Over the years, various types of puzzles have been developed for the purpose of providing amusement and entertainment. One such amusement device has been the manipulative puzzle in which various puzzle pieces are manipulated to solve the puzzle to its desired pattern.
One of the well known manipulable puzzles is the Rubik's Cube (trademark), a 3×3×3 puzzle cube comprising of 26 cubic elements and is connected together by a central element. It has 9 square cells on each side, for a total area of 54 cells. Each cubic element has one, two or three exposed cells. The puzzle pieces are manipulated to restore the mix color pattern to its original color. When the puzzle is solved, each side of the cube has a same color.
The internal rotating structure for the 2×2×2 cube and 3×3×3 cube is described by reference to Rubik's Cube (trademark).
Furthermore, the internal rotating structure for the 4×4×4, 5×5×5 or higher order arrays are described by Puzzle Cube, in U.S. Pat. No. 4,540,177 and Three Dimensional Puzzle, in U.S. Pat. No. 4,600,199 which disclose the underlying structure of the rotating element, respectively.
The Rubik's Cube has been a popular puzzle cube. However, the Rubik's Cube is plain only color on each side and is not challenge to solve. The preferred present invention is more interesting and challenging logical cubes with various levels of difficulty and challenge.
The present preferred inventions not only provide logical thinking, but also challenging one to use numerical, dot and shape recognition and memorization to solve the logical cube puzzle.
The invention is a three-dimensional logical cube has 6 faces and an N×N array of cells on each face. Each cell on a three-dimensional logical cube has a numerical value on it for 2×2×2 cube, 3×3×3 cube, 4×4×4 cube and 5×5×5, and solid and hollow dots, solid dots, or shapes, on it for 2×2×2 cube and solid dots, or shapes 3×3×3 cube.
The internal rotating element structure for the 2×2×2 and 3×3×3 cubes can be rotated the same manner as Rubik's Cube (Trademark), 4×4×4 internal rotating element structure in Puzzle Cube in U.S. Pat. No. 4,540,177, and 5×5×5 internal rotating element structure in Three Dimensional Puzzle in U.S. Pat. No. 4,600,199.
The invention of the preferred embodiments are a 2×2×2 cube comprising of 8 rotatable elements connected to central elements, a 3×3×3 cube comprising of 26 rotatable elements connected to central elements, a 4×4×4 cube comprising of 56 rotatable elements connected to central elements, and a 5×5×5 cube comprising of 98 rotatable elements connected to central elements. All central elements are not visible from outside the cube.
It is objective of the present invention to provide a 2×2×2 cube with: 2×2 array comprises 2 rows and 2 columns of cells for a total of 4 square cells, 8 rotatable elements, and 24 rotatable square cells. The 2×2×2 cube when successfully solved, the numerical value on each face will have different number for all six faces, and the numerical value on each row around two faces will have different number.
It is another objective of the present invention to provide a 2×2×2 alternate embodiment cube (solid and hollow dot cube cell), when successfully solved, any one face will have same color for two solid dots and two hollow dots on its face, six faces on a cube will have six difference colors for solid dots and hollow dots.
It is another objective of the present invention to provide a 2×2×2 alternate embodiment cube (dot cube cell), The 2×2×2 cube when successfully solved, each cell on the same face has 1 dot, 2 dots, 3 dots and 4 dots for all six faces, and four adjacent cells located around two faces will have 1 dot, 2 dots, 3 dots and 4 dots on its cell.
It is another objective of the present invention to provide a 2×2×2 alternate embodiment cube (shape cube cell), when successfully solved, the shape on each cell on the same face will be the same for all six faces.
It is another objective of the present invention to provide a 3×3×3 cube with: 3×3 array comprises 3 rows and 3 columns of cells for a total of 9 square cells, 26 rotatable elements, and 54 rotatable square cells. The 3×3×3 cube when successfully solved, the numerical value on each face will have different number for all six faces, and the numerical value on each row around all faces will have different number for six of nine rows.
It is another objective of the present invention to provide a 3×3×3 alternate embodiment cube with: 3×3 array comprises 3 rows and 3 columns of cells for a total of 9 square cells, 26 rotatable elements, and 54 rotatable square cells. The 3×3×3 cube when successfully solved, the numerical value on each face will have different number for all six faces and the numerical value on each row around three faces will have different number for six of nine rows.
It is another objective of the present invention to provide a 3×3×3 alternate embodiment cube (dot cube cell), when successfully solved, any two opposite faces will have total of seven dots for all six faces.
It is another objective of the present invention to provide a 3×3×3 alternate embodiment cube (shape cube cell), when successfully solved, the shape on each cell on the same face will be the same for all six faces.
It is another objective of the present invention to provide a 4×4×4 cube with: 4×4 array comprises 4 rows and 4 columns of cells for a total of 16 square cells, 56 rotatable elements, and 96 rotatable square cells. The 4×4×4 cube when successfully solved, the numerical value on each face will have different number for all six faces, and the numerical value on each row around all faces will have different number.
It is another objective of the present invention to provide a 5×5×5 cube with: 5×5 array comprises 5 rows and 5 columns of cells for a total of 25 square cells, 98 rotatable elements, and 150 rotatable square cells. The 5×5×5 cube when successfully solved, the numerical value on each face will have different number for all six faces, and the numerical value on each row around all faces will have different number.
These objectives will be clear from the following brief and detailed of the description of the invention.
The drawings illustrated in the invention are presently preferred; however the invention is not limited to the precise arrangement as shown in the drawings.
a solved 4×4×4 logic cube with bottom and back isometric views of a preferred embodiment of the present invention.
A 2×2×2 solved logic cube is shown in
3×3×3 solved logic cube is shown in
An alternate embodiment 3×3×3 solved logic cube is shown in
A 4×4×4 solved logic cube is shown in
A 5×5×5 solved logic cube is shown in
2×2×2 solved logic cube is shown in
2×2×2 solved logic cube is shown in
2×2×2 solved logic cube is shown in
3×3×3 solved logic cube is shown in
3×3×3 solved logic cube is shown in