Not Applicable
Not Applicable
1. Field of the Invention
This invention relates to magnetic games, particularly to the dimensions of movement within them.
2. Prior Art
Current magnetic games are limited in their dimension of play. To move a magnet using the repelling force of another, the magnets must be held in relative alignment. If relative alignment is not maintained, one of the magnets will flip to its preferred orientation of attraction. To then have a magnet rise, fall, turn corners, and loop in three dimensions, one must ensure the relative alignment of the repelling magnetic forces. Some games use a magnetic piece to repel another piece in just two dimensions such as U.S. Pat. No. 2,540,216 to Quinby (1951). Others use attraction methods beneath a two-dimensional game board to guide a magnetic member around, such as Canadian patent 1070725 to Takashi (1980). Another game that uses attractive magnetic forces is found in Canadian patent 681510 to Sire (1964). Some games use both magnetic attraction and magnetic repulsion such as Canadian patent 690485 to Schott (1964). In each of these instances the magnetic forces are used only in two dimensions. Moreover, some games utilize a magnetic wand that a user manipulates to attract or repel various other magnets. One such game is found in U.S. Pat. No. 4,132,032 to Triska (1979). This restricts a person to using only the wand to manipulate the various other magnets.
Commonly found wooden bead mazes only use gravity and the forces that a person applies to the beads to move them around the course. Some have tried to make these games more interesting or have assembled them differently. U.S. Pat. No. 6,203,398 B1 to Wen-Pin Lin (2001) discloses a track forming a continuous loop. Canadian patent 1300378 to Johnson (1992) uses a malleable track member so that the course can be changed and its base is made of suction cups. U.S. Pat. No. 5,112,268 to Klaus (1992) is a self-supporting structure. But nobody has used magnetic forces with a three-dimensional game.
Other magnetic games are limited to being played in two dimensions. With the presented method, all three dimensions can be easily achieved. The magnets rise, fall, turn corners, and loop around on the track according to the laws of gravity and magnetic attraction and repulsion. The trailing magnet must stay in relative alignment with the magnet that it is repelling in order to achieve relative orientation of the magnetic forces. By making the magnets annular to a non-magnetic track, the direction of their travel is limited only by the design of the track. Moreover, in this method the user is not limited to having to use the same one magnet to repel the others. Different magnets on the apparatus can be used to repel another magnet or groups of magnets around on the track. This is quite different from the games where the user can only use a magnetic wand to interact with the magnets.
The current embodiment of the invention is quite different from a common bead maze. The wooden bead mazes only use gravity and the force that a person applies to the beads to move them around their course. By utilizing annular magnets on a non-magnetic track, the user of our device can utilize magnetic forces to achieve movement. This changes the entire feel of how one moves the various magnets around the non-magnetic tracks. This device adds a novel, and fun component that will surely delight children.
There are other objects and advantages of the preferred embodiment. It is very easy to use and even very young children who do not know anything about magnets can manipulate the magnets around. Moreover, the device is very educational as it will teach its users about magnetic forces, help with color recognition, help develop hand-eye coordination and help contribute to language skills. Many will be drawn to its shiny and durable aluminum tracks as well as its various bright colors. This device should have no trouble making its way onto the market place. It would be the perfect waiting room toy, as well as a suitable device for various daycares, schools, and family homes. It could easily be used as a rehabilitation device in hospitals to help patients regain or improve their fine motor skills. Furthermore, it could be used as a teaching tool to demonstrate magnetic forces in the classroom. It will appeal to a larger age range than a typical bead maze would, as its magnetic component will surely hold the attention of older children much longer. It will also appeal to younger children who will be able to experience the feel of magnetic forces in three dimensions. The fact that it does not require batteries and is not gender-specific increases its appeal even more. Further objects and advantages of our invention will become apparent from a consideration of the drawings and ensuing descriptions.
This method enables magnetic members to be attracted and repelled in three dimensions. It is the design of the track that determines where the magnetic members can go. By making the non-magnetic tracks pass through a series of magnetic members one is able to move the magnetic members in any direction that the track allows. This method keeps the magnetic members in the proper alignment for the laws of attraction and repulsion to work.
The present invention will now be described with reference to the included drawings.
The invention can be utilized in many ways. The user pushes various groups of magnets 40 around the non-magnetic tracks 30. Magnetic forces of repulsion enable the user to push one magnet 45 or groups of magnets 40 in such a way that they repel another magnet 45 or groups of magnets 40. Children are fascinated by the way in which these magnets move without being touched. Similarly, some magnets 40 are arranged to be attracted to one another. These too can be pushed around in groups. Moreover, a user may pull apart magnets 40 that are arranged to be attracted to one another. The user can then either by hand or by the use of a repelling magnet 45, force them into such close proximity that the attractive magnetic force draws them together again. Users can also spin and bounce the magnets 40 on the track 30. Additionally, magnets 40 on one track 30 may interact with magnets 40 on a different track 30 as they pass close by one another.
The specific description given above merely provides an illustration of the presently preferred embodiment of the invention. It should not be construed as limiting the scope of the invention. For example, the tracks can be made of other non-magnetic materials such as copper, silver or plastic and are therefore not solely restricted to aluminum. Moreover, each track's length and diameter may be larger or smaller and the tracks may be formed into various shapes. There are other means that could be used in the process of bending the tracks such as heating the material or using various systems of rollers. The tracks themselves could be made from a mold. The manner in which the tracks are fastened to the base may also be different. For example, adhesives could be used inside the base or clips could be used to retain the ends of the tracks. The preferred embodiment illustrates permanent fastening of the tracks to the base. In an alternative embodiment, a fastening method that allows the user to add, remove, or re-arrange the magnet configurations could be used. Moreover the device could be a continuous or non-continuous track that the user holds. If it were open at one or both ends it would be easy for the user to change the number of magnets on the track and their orientations. This would be an excellent teaching tool. The track could also be self supporting. The magnets themselves could have many different characteristics such as color, shape, magnetic strength, texture, and size. The number of magnets used on each of the tracks and the arrangement of their attractive and repulsive nature has endless combinations. Various materials could be used to make the apparatus. For example, the base may be made of plastic, various kinds of woods, or any other suitable material. The magnets themselves could be painted or plastic coated. The tracks could be polished, sealed or anodized to offer further protection. Thus the scope of the invention should be determined by the appended claims and their legal equivalents, rather than by the examples given.
This application claims the benefit of Provisional Patent application Ser. No. 61/000,647 filed 2007 Oct. 29 by the present inventors.
Number | Date | Country | |
---|---|---|---|
61000647 | Oct 2007 | US |