle 500B unless the context requires otherwise. For convenience of illustration only a single set of leads 515A-515D is shown, but arrows L1 and L2 indicate that the connector has multiple parallel leads. The contact portion of the leads in the receptacle 500B fit into the spaced-apart contact portions of the leads in the plug 500A. The plug 500A has modified leads 515A and 515B, and the receptacle 500B has modified leads 515C and 515D. The conductive plates 305A and 305B are also partially shown but, for ease and clarity of illustration, the insulating layers 310A, 310B are not shown. The conductive plates 305A and 305B preferably, but not necessarily, do not extend so far forward that they can make contact with each other when the plug 500A and the receptacle 500B are fully engaged. This is to prevent an accidental short circuit in the event that the manufacturer of the plug 500A has chosen to directly connect the conductive plate 305A to VBUS or VCONN and the manufacturer of the receptacle 500B has chosen to directly connect the conductive plate 305B to GND.


One or more of the leads 515, such as, and preferably, a GND lead, may be manufactured with, and have one or more, lateral extensions 320A, 320B which form tabs or edges directed toward the conductive plate 305, or later bent or turned toward the conductive plate 305. A lateral extension 320 may be placed extremely close to, but not touching, the plate 305 (capacitive coupling), or the lateral extension 320 may make direct contact with a plate 305 (conductive coupling). This particular lateral extension type (tab or edge) is only shown on the plug 500A but is preferably present on the receptacle 500B as well.


Conductive plate 305B preferably has a shielding base section or shielding wall 305B1 (best seen in FIG. 6) which extends between and along the two rows of leads, e.g., the row represented by lead 515C1, and the row represented by lead 515D1.


One or more of the leads 515, such as, and preferably, a GND lead, may be manufactured with, and have one or more, lateral extensions 320C, 320D, which are then rolled toward the conducting plate 305. The lateral extension 320C, 320D from a lead 515 may contact the opposing lead, such as lateral extension 320C from lead 515C being rolled toward, and contacting, the opposing lead 515D. Or, alternatively, the lateral extension 320C, 320D from a lead 515 may be rolled toward, and contact, the conducting plate 305, such as lateral extension 320D from lead 515D being rolled toward the plate 305, and optionally contacting the lower surface of plate 305 or the edge of plate 305. This particular lateral extension type is only shown on the receptacle 500B but may be present, and is preferably present, on the plug 500A as well.


In addition, one or more of the leads 515, such as, and preferably, a GND lead, may be manufactured with, and have one or more, lateral extensions 320E on the portion 515C1, 515D1, of the lead 515C, 515D, the portion 515C1, 515D1 intended to be affixed to a printed circuit board (not shown), such as by soldering. The lateral extension 320E, 320F is then rolled or turned toward, and may contact, the opposing lead, an opposing lateral extension, or the shielding base section 305B 1. The lateral extension 320E, 320F may also optionally contact the lower surface of plate 305 or the edge of plate 305. This particular lateral extension type is only shown on the receptacle 500B but is preferably also present on the plug 500A as well.


These lateral extensions 320 may either come very close to (but not contact) the plate 305, or they may actually contact the plate 305. Thus, the plate 305 will be either capacitively coupled (close, but not contacting) to at least one RF ground lead, or conductively coupled (contacting, or bonded together) to at least one RF ground lead. Thus, the lateral extension or extensions 320 provide for capacitive or direct RF grounding of the plate 305, and also provide for connecting one or more like leads 115 to each other, such as connecting GND leads together, or connecting VBUS leads together. This allows the plate 305 to further reduce the crosstalk between other leads 115.


A lateral extension 320 may be laser welded or bonded to the shielding base section 305B1 to further reduce the crosstalk by increasing the isolation between leads 115. However, it is not necessary to have this laser welding or bonding to increase the isolation.


These lateral extensions 320 may initially function as internal tie bars in the conductor lead-frame, and then be severed on one side and bent, turned, or rolled toward the plate 305 during assembly of a plug 500A or receptacle 500B.



FIG. 6 is an edge view diagram of a connector system 500 having a plate 305B with an extension shaft 540 (which term also includes a knob or other projection) extending from a side of the plate 305B. In that case, the lateral extensions 320 may be simply forced into contact with the shaft 540, may be welded or bonded to the shaft 540, or may have a partial cutout to accommodate the shaft 540. This particular feature is only shown on the receptacle 500B but may also be present on the plug 500A as well. The insulating tongues 310A, 310B are not shown in FIG. 6 for convenience of illustration. For convenience of illustration only a single set of leads 515A-515D is shown, but arrows L1 and L2 indicate that the connector has multiple parallel leads.



FIG. 7 is an illustration of an exemplary lead-frame 700 with leads 115A-115N and lateral extensions 320A, 320B. Also shown are some exemplary internal tie bars 705A-705G, which are later severed, such as by punching, drilling, or laser cutting, to separate the individual leads 115 from each other. Also, if will be appreciated that, in typical production practice, multiple lead-frames 700 will be manufactured, side-by-side, and/or end to end, with some components of one lead-frame initially being connected to components in an adjacent lead-frame, and then the lead-frames are severed from each other to produce the individual wires or leads. For example, the lateral extension 320A of one lead and the lateral extension 320B of an adjacent lead initially may be formed as a single conductor. Then, the lateral extension 320A of one lead is separated from the lateral extension 320B of the adjoining lead, such as by punching, sawing, shearing, or laser cutting. Likewise, the leads 115A-115N of one lead-frame may be initially formed as a single conductor with the leads 115A-115N of another lead-frame, placed end to end. Then, the leads 115A-115N of one wire frame are separated from the leads 115A-115N of the adjacent wire frame, such as by punching, sawing, shearing, or laser cutting.


A lead 115 may be considered to have a contact portion 720 which contacts a corresponding contact portion of a lead 115 on a mating connector, a body portion 721, a corner portion 722, and a pin portion 723 (which may be straight or may be curved or bent) which is to be soldered to, for example, a printed circuit board (not shown).


A connector, such as a plug or a receptacle, may therefore be made, for example, by providing a first lead-frame, for example, lead-frame 700, which has a plurality of leads 115 joined by links 705, placing a first insulating material 310 on the first lead-frame, placing a conductive plate 305 on the first insulating material, placing a second insulating material 310 on the conductive plate 305, placing a second lead-frame 700 on the second insulating material, where at least one lead of the first lead-frame or the second lead-frame has a tab 320 extending laterally from the lead, forming a tab toward the conductive plate so that the tab is in direct or capacitive coupling with the conductive plate, providing an overmold 125 for a least a portion of the first lead-frame, the second lead-frame, the first insulating material, the second insulating material, and the conductive plate, and severing at least some of the links in the first lead-frame and at least some of the links in the second lead-frame.


It will be appreciated from the above that there may be a plurality of various tabs 320A-320F.


The word “exemplary” is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Similarly, examples are provided herein solely for purposes of clarity and understanding and are not meant to limit the subject innovation or portion thereof in any manner. It is to be appreciated that additional or alternate examples could be presented, but have been omitted for purposes of brevity.


For convenience of discussion herein, when there is more than one of a component, that component may be referred to herein either collectively or singularly by the singular reference numeral unless the context indicates otherwise. For example, components # (plural) or component # (singular) may be used unless a specific component is intended.


The phrases “for example” and “such as” mean “by way of example and not of limitation.” The subject matter described herein is provided by way of illustration for the purposes of teaching, suggesting, and describing, and not limiting or restricting. Combinations and alternatives to the illustrated embodiments are contemplated, described herein, and set forth in the claims.


The subject matter described above is provided by way of illustration only and should not be construed as limiting. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure. Various modifications and changes may be made to the subject matter described herein without following the exemplary embodiments and applications illustrated and described, and without departing from the spirit and scope of the following claims.


What has been described above includes examples of aspects of the claimed subject matter. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the claimed subject matter, but one of ordinary skill in the art may recognize that many further combinations and permutations of the disclosed subject matter are possible. Accordingly, the disclosed subject matter is intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the appended claims. Furthermore, to the extent that the terms “includes,” “has” or “having” or variations in form thereof are used in either the detailed description or the claims, such terms are intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.

Claims
  • 1. A receptacle, comprising: a conductive plate having a first surface and a second surface;a first lead-frame having a plurality of leads, each lead of the first lead-frame comprising a contact at one end, a body, a corner, and a pin at the other end, the body being between the contact and the corner;a first insulator interposed between the first surface of the conductive plate and at least a portion of each lead of the plurality of leads of the first lead-frame;a second lead-frame having a plurality of leads, each lead of the second lead-frame comprising a contact at one end, a body, a corner, and a pin at the other end, the body being between the contact portion and the corner portion;a second insulator interposed between the second surface of the conductive plate and at least a portion of each lead of the plurality of leads of the second lead-frame;at least one lead of at least one of the first lead-frame or the second lead-frame further comprising a tab, the tab projecting laterally from the at least one lead and then turning toward the conductive plate, the tab being at least one of: conductively coupled to the conductive plate, or capacitively coupled to the conductive plate; andan overmold covering at least a portion of the first lead-frame, the second lead-frame, the first insulator, the second insulator, and the conductive plate.
  • 2. The receptacle of claim 1 wherein the at least one lead is at least one of: at ground potential, or at radio-frequency ground potential.
  • 3. The receptacle of claim 1 wherein the tab projects directly from the at least one lead toward to the conductive plate.
  • 4. The receptacle of claim 1 wherein the at least one lead is a first lead, and further comprising a second lead of the first lead-frame, the second lead further comprising a second tab, the second tab being at least one of: conductively coupled to the conductive plate, orcapacitively coupled to the conductive plate.
  • 5. The receptacle of claim 1 wherein: the contact sections of the leads of the first lead-frame are in a first plane and the pin sections of the leads of the first lead-frame are in a second plane, the second plane being approximately perpendicular to the first plane; andthe contact sections of the leads of the second lead-frame are in a third plane, the third plane being approximately parallel to the first plane, and the pin sections of the leads of the second lead-frame are in a fourth plane, the fourth plane being approximately perpendicular to the third plane and approximately parallel to the second plane.
  • 6. The receptacle of claim 5 wherein: the conductive plate has a body section, and a shielding base section;the body section being in a fifth plane, the fifth plane being between the first plane and the third plane; andthe shielding base section being in a sixth plane, the sixth plane being approximately perpendicular to the fifth plane and being between the second plane and the fourth plane.
  • 7. The receptacle of claim 6 wherein the at least one lead further comprises a second tab, the second tab being at least one of: conductively coupled to the shielding base section, orcapacitively coupled to the shielding base section.
  • 8. A method of making a receptacle, the method comprising: providing a first lead-frame, the first lead-frame comprising a plurality of leads joined by links;placing a first insulating material on the first lead-frame;placing a conductive plate on the first insulating material;placing a second insulating material on the conductive plate;placing a second lead-frame on the second insulating material, the second lead-frame comprising a plurality of leads joined by links;at least one lead of the first lead-frame or the second lead-frame has a tab extending laterally therefrom;forming the tab toward the conductive plate;overmolding a least a portion of the first lead-frame, the second lead-frame, the first insulating material, the second insulating material, and the conductive plate; andsevering at least some of the links in the first lead-frame and the links in the second lead-frame.
  • 9. The method of claim 8 wherein forming the tab comprises bending the tab to contact the conductive plate.
  • 10. The method of claim 8 wherein forming the tab comprises rolling the tab to contact the conductive plate.
  • 11. The method of claim 8: wherein the conductive plate has a shaft extending from a side thereof; andforming the tab toward the conductive plate comprises forming the tab to contact the shaft.
  • 12. The method of claim 8: wherein the conductive plate has a first portion in a first plane and a second portion in a second plane, the second plane being approximately perpendicular to the first plane; andwherein the at least one lead comprises a second tab extending from a distal part thereof; andfurther comprising forming the second tab to contact the second portion of the conductive plate.
  • 13. A receptacle, comprising: a conductive plate having a first surface, a second surface, and a side, and a shaft extending from the side;a first lead-frame having a plurality of leads, each lead of the first lead-frame comprising a contact at one end, a body, a corner, and a pin at the other end, the body being between the contact and the corner;a first insulator interposed between the first surface of the conductive plate and at least a portion of each lead of the plurality of leads of the first lead-frame;a second lead-frame having a plurality of leads, each lead of the second lead-frame comprising a contact at one end, a body, a corner, and a pin at the other end, the body being between the contact portion and the corner portion;a second insulator interposed between the second surface of the conductive plate and at least a portion of each lead of the plurality of leads of the second lead-frame;at least one lead of at least one of the first lead-frame or the second lead-frame further comprising a tab, the tab from the at least one lead contacting the shaft, the tab being at least one of: conductively coupled to the conductive plate, or capacitively coupled to the conductive plate; andan overmold covering at least a portion of the first lead-frame, the second lead-frame, the first insulator, the second insulator, and the conductive plate.
  • 14. The receptacle of claim 13 wherein the at least one lead is at least one of: at ground potential, or at radio-frequency ground potential.
  • 15. The receptacle of claim 13 wherein the tab projects directly from the at least one lead toward to the conductive plate.
  • 16. The receptacle of claim 13 wherein the at least one lead is a first lead, and further comprising a second lead of the first lead-frame, the second lead further comprising a second tab, the second tab being at least one of: conductively coupled to the conductive plate, orcapacitively coupled to the conductive plate.
  • 17. The receptacle of claim 13 wherein: the contact sections of the leads of the first lead-frame are in a first plane and the pin sections of the leads of the first lead-frame are in a second plane, the second plane being approximately perpendicular to the first plane; andthe contact sections of the leads of the second lead-frame are in a third plane, the third plane being approximately parallel to the first plane, and the pin sections of the leads of the second lead-frame are in a fourth plane, the fourth plane being approximately perpendicular to the third plane and approximately parallel to the second plane.
  • 18. The receptacle of claim 17 wherein: the conductive plate has a body section, and a shielding base section;the body section being in a fifth plane, the fifth plane being between the first plane and the third plane; andthe shielding base section being in a sixth plane, the sixth plane being approximately perpendicular to the fifth plane and being between the second plane and the fourth plane.
  • 19. The receptacle of claim 18 wherein the at least one lead further comprises a second tab, the second tab being at least one of: conductively coupled to the shielding base section, orcapacitively coupled to the shielding base section.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the priority of U.S. Provisional Patent Application No. 62/142,291, filed Apr. 2, 2015, entitled “Three Dimensional Lead-Frames For Reduced Crosstalk,” the entire disclosure and contents of which are incorporated herein by reference.

US Referenced Citations (84)
Number Name Date Kind
4824383 Lemke Apr 1989 A
6315608 Lopata Nov 2001 B1
6899573 Saka May 2005 B2
7005728 Li Feb 2006 B1
7670156 Chen Mar 2010 B2
7758379 Chen Jul 2010 B2
7819703 Walker et al. Oct 2010 B1
7980895 Berens et al. Jul 2011 B2
8109795 Lin Feb 2012 B2
8262411 Kondo Sep 2012 B2
8764488 Zeng Jul 2014 B2
8851927 Hsu Oct 2014 B2
8864506 Little Oct 2014 B2
8944849 Yang Feb 2015 B1
8968031 Simmel Mar 2015 B2
9088108 Zhao Jul 2015 B2
9178319 Little Nov 2015 B2
9231356 Ju Jan 2016 B1
9276365 Yu Mar 2016 B2
9306336 Chang Apr 2016 B2
9312641 Wang Apr 2016 B2
9318856 MacDougall Apr 2016 B2
9331433 Ueda May 2016 B2
9337585 Yang May 2016 B1
9350121 Ju May 2016 B2
9437980 Ueda Sep 2016 B2
9450337 Kao Sep 2016 B2
9461412 Yu Oct 2016 B2
9461424 Kao Oct 2016 B2
9466924 Lin Oct 2016 B2
9484676 Chuang Nov 2016 B2
9484677 Guo Nov 2016 B2
9484679 Guo Nov 2016 B2
9502841 Little Nov 2016 B2
9515405 Zhao Dec 2016 B2
9520680 Hsu Dec 2016 B2
9525241 Su Dec 2016 B1
9525243 Yuan Dec 2016 B1
9525244 Hsu Dec 2016 B1
9537263 Gao Jan 2017 B2
9548568 Miyoshi Jan 2017 B2
9553391 Ono Jan 2017 B2
9564716 Kao Feb 2017 B2
9595796 Yen Mar 2017 B2
9608391 Little Mar 2017 B2
9634437 Kao Apr 2017 B2
9640923 Kao May 2017 B2
9647369 Tsai May 2017 B2
9653849 Hsu May 2017 B2
9673569 Zhang Jun 2017 B2
9680254 Nishikata Jun 2017 B1
9705217 Ju Jul 2017 B2
9705267 Cheng Jul 2017 B2
9722342 Yuan Aug 2017 B2
9728916 Tsai Aug 2017 B1
9742095 Tsai Aug 2017 B2
9742121 Hayashi Aug 2017 B2
9742125 Zhao Aug 2017 B2
9748701 Tsai Aug 2017 B2
9755336 Cheng Sep 2017 B2
9755368 Cheng Sep 2017 B2
9768567 Cheng Sep 2017 B2
9780479 Guo Oct 2017 B2
9825407 Wu Nov 2017 B2
9853393 Guo Dec 2017 B2
9881650 Sotome Jan 2018 B1
9887485 Lambie Feb 2018 B2
9917405 Ju Mar 2018 B2
9923317 Yao Mar 2018 B2
20130059461 Lee et al. Mar 2013 A1
20150118921 Vino, IV et al. Apr 2015 A1
20150245501 Schunk Aug 2015 A1
20150295356 Tziviskos Oct 2015 A1
20150295362 Tziviskos Oct 2015 A1
20150311636 Chang Oct 2015 A1
20150333420 Davis et al. Nov 2015 A1
20160294121 Daughtry, Jr. Oct 2016 A1
20160322759 Park Nov 2016 A1
20170279234 Tsai Sep 2017 A1
20170294746 Fang Oct 2017 A1
20180083391 Peng Mar 2018 A1
20180115118 Zhao Apr 2018 A1
20180145462 Feng May 2018 A1
20180151987 Zhao May 2018 A1
Foreign Referenced Citations (5)
Number Date Country
101740989 Jun 2010 CN
102856738 Jan 2013 CN
203445352 Feb 2014 CN
104009338 Aug 2014 CN
203859328 Aug 2014 CN
Non-Patent Literature Citations (2)
Entry
Translated Chinese Office Action dated Dec. 5, 2017 for Chinese Patent Application No. 201610204370.6, a counterpart foreign application of U.S. Appl. No. 15/075,429, 14 pages.
Response to Chinese Office Action with Translated Claims filed Apr. 20, 2018 for Chinese Patent Application No. 201610204370.6, a counterpart foreign application of U.S. Appl. No. 15/075,429, 17 pages.
Related Publications (1)
Number Date Country
20160294121 A1 Oct 2016 US
Provisional Applications (1)
Number Date Country
62142291 Apr 2015 US