Three-dimensional mapping using disparate visual datasets

Information

  • Patent Grant
  • 12243167
  • Patent Number
    12,243,167
  • Date Filed
    Friday, October 21, 2022
    2 years ago
  • Date Issued
    Tuesday, March 4, 2025
    6 days ago
Abstract
A three-dimensional (3D) mapping system can be configured to generate a 3D map of a real-world environment using annotation of large image data sets, in which terrestrial imagery can be programmatically labeled with accurate labels using remotely sensed overhead image data. The 3D mapping system can implement photogrammetry to create a point cloud. Each pixel in the point cloud can be classified based on a consensus of each frame. The point cloud can be co-registered to a remotely sensed reference dataset to provide precise spatial coordinates for each pixel. Different patches of point clouds can be stitched together to provide a complete 3D map for a given area, such as a downtown area of a city.
Description
TECHNICAL FIELD

The present disclosure generally relates to special-purpose machines that manage data processing and improvements to such variants, and to the technologies by which such special-purpose machines become improved compared to other special-purpose machines for image processing using disparate vision datasets.


BACKGROUND

It is computationally difficult to generate three-dimensional (3D) maps of real-world environments. Implementing robotic and computer vision systems to map real-world environments involves significant expenditures in computer vision and robotic equipment and computationally intensive processing to generate accurate results.





BRIEF DESCRIPTION OF THE DRAWINGS

To easily identify the discussion of any particular element or act, the most significant digit or digits in a reference number refer to the figure (“FIG.”) number in which that element or act is first introduced.



FIG. 1 is a block diagram showing an example messaging system for exchanging data (e.g., messages and associated content) over a network, according to example embodiments.



FIG. 2 is a block diagram illustrating further details regarding the messaging system of FIG. 1, according to example embodiments.



FIG. 3 is a schematic diagram illustrating data which may be stored in a database of a messaging server system, according to certain example embodiments.



FIG. 4 is a schematic diagram illustrating a structure of a message, according to some embodiments, generated by a messaging client application for communication.



FIG. 5 is a schematic diagram illustrating an example access-limiting process, in terms of which access to content (e.g., an ephemeral message, and associated multimedia payload of data) or a content collection (e.g., an ephemeral message story) may be time-limited (e.g., made ephemeral), according to some example embodiments.



FIG. 6 shows an example flow diagram for generating a map from disparate image sources, according to some example embodiments.



FIG. 7 shows devices generating disparate sets of image data from orthogonal perspectives, according to some example embodiments.



FIG. 8 shows a 3D map generated from disparate data, according to some example embodiments.



FIG. 9 is a block diagram illustrating components of a machine, according to some example embodiments, able to read instructions from a machine-readable medium (e.g., a machine-readable storage medium) and perform any one or more of the methodologies discussed herein.





DETAILED DESCRIPTION

The description that follows includes systems, methods, techniques, instruction sequences, and computing machine program products that embody illustrative embodiments of the disclosure. In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide an understanding of various embodiments of the inventive subject matter. It will be evident, however, to those skilled in the art, that embodiments of the inventive subject matter may be practiced without these specific details. In general, well-known instruction instances, protocols, structures, and techniques are not necessarily shown in detail.


One challenge in computer vision is generating adequate amounts of training data for the massive growth in a variety of use cases. Well labeled terrestrial training data generally requires significant expenditures in devices to capture the data (e.g., cars with LIDAR (light detection and ranging) and imaging systems driving around city to collect data on the city). Further, these approaches require significant computing resources to generate accurate results (e.g., generate accurate point clouds or 3D maps of the city from the large amounts of LIDAR and image data). It is further difficult to generate 3D maps using remotely sensed data. Examples of remotely sensed data include drone generated image or video data and remotely sensed data purchased from companies that own aerial systems (e.g., planes, satellites, in accordance with some example embodiments). To address the foregoing issues, a 3D mapping system can be configured to generate a 3D map of a real-world environment using annotation of large image data sets (e.g., end-user provided video provided by one or more end-users of a network site). The image data sets comprise terrestrial imagery that can be programmatically labeled (e.g., neural network image segmentation) with accurate labels, where the label accuracy is improved and augmented with the remotely sensed overhead image data (e.g., aerial LIDAR) and also location data (e.g., GPS data). In some example embodiments, the 3D mapping system implements photogrammetry (e.g., Alice Vision, COLMAP) to create a point cloud from images (e.g., video clips of a city). Each pixel in the point cloud can be classified based on a consensus of each frame of a given video. The point cloud can be co-registered to a remotely sensed reference dataset (e.g., aerial device provided data) to provide precise spatial coordinates for each pixel. Different patches of the point cloud can be stitched together to provide a complete 3D map for a given area, such as a downtown area of a city.



FIG. 1 shows a block diagram of an example messaging system 100 for exchanging data (e.g., messages and associated content) over a network 106. The messaging system 100 includes multiple client devices 102, each of which hosts a number of applications including a messaging client application 104. Each messaging client application 104 is communicatively coupled to other instances of the messaging client application 104 and a messaging server system 108 via the network 106 (e.g., the Internet).


Accordingly, each messaging client application 104 is able to communicate and exchange data with another messaging client application 104 and with the messaging server system 108 via the network 106. The data exchanged between messaging client applications 104, and between a messaging client application 104 and the messaging server system 108, includes functions (e.g., commands to invoke functions) as well as payload data (e.g., text, audio, video, or other multimedia data).


The messaging server system 108 provides server-side functionality via the network 106 to a particular messaging client application 104. While certain functions of the messaging system 100 are described herein as being performed by either a messaging client application 104 or by the messaging server system 108, it will be appreciated that the location of certain functionality within either the messaging client application 104 or the messaging server system 108 is a design choice. For example, it may be technically preferable to initially deploy certain technology and functionality within the messaging server system 108, and to later migrate this technology and functionality to the messaging client application 104 where a client device 102 has a sufficient processing capacity.


The messaging server system 108 supports various services and operations that are provided to the messaging client application 104. Such operations include transmitting data to, receiving data from, and processing data generated by the messaging client application 104. This data may include message content, client device information, geolocation information, media annotation and overlays, message content persistence conditions, social network information, and live event information, as examples. Data exchanges within the messaging system 100 are invoked and controlled through functions available via user interfaces of the messaging client application 104.


Turning now specifically to the messaging server system 108, an application programming interface (API) server 110 is coupled to, and provides a programmatic interface to, an application server 112. The application server 112 is communicatively coupled to a database server 118, which facilitates access to a database 120 in which is stored data associated with messages processed by the application server 112.


The API server 110 receives and transmits message data (e.g., commands and message payloads) between the client devices 102 and the application server 112. Specifically, the API server 110 provides a set of interfaces (e.g., routines and protocols) that can be called or queried by the messaging client application 104 in order to invoke functionality of the application server 112. The API server 110 exposes various functions supported by the application server 112, including account registration; login functionality; the sending of messages, via the application server 112, from a particular messaging client application 104 to another messaging client application 104; the sending of media files (e.g., images or video) from a messaging client application 104 to a messaging server application 114 for possible access by another messaging client application 104; the setting of a collection of media data (e.g., a story); the retrieval of such collections; the retrieval of a list of friends of a user of a client device 102; the retrieval of messages and content; the adding and deletion of friends to and from a social graph; the location of friends within the social graph; and opening application events (e.g., relating to the messaging client application 104).


The application server 112 hosts a number of applications and subsystems, including the messaging server application 114, an image processing system 116, a social network system 122, and mapping system 123. The messaging server application 114 implements a number of message-processing technologies and functions, particularly related to the aggregation and other processing of content (e.g., textual and multimedia content) included in messages received from multiple instances of the messaging client application 104. As will be described in further detail, the text and media content from multiple sources may be aggregated into collections of content (e.g., called stories or galleries). These collections are then made available, by the messaging server application 114, to the messaging client application 104. Other processor- and memory-intensive processing of data may also be performed server-side by the messaging server application 114, in view of the hardware requirements for such processing.


The application server 112 also includes the image processing system 116, which is dedicated to performing various image processing operations, typically with respect to images or video received within the payload of a message at the messaging server application 114.


The social network system 122 supports various social networking functions and services and makes these functions and services available to the messaging server application 114. To this end, the social network system 122 maintains and accesses an entity graph (e.g., entity graph 304 in FIG. 3) within the database 120. Examples of functions and services supported by the social network system 122 include the identification of other users of the messaging system 100 with whom a particular user has relationships or whom the particular user is “following,” and also the identification of other entities and interests of a particular user. The application server 112 is communicatively coupled to a database server 118, which facilitates access to a database 120 in which is stored data associated with messages processed by the messaging server application 114. The mapping system 123 is configured to generate 3D maps from disparate image sources, as discussed in further detail below.



FIG. 2 is a block diagram illustrating further details regarding the messaging system 100, according to example embodiments. Specifically, the messaging system 100 is shown to comprise the messaging client application 104 and the application server 112, which in turn embody a number of subsystems, namely an ephemeral timer system 202, a collection management system 204, and an annotation system 206.


The ephemeral timer system 202 is responsible for enforcing the temporary access to content permitted by the messaging client application 104 and the messaging server application 114. To this end, the ephemeral timer system 202 incorporates a number of timers that, based on duration and display parameters associated with a message or collection of messages (e.g., a story), selectively display and enable access to messages and associated content via the messaging client application 104. Further details regarding the operation of the ephemeral timer system 202 are provided below.


The collection management system 204 is responsible for managing collections of media (e.g., collections of text, image, video, and audio data). In some examples, a collection of content (e.g., messages, including images, video, text, and audio) may be organized into an “event gallery” or an “event story.” Such a collection may be made available for a specified time period, such as the duration of an event to which the content relates. For example, content relating to a music concert may be made available as a “story” for the duration of that music concert. The collection management system 204 may also be responsible for publishing an icon that provides notification of the existence of a particular collection to the user interface of the messaging client application 104.


The collection management system 204 furthermore includes a curation interface 208 that allows a collection manager to manage and curate a particular collection of content. For example, the curation interface 208 enables an event organizer to curate a collection of content relating to a specific event (e.g., delete inappropriate content or redundant messages). Additionally, the collection management system 204 employs machine vision (or image recognition technology) and content rules to automatically curate a content collection. In certain embodiments, compensation may be paid to a user for inclusion of user-generated content into a collection. In such cases, the curation interface 208 operates to automatically make payments to such users for the use of their content.


The annotation system 206 provides various functions that enable a user to annotate or otherwise modify or edit media content associated with a message. For example, the annotation system 206 provides functions related to the generation and publishing of media overlays for messages processed by the messaging system 100. The annotation system 206 operatively supplies a media overlay (e.g., a geofilter or filter) to the messaging client application 104 based on a geolocation of the client device 102. In another example, the annotation system 206 operatively supplies a media overlay to the messaging client application 104 based on other information, such as social network information of the user of the client device 102. A media overlay may include audio and visual content and visual effects. Examples of audio and visual content include pictures, text, logos, animations, and sound effects. An example of a visual effect includes color overlaying. The audio and visual content or the visual effects can be applied to a media content item (e.g., a photo) at the client device 102. For example, the media overlay includes text that can be overlaid on top of a photograph generated by the client device 102. In another example, the media overlay includes an identification of a location (e.g., Venice Beach), a name of a live event, or a name of a merchant (e.g., Beach Coffee House). In another example, the annotation system 206 uses the geolocation of the client device 102 to identify a media overlay that includes the name of a merchant at the geolocation of the client device 102. The media overlay may include other indicia associated with the merchant. The media overlays may be stored in the database 120 and accessed through the database server 118.


In one example embodiment, the annotation system 206 provides a user-based publication platform that enables users to select a geolocation on a map and upload content associated with the selected geolocation. The user may also specify circumstances under which particular content should be offered to other users. The annotation system 206 generates a media overlay that includes the uploaded content and associates the uploaded content with the selected geolocation.


In another example embodiment, the annotation system 206 provides a merchant-based publication platform that enables merchants to select a particular media overlay associated with a geolocation via a bidding process. For example, the annotation system 206 associates the media overlay of a highest-bidding merchant with a corresponding geolocation for a predefined amount of time.



FIG. 3 is a schematic diagram illustrating data 300 which may be stored in the database 120 of the messaging server system 108, according to certain example embodiments. While the content of the database 120 is shown to comprise a number of tables, it will be appreciated that the data 300 could be stored in other types of data structures (e.g., as an object-oriented database). The database 120 includes message data stored within a message table 314. An entity table 302 stores entity data, including an entity graph 304. Entities for which records are maintained within the entity table 302 may include individuals, corporate entities, organizations, objects, places, events, and so forth. Regardless of type, any entity regarding which the messaging server system 108 stores data may be a recognized entity. Each entity is provided with a unique identifier, as well as an entity type identifier (not shown).


The entity graph 304 furthermore stores information regarding relationships and associations between or among entities. Such relationships may be social, professional (e.g., work at a common corporation or organization), interest-based, or activity-based, for example.


The database 120 also stores annotation data, in the example form of filters, in an annotation table 312. Filters for which data is stored within the annotation table 312 are associated with and applied to videos (for which data is stored in a video table 310) and/or images (for which data is stored in an image table 308). Filters, in one example, are overlays that are displayed as overlaid on an image or video during presentation to a recipient user. Filters may be of various types, including user-selected filters from a gallery of filters presented to a sending user by the messaging client application 104 when the sending user is composing a message. Other types of filters include geolocation filters (also known as geo-filters), which may be presented to a sending user based on geographic location. For example, geolocation filters specific to a neighborhood or special location may be presented within a user interface by the messaging client application 104, based on geolocation information determined by a Global Positioning System (GPS) unit of the client device 102. Another type of filter is a data filter, which may be selectively presented to a sending user by the messaging client application 104, based on other inputs or information gathered by the client device 102 during the message creation process. Examples of data filters include a current temperature at a specific location, a current speed at which a sending user is traveling, a battery life for a client device 102, or the current time.


Other annotation data that may be stored within the image table 308 is so-called “lens” data. A “lens” may be a real-time special effect and sound that may be added to an image or a video.


As mentioned above, the video table 310 stores video data which, in one embodiment, is associated with messages for which records are maintained within the message table 314. Similarly, the image table 308 stores image data associated with messages for which message data is stored in the message table 314. The entity table 302 may associate various annotations from the annotation table 312 with various images and videos stored in the image table 308 and the video table 310.


A story table 306 stores data regarding collections of messages and associated image, video, or audio data, which are compiled into a collection (e.g., a story or a gallery). The creation of a particular collection may be initiated by a particular user (e.g., each user for whom a record is maintained in the entity table 302). A user may create a “personal story” in the form of a collection of content that has been created and sent/broadcast by that user. To this end, the user interface of the messaging client application 104 may include an icon that is user-selectable to enable a sending user to add specific content to his or her personal story.


A collection may also constitute a “live story,” which is a collection of content from multiple users that is created manually, automatically, or using a combination of manual and automatic techniques. For example, a “live story” may constitute a curated stream of user-submitted content from various locations and events. Users whose client devices 102 have location services enabled and are at a common location or event at a particular time may, for example, be presented with an option, via a user interface of the messaging client application 104, to contribute content to a particular live story. The live story may be identified to the user by the messaging client application 104 based on his or her location. The end result is a “live story” told from a community perspective.


A further type of content collection is known as a “location story,” which enables a user whose client device 102 is located within a specific geographic location (e.g., on a college or university campus) to contribute to a particular collection. In some embodiments, a contribution to a location story may require a second degree of authentication to verify that the end user belongs to a specific organization or other entity (e.g., is a student on the university campus).



FIG. 4 is a schematic diagram illustrating a structure of a message 400, according to some embodiments, generated by a messaging client application 104 for communication to a further messaging client application 104 or the messaging server application 114. The content of a particular message 400 is used to populate the message table 314 stored within the database 120, accessible by the messaging server application 114. Similarly, the content of a message 400 is stored in memory as “in-transit” or “in-flight” data of the client device 102 or the application server 112. The message 400 is shown to include the following components:

    • A message identifier 402: a unique identifier that identifies the message 400.
    • A message text payload 404: text, to be generated by a user via a user interface of the client device 102 and that is included in the message 400.
    • A message image payload 406: image data captured by a camera component of a client device 102 or retrieved from memory of a client device 102, and that is included in the message 400.
    • A message video payload 408: video data captured by a camera component or retrieved from a memory component of the client device 102, and that is included in the message 400.
    • A message audio payload 410: audio data captured by a microphone or retrieved from the memory component of the client device 102, and that is included in the message 400.
    • Message annotations 412: annotation data (e.g., filters, stickers, or other enhancements) that represents annotations to be applied to the message image payload 406, message video payload 408, or message audio payload 410 of the message 400.
    • A message duration parameter 414: a parameter value indicating, in seconds, the amount of time for which content of the message 400 (e.g., the message image payload 406, message video payload 408, and message audio payload 410) is to be presented or made accessible to a user via the messaging client application 104.
    • A message geolocation parameter 416: geolocation data (e.g., latitudinal and longitudinal coordinates) associated with the content payload of the message 400. Multiple message geolocation parameter 416 values may be included in the payload, with each of these parameter values being associated with respective content items included in the content (e.g., a specific image in the message image payload 406, or a specific video in the message video payload 408).
    • A message story identifier 418: values identifying one or more content collections (e.g., “stories”) with which a particular content item in the message image payload 406 of the message 400 is associated. For example, multiple images within the message image payload 406 may each be associated with multiple content collections using identifier values.
    • A message tag 420: one or more tags, each of which is indicative of the subject matter of content included in the message payload. For example, where a particular image included in the message image payload 406 depicts an animal (e.g., a lion), a tag value may be included within the message tag 420 that is indicative of the relevant animal. Tag values may be generated manually, based on user input, or may be automatically generated using, for example, image recognition.
    • A message sender identifier 422: an identifier (e.g., a messaging system identifier, email address, or device identifier) indicative of a user of the client device 102 on which the message 400 was generated and from which the message 400 was sent.
    • A message receiver identifier 424: an identifier (e.g., a messaging system identifier, email address, or device identifier) indicative of a user of the client device 102 to which the message 400 is addressed.


The contents (e.g., values) of the various components of the message 400 may be pointers to locations in tables within which content data values are stored. For example, an image value in the message image payload 406 may be a pointer to (or address of) a location within the image table 308. Similarly, values within the message video payload 408 may point to data stored within the video table 310, values stored within the message annotations 412 may point to data stored in the annotation table 312, values stored within the message story identifier 418 may point to data stored in the story table 306, and values stored within the message sender identifier 422 and the message receiver identifier 424 may point to user records stored within the entity table 302.



FIG. 5 is a schematic diagram illustrating an access-limiting process 500, in terms of which access to content (e.g., an ephemeral message 502, and associated multimedia payload of data) or a content collection (e.g., an ephemeral message story 504) may be time-limited (e.g., made ephemeral), according to some example embodiments.


An ephemeral message 502 is shown to be associated with a message duration parameter 506, the value of which determines an amount of time that the ephemeral message 502 will be displayed to a receiving user of the ephemeral message 502 by the messaging client application 104. In one embodiment, where the messaging client application 104 is an application client, an ephemeral message 502 is viewable by a receiving user for up to a maximum of 10 seconds, depending on the amount of time that the sending user specifies using the message duration parameter 506.


The message duration parameter 506 and the message receiver identifier 424 are shown to be inputs to a message timer 512, which is responsible for determining the amount of time that the ephemeral message 502 is shown to a particular receiving user identified by the message receiver identifier 424. In particular, the ephemeral message 502 will only be shown to the relevant receiving user for a time period determined by the value of the message duration parameter 506. The message timer 512 is shown to provide output to a more generalized ephemeral timer system 202, which is responsible for the overall timing of display of content (e.g., an ephemeral message 502) to a receiving user.


The ephemeral message 502 is shown in FIG. 5 to be included within an ephemeral message story 504 (e.g., a personal story, or an event story). The ephemeral message story 504 has an associated story duration parameter 508, a value of which determines a time duration for which the ephemeral message story 504 is presented and accessible to users of the messaging system 100. The story duration parameter 508, for example, may be the duration of a music concert, where the ephemeral message story 504 is a collection of content pertaining to that concert. Alternatively, a user (either the owning user or a curator user) may specify the value for the story duration parameter 508 when performing the setup and creation of the ephemeral message story 504.


Additionally, each ephemeral message 502 within the ephemeral message story 504 has an associated story participation parameter 510, a value of which determines the duration of time for which the ephemeral message 502 will be accessible within the context of the ephemeral message story 504. Accordingly, a particular ephemeral message 502 may “expire” and become inaccessible within the context of the ephemeral message story 504, prior to the ephemeral message story 504 itself expiring in terms of the story duration parameter 508.


The ephemeral timer system 202 may furthermore operationally remove a particular ephemeral message 502 from the ephemeral message story 504 based on a determination that it has exceeded an associated story participation parameter 510. For example, when a sending user has established a story participation parameter 510 of 24 hours from posting, the ephemeral timer system 202 will remove the relevant ephemeral message 502 from the ephemeral message story 504 after the specified 24 hours. The ephemeral timer system 202 also operates to remove an ephemeral message story 504 either when the story participation parameter 510 for each and every ephemeral message 502 within the ephemeral message story 504 has expired, or when the ephemeral message story 504 itself has expired in terms of the story duration parameter 508.


In response to the ephemeral timer system 202 determining that an ephemeral message story 504 has expired (e.g., is no longer accessible), the ephemeral timer system 202 communicates with the messaging system 100 (e.g., specifically, the messaging client application 104) to cause an indicium (e.g., an icon) associated with the relevant ephemeral message story 504 to no longer be displayed within a user interface of the messaging client application 104.


The following is an example implementation of the mapping system 123, in accordance with some example embodiments. First, the mapping system 123 performs semantic segmentation classifier training (e.g., image segmentation neural network) on frames from video, such as frames from video social media posts or a client device generated video. For example, the mapping system 123 generates programmatic labels for each frame using a machine learning classifier that is trained to generate image segmentation labels for terrestrial based images (e.g., image data generated from terrestrial based cameras, such as client devices). Second, the mapping system 123 places the semantically labeled image data into geographic space by converting the image frames into point clouds using a photogrammetric computer vision scheme, such as AliceVision. One issue with converting to point clouds is the inaccuracy of the geographic information contained in terrestrial based sources (e.g., side-perspective video, GPS data). In some example embodiments, to address insufficient accuracy, the mapping system 123 uses external spatial reference data sets (e.g., aerial data) to assist geographic rectification of the point cloud. In some example embodiments external reference data is provided from different forms such as aerial generated visual datasets. That is, to address the insufficient accuracy issues, the mapping system 123 implements an external spatial reference data set to assist georectification of the terrestrial-generated point cloud. The external reference could take a variety of forms, such as aerial LiDAR, point clouds that are derived from aerial or satellite oblique based imaging techniques, high-resolution synthetic aperture radar (SAR) or other remotely sensed sources. In some example embodiments, the mapping system 123 pre-processes the point clouds by dividing the video frames into segments (e.g., five second segments) and constructing 3D point clouds in a photogrammetry pipeline (e.g., implementing a photometric imaging scheme, SfM). An example photogrammetry pipeline comprises (1) camera initiation, (2) followed by image feature extraction, (3) followed by image matching, (4) followed by future matching, (5) followed by performing structure from motion (SfM), in accordance with some example embodiments. SfM involves estimating a 3D structure of a scene from a set of two dimensional images. SfM data can be generated in different ways based on different factors, such as the number and type of cameras used, whether the images are ordered, and whether the images are taken from different cameras (e.g., cameras of different user devices).


In some example embodiments, in order to co-register the point cloud to the external spatial reference, the mapping system 123 maximizes a number of possible point matches between the external reference data and the terrestrial based point cloud via densification. In some example embodiments, the additional densification processing is performed due to the two data sets being disparate data sets that are collected from different perspectives, such as orthogonal viewpoints (e.g., a side perspective and a top-down perspective). In some example embodiments, image registration between multiple images (e.g., co-registration) is an image processing technique used to align multiple scenes into a single integrated image.


In some example embodiments, to address these difficulties, the mapping system 123 increases a number of potential points matched by identifying (e.g., interpolating) the aerial data source and the terrestrial data source. In some example embodiments, for the aerial data source, the mapping system 123 densifies point data corresponding to the facades (e.g., sides) of buildings to improve the aerial provided data, because the vertical surfaces (e.g., walls, sides of buildings) often receive few generated points in a given area of collection due to the top-down perspective of the data collecting device. In some example embodiments, the mapping system 123 then semantically segments the LiDAR or 3D point clouds to determine building structures and ground structures. In some example embodiments, the mapping system 123 implements a machine learning neural network trained on the semantically segmented point clouds to perform densification (e.g., neural network based interpolation of points to densify and generate interpolated points).


In some example embodiments, the mapping system 123 then densifies the terrestrial photogrammetry derive point clouds, using a terrestrial densification pipeline comprising: (1) depth mapping, (2) followed by depth map filtering, (3) followed by meshing, (4) followed by mesh filtering. The results of the pipeline generates an improved set of terrestrial point cloud candidates that can be more readily co-registered to the reference external spatial data set (e.g., enhanced reference LiDAR point cloud from one or more aerial devices).


In some example embodiments, co-registration of the two data sets comprises first leveraging GPS data to derive telemetry for approximate point cloud positioning, then performing odometer-based alignment of the SfM point clouds, and then performing pose graph optimization of the SfM point clouds to the external spatial reference data. In this way, the mapping system 123 locks the SfM derived point clouds to a robust spatial reference. In some example embodiments, the mapping system 123 then stitches together each of the SfM point clouds to each other to create a seamless panoramic tapestry for a blended 3D point cloud of a geographic location, such as a downtown area of the city as illustrated in FIG. 8, in which each terrestrial point cloud is colored or shaded differently (e.g., one client device generates images of a building from the right, another from the left, and so on).


One advantage of the segmentation and co-registration processes is that each independent point cloud used to generate a 3D map is relatively small, and therefore does not require a large amount of computation to derive. In this way, when different point clouds are stitched together to generate the 3D mapping, the smaller SfM models ensure that errors do not propagate far (e.g., into adjacent point clouds which can spread error). In this way, each terrestrial point cloud's local errors are never correlated with their adjacent SfM models (e.g., terrestrial point clouds derived from other client devices). Further, in some example embodiments, image chips (e.g., image fragments of an image or video frame)) from the image frames of the client devices that are used to generate the terrestrial point clouds are then stitched (e.g., projected, applied as a surface texture) to the 3D map of FIG. 8, such that the 3D map has a more realistic photographic appearance. In this way, the mapping system generates high accuracy point clouds from commodity cameras (e.g., client device cameras) via enhancement from external spatial reference data sets.



FIG. 6 shows an example flow diagram of a method 600 for generating 3D maps using the mapping system 123 via registration of disparate image sets (e.g., terrestrially based point clouds, aerial based point clouds) generated from orthogonal perspectives, according to some example embodiments. At operation 605, the mapping system 123 identifies the terrestrial point cloud data sets. For example, a plurality of client user devices generate video data of different portions of a geographic location (e.g., a city's downtown area), a point cloud is generated from each client device's video data, and the multiple point clouds are identified by the mapping system 123 for further processing.


At operation 610, the mapping system 123 identifies remotely sensed data. At operation 615, the mapping system 123 augments the terrestrial point cloud data (e.g., densifies the point cloud, neural network based densification to add further points between sparse points).


At operation 620, the mapping system 123 augments a set of remotely sensed data, such as aerial device data of the geographic location taken from a top-down perspective. In some example embodiments, the mapping system 123 augments the remotely sensed data via interpolation (e.g., densification) to densify facades of vertical surfaces (e.g., buildings' exterior walls) captured in the remotely sensed data.


At operation 625, the mapping system 123 generates a 3D map of the physical environment. In some example embodiments, the mapping system 123 generates the 3D map by co-registering the augmented terrestrial point cloud data sets to the augmented remotely sensed data. The co-registering of each augmented terrestrial point cloud data set stitches the patches to each other and with the remotely sensed data to create an accurate 3D map.



FIG. 7 shows an example of disparate datasets, such as different image data from orthogonal perspectives, according to some example embodiments. In the example top perspective 700, the remotely sensed data comprises data (e.g., images, video, ranging data, point clouds) generated from a top-down perspective. Different remote devices can provide the remotely sensed data, such as planes or satellites that physically move above a geographic location and generate the remotely sensed data using LIDAR or imaging devices (e.g., Complementary metal-oxide-semiconductor (CMOS) camera). In the example side perspective 750, the local data comprises data (e.g., images, video, ranging data, point clouds) generated from terrestrial devices that generate data from a side perspective. Different devices can provide the local data, such as user devices (e.g., smartphones, cameras, car-based imaging systems, ranging systems such as Lidar).



FIG. 8 shows an example 3D map 800 generated of a geographic area (e.g., downtown Boulder, Colorado) that is generated by the mapping system 123, in accordance with some example embodiments. In the illustrated example of FIG. 8, the 3D map 800 is shaded with different patterns to indicate areas of the 3D map 800 that correspond to different point clouds generated from different terrestrial devices (e.g., different end-user devices). The different point clouds depict buildings, streets, and other physical features of a geographic area, such as downtown Boulder, Colorado. For example, a first user device (not depicted) generates video data while a user of the device is stationary or walks around the geographic area, and the video data is then used to create a first SfM-based point cloud area 805, via photometric pipeline, where the processing is implemented as discussed above (e.g., augmentation and co-registration with remotely sensed data), in accordance with some example embodiments


Further, a second user device (not depicted) generates video data while a second user of the second user device is stationary or walks around the geographic area, and the second video data set is then used to create a second SfM-based point cloud area 810 (e.g., which is processed and augmented via the remotely sensed data as discussed above). Further, a third user device (not depicted) generates a third video data set while a third user of the third user device is stationary or walks around the geographic area, and the third video data set is then used to create a third SfM-based point cloud area 815 (e.g., which is processed and augmented via the remotely sensed data as discussed above).


Further, a fourth user device (not depicted) generates a fourth video data set while a fourth user of the fourth user device is stationary or walks around the geographic area, and the fourth video data set is then used to create a fourth SfM-based point cloud area 820 (e.g., which is processed and augmented via the remotely sensed data as discussed above). The resulting point clouds can then be stitched together to create the map 800 (e.g., a full 3D panoramic map of the geographic area) In some example embodiments, the video data sets are clips of social media posts (e.g., ephemeral messages), while in other example embodiments, the video data sets comprise video data created from commodity off the shelf consumer imaging solutions, such as video recorders, digital single lens reflex camera (DSLR) or mirrorless cameras.


As discussed above, one benefit of the independently derived point cloud areas 805, 810, 815, and 820 is that the error is localized into individual point cloud areas and does not spread into adjacent areas. This can be beneficial where, for example, one of the point clouds is inaccurate (e.g., due to poor quality video or aerial data), while still enabling creation of a highly useful 3D map 800.


In some example embodiments, the 3D map 800 does not display the different patterns of the different point clouds and instead image chips (e.g., image fragments) of the video data are applied as an image texture to the 3D map 800 so that the 3D map 800 appears more photo-realistic.


Example 1. A method comprising: identifying terrestrial source image data generated using a plurality of client devices; identifying aerial based image data that is generated from an orthogonal perspective relative to the terrestrial source image data; generating enhanced terrestrial source image data by correlating points of the terrestrial source image data and the aerial based image data; generating a three-dimensional map from the enhanced terrestrial source image data, the 3D map comprising stitched portions of enhanced terrestrial source image data sets from different client devices of the plurality of client devices.


Example 2. The method of example 1, wherein the terrestrial source image data comprises a plurality of point clouds.


Example 3. The method of any of the examples 1 or 2, wherein the plurality of point clouds are generated by applying an imaging scheme to video sequences generated by the plurality of client devices.


Example 4. The method of any of the examples 1-3, wherein the imaging scheme is a photometric imaging scheme that generates point cloud data from image data.


Example 5. The method of any of the examples 1-4, wherein the aerial based image data is generated by aerial vehicles.


Example 6. The method of any of the examples 1-9 wherein the aerial based image data comprises aerial lidar data that images a ground from a top-down perspective.


Example 7. The method of any of the examples 1-9 further comprising: enhancing the terrestrial source image data by performing densification to add image details using interpolation.


Example 8. The method of any of the examples 1-9 wherein a machine learning scheme is trained to perform densification to the terrestrial source image data.


Example 9. The method of any of the examples 1-9, further comprising: enhancing the terrestrial source image data by performing densification to add image details using interpolation.


Example 10. The method of any of the examples 1-9, wherein the correlating points comprises applying an point co-registration scheme to correlate of the terrestrial source image data and the aerial based image data.


Example 11. A system comprising: one or more processors of a machine; and at least one memory storing instructions that, when executed by the one or more processors, cause the machine to perform any of the methods of examples 10.


Example 12. A machine-storage media embodying instructions that, when executed by a machine, cause the machine to perform any of the methods of examples 1-10.



FIG. 9 is a block diagram illustrating components of a machine 900, according to some example embodiments, able to read instructions from a machine-readable medium (e.g., a machine-readable storage medium) and perform any one or more of the methodologies discussed herein. Specifically, FIG. 9 shows a diagrammatic representation of the machine 900 in the example form of a computer system, within which instructions 916 (e.g., software, a program, an application, an applet, an app, or other executable code) for causing the machine 900 to perform any one or more of the methodologies discussed herein may be executed. As such, the instructions 916 may be used to implement modules or components described herein. The instructions 916 transform the general, non-programmed machine 900 into a particular machine 900 programmed to carry out the described and illustrated functions in the manner described. In alternative embodiments, the machine 900 operates as a standalone device or may be coupled (e.g., networked) to other machines. In a networked deployment, the machine 900 may operate in the capacity of a server machine or a client machine in a server-client network environment, or as a peer machine in a peer-to-peer (or distributed) network environment. The machine 900 may comprise, but not be limited to, a server computer, a client computer, a personal computer (PC), a tablet computer, a laptop computer, a netbook, a set-top box (STB), a personal digital assistant (PDA), an entertainment media system, a cellular telephone, a smartphone, a mobile device, a wearable device (e.g., a smart watch), a smart home device (e.g., a smart appliance), other smart devices, a web appliance, a network router, a network switch, a network bridge, or any machine capable of executing the instructions 916, sequentially or otherwise, that specify actions to be taken by the machine 900. Further, while only a single machine 900 is illustrated, the term “machine” shall also be taken to include a collection of machines that individually or jointly execute the instructions 916 to perform any one or more of the methodologies discussed herein.


The machine 900 may include processors 910, memory/storage 930, and input/output (I/O) components 950, which may be configured to communicate with each other such as via a bus 902. The memory/storage 930 may include a main memory 932, static memory 934, and a storage unit 936, both accessible to the processors 910 such as via the bus 902. The storage unit 936 and memory 932 store the instructions 916 embodying any one or more of the methodologies or functions described herein. The instructions 916 may also reside, completely or partially, within the memory 932, within the storage unit 936 (e.g., on machine readable-medium 938), within at least one of the processors 910 (e.g., within the processor cache memory accessible to processors 912 or 914), or any suitable combination thereof, during execution thereof by the machine 900. Accordingly, the memory 932, the storage unit 936, and the memory of the processors 910 are examples of machine-readable media.


The I/O components 950 may include a wide variety of components to receive input, provide output, produce output, transmit information, exchange information, capture measurements, and so on. The specific I/O components 950 that are included in a particular machine 900 will depend on the type of machine. For example, portable machines such as mobile phones will likely include a touch input device or other such input mechanisms, while a headless server machine will likely not include such a touch input device. It will be appreciated that the I/O components 950 may include many other components that are not shown in FIG. 9. The I/O components 950 are grouped according to functionality merely for simplifying the following discussion and the grouping is in no way limiting. In various example embodiments, the I/O components 950 may include output components 952 and input components 954. The output components 952 may include visual components (e.g., a display such as a plasma display panel (PDP), a light-emitting diode (LED) display, a liquid-crystal display (LCD), a projector, or a cathode ray tube (CRT)), acoustic components (e.g., speakers), haptic components (e.g., a vibratory motor, resistance mechanisms), other signal generators, and so forth. The input components 954 may include alphanumeric input components (e.g., a keyboard, a touch screen configured to receive alphanumeric input, a photo-optical keyboard, or other alphanumeric input components), point-based input components (e.g., a mouse, a touchpad, a trackball, a joystick, a motion sensor, or other pointing instruments), tactile input components (e.g., a physical button, a touch screen that provides location and/or force of touches or touch gestures, or other tactile input components), audio input components (e.g., a microphone), and the like.


In further example embodiments, the I/O components 950 may include biometric components 956, motion components 958, environment components 960, or position components 962 among a wide array of other components. For example, the biometric components 956 may include components to detect expressions (e.g., hand expressions, facial expressions, vocal expressions, body gestures, or eye tracking), measure biosignals (e.g., blood pressure, heart rate, body temperature, perspiration, or brain waves), identify a person (e.g., voice identification, retinal identification, facial identification, fingerprint identification, or electroencephalogram-based identification), and the like. The motion components 958 may include acceleration sensor components (e.g., accelerometer), gravitation sensor components, rotation sensor components (e.g., gyroscope), and so forth. The environment components 960 may include, for example, illumination sensor components (e.g., photometer), temperature sensor components (e.g., one or more thermometers that detect ambient temperature), humidity sensor components, pressure sensor components (e.g., barometer), acoustic sensor components (e.g., one or more microphones that detect background noise), proximity sensor components (e.g., infrared sensors that detect nearby objects), gas sensors (e.g., gas sensors to detect concentrations of hazardous gases for safety or to measure pollutants in the atmosphere), or other components that may provide indications, measurements, or signals corresponding to a surrounding physical environment. The position components 962 may include location sensor components (e.g., a GPS receiver component), altitude sensor components (e.g., altimeters or barometers that detect air pressure from which altitude may be derived), orientation sensor components (e.g., magnetometers), and the like.


Communication may be implemented using a wide variety of technologies. The I/O components 950 may include communication components 964 operable to couple the machine 900 to a network 980 or devices 970 via a coupling 982 and a coupling 972, respectively. For example, the communication components 964 may include a network interface component or other suitable device to interface with the network 980. In further examples, the communication components 964 may include wired communication components, wireless communication components, cellular communication components, near field communication (NFC) components, Bluetooth® components (e.g., Bluetooth® Low Energy), Wi-Fi® components, and other communication components to provide communication via other modalities. The devices 970 may be another machine or any of a wide variety of peripheral devices (e.g., a peripheral device coupled via a USB).


Moreover, the communication components 964 may detect identifiers or include components operable to detect identifiers. For example, the communication components 964 may include radio frequency identification (RFID) tag reader components, NFC smart tag detection components, optical reader components (e.g., an optical sensor to detect one-dimensional barcodes such as Universal Product Code (UPC) barcode, multi-dimensional barcodes such as Quick Response (QR) code, Aztec code, Data Matrix, Dataglyph, MaxiCode, PDF418, Ultra Code, UCC RSS-2D barcode, and other optical codes), or acoustic detection components (e.g., microphones to identify tagged audio signals). In addition, a variety of information may be derived via the communication components 964, such as location via Internet Protocol (IP) geolocation, location via Wi-Fi® signal triangulation, location via detecting an NFC beacon signal that may indicate a particular location, and so forth.


“CARRIER SIGNAL” in this context refers to any intangible medium that is capable of storing, encoding, or carrying instructions 916 for execution by the machine 900, and includes digital or analog communications signals or other intangible media to facilitate communication of such instructions 916. Instructions 916 may be transmitted or received over the network 980 using a transmission medium via a network interface device and using any one of a number of well-known transfer protocols.


“CLIENT DEVICE” in this context refers to any machine 900 that interfaces to a network 980 to obtain resources from one or more server systems or other client devices 102. A client device 102 may be, but is not limited to, a mobile phone, desktop computer, laptop, PDA, smartphone, tablet, ultrabook, netbook, multi-processor system, microprocessor-based or programmable consumer electronics system, game console, STB, or any other communication device that a user may use to access a network 980.


“COMMUNICATIONS NETWORK” in this context refers to one or more portions of a network 980 that may be an ad hoc network, an intranet, an extranet, a virtual private network (VPN), a local area network (LAN), a wireless LAN (WLAN), a wide area network (WAN), a wireless WAN (WWAN), a metropolitan area network (MAN), the Internet, a portion of the Internet, a portion of the Public Switched Telephone Network (PSTN), a plain old telephone service (POTS) network, a cellular telephone network, a wireless network, a Wi-Fi® network, another type of network, or a combination of two or more such networks. For example, a network or a portion of a network 980 may include a wireless or cellular network and the coupling 982 may be a Code Division Multiple Access (CDMA) connection, a Global System for Mobile communications (GSM) connection, or another type of cellular or wireless coupling. In this example, the coupling may implement any of a variety of types of data transfer technology, such as Single Carrier Radio Transmission Technology (1×RTT), Evolution-Data Optimized (EVDO) technology, General Packet Radio Service (GPRS) technology, Enhanced Data rates for GSM Evolution (EDGE) technology, third Generation Partnership Project (3GPP) including 3G, fourth generation wireless (4G) networks, Universal Mobile Telecommunications System (UMTS), High-Speed Packet Access (HSPA), Worldwide Interoperability for Microwave Access (WiMAX), Long-Term Evolution (LTE) standard, others defined by various standard-setting organizations, other long-range protocols, or other data transfer technology.


“EPHEMERAL MESSAGE” in this context refers to a message 400 that is accessible for a time-limited duration. An ephemeral message 502 may be a text, an image, a video, and the like. The access time for the ephemeral message 502 may be set by the message sender. Alternatively, the access time may be a default setting, or a setting specified by the recipient. Regardless of the setting technique, the message 400 is transitory.


“MACHINE-READABLE MEDIUM” in this context refers to a component, a device, or other tangible media able to store instructions 916 and data temporarily or permanently and may include, but is not limited to, random-access memory (RAM), read-only memory (ROM), buffer memory, flash memory, optical media, magnetic media, cache memory, other types of storage (e.g., erasable programmable read-only memory (EPROM)), and/or any suitable combination thereof. The term “machine-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, or associated caches and servers) able to store instructions 916. The term “machine-readable medium” shall also be taken to include any medium, or combination of multiple media, that is capable of storing instructions 916 (e.g., code) for execution by a machine 900, such that the instructions 916, when executed by one or more processors 910 of the machine 900, cause the machine 900 to perform any one or more of the methodologies described herein. Accordingly, a “machine-readable medium” refers to a single storage apparatus or device, as well as “cloud-based” storage systems or storage networks that include multiple storage apparatus or devices. The term “machine-readable medium” excludes signals per se.


“COMPONENT” in this context refers to a device, a physical entity, or logic having boundaries defined by function or subroutine calls, branch points, APIs, or other technologies that provide for the partitioning or modularization of particular processing or control functions. Components may be combined via their interfaces with other components to carry out a machine process. A component may be a packaged functional hardware unit designed for use with other components and a part of a program that usually performs a particular function of related functions. Components may constitute either software components (e.g., code embodied on a machine-readable medium) or hardware components.


A “hardware component” is a tangible unit capable of performing certain operations and may be configured or arranged in a certain physical manner. In various example embodiments, one or more computer systems (e.g., a standalone computer system, a client computer system, or a server computer system) or one or more hardware components of a computer system (e.g., a processor 912 or a group of processors 910) may be configured by software (e.g., an application or application portion) as a hardware component that operates to perform certain operations as described herein. A hardware component may also be implemented mechanically, electronically, or any suitable combination thereof. For example, a hardware component may include dedicated circuitry or logic that is permanently configured to perform certain operations. A hardware component may be a special-purpose processor, such as a field-programmable gate array (FPGA) or an application-specific integrated circuit (ASIC). A hardware component may also include programmable logic or circuitry that is temporarily configured by software to perform certain operations. For example, a hardware component may include software executed by a general-purpose processor or other programmable processor. Once configured by such software, hardware components become specific machines (or specific components of a machine 900) uniquely tailored to perform the configured functions and are no longer general-purpose processors 910.


It will be appreciated that the decision to implement a hardware component mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations. Accordingly, the phrase “hardware component” (or “hardware-implemented component”) should be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired), or temporarily configured (e.g., programmed) to operate in a certain manner or to perform certain operations described herein.


Considering embodiments in which hardware components are temporarily configured (e.g., programmed), each of the hardware components need not be configured or instantiated at any one instance in time. For example, where a hardware component comprises a general-purpose processor 912 configured by software to become a special-purpose processor, the general-purpose processor 912 may be configured as respectively different special-purpose processors (e.g., comprising different hardware components) at different times. Software accordingly configures a particular processor 912 or processors 910, for example, to constitute a particular hardware component at one instance of time and to constitute a different hardware component at a different instance of time.


Hardware components can provide information to, and receive information from, other hardware components. Accordingly, the described hardware components may be regarded as being communicatively coupled. Where multiple hardware components exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses) between or among two or more of the hardware components. In embodiments in which multiple hardware components are configured or instantiated at different times, communications between or among such hardware components may be achieved, for example, through the storage and retrieval of information in memory structures to which the multiple hardware components have access. For example, one hardware component may perform an operation and store the output of that operation in a memory device to which it is communicatively coupled. A further hardware component may then, at a later time, access the memory device to retrieve and process the stored output. Hardware components may also initiate communications with input or output devices, and can operate on a resource (e.g., a collection of information).


The various operations of example methods described herein may be performed, at least partially, by one or more processors 910 that are temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors 910 may constitute processor-implemented components that operate to perform one or more operations or functions described herein. As used herein, “processor-implemented component” refers to a hardware component implemented using one or more processors 910. Similarly, the methods described herein may be at least partially processor-implemented, with a particular processor 912 or processors 910 being an example of hardware. For example, at least some of the operations of a method may be performed by one or more processors 910 or processor-implemented components. Moreover, the one or more processors 910 may also operate to support performance of the relevant operations in a “cloud computing” environment or as a “software as a service” (SaaS). For example, at least some of the operations may be performed by a group of computers (as examples of machines 900 including processors 910), with these operations being accessible via a network 980 (e.g., the Internet) and via one or more appropriate interfaces (e.g., an API). The performance of certain of the operations may be distributed among the processors 910, not only residing within a single machine 900, but deployed across a number of machines 900. In some example embodiments, the processors 910 or processor-implemented components may be located in a single geographic location (e.g., within a home environment, an office environment, or a server farm). In other example embodiments, the processors 910 or processor-implemented components may be distributed across a number of geographic locations.


“PROCESSOR” in this context refers to any circuit or virtual circuit (a physical circuit emulated by logic executing on an actual processor 912) that manipulates data values according to control signals (e.g., “commands,” “op codes,” “machine code,” etc.) and which produces corresponding output signals that are applied to operate a machine 900. A processor may, for example, be a central processing unit (CPU), a reduced instruction set computing (RISC) processor, a complex instruction set computing (CISC) processor, a graphics processing unit (GPU), a digital signal processor (DSP), an ASIC, a radio-frequency integrated circuit (RFIC), or any combination thereof. A processor 910 may further be a multi-core processor 910 having two or more independent processors 912, 99 (sometimes referred to as “cores”) that may execute instructions 916 contemporaneously.


“TIMESTAMP” in this context refers to a sequence of characters or encoded information identifying when a certain event occurred, for example giving date and time of day, sometimes accurate to a small fraction of a second.

Claims
  • 1. A method comprising: identifying terrestrial source image data generated using a plurality of client devices;identifying aerial based image data that is generated from an orthogonal perspective relative to the terrestrial source image data;generating enhanced terrestrial source image data by correlating points of the terrestrial source image data and the aerial based image data; andgenerating a three-dimensional map from the enhanced terrestrial source image data, the 3D map comprising stitched portions of enhanced terrestrial source image data sets from different client devices of the plurality of client devices, the stitched portions of the enhanced terrestrial source image data sets projected on the 3D map with colors or shading corresponding to the different client devices.
  • 2. The method of claim 1, wherein the terrestrial source image data comprises a plurality of point clouds.
  • 3. The method of claim 2, wherein the plurality of point clouds are generated by applying an imaging scheme to video sequences generated by the plurality of client devices.
  • 4. The method of claim 3, wherein the imaging scheme is a photometric imaging scheme that generates point cloud data from image data.
  • 5. The method of claim 1, wherein the aerial based image data is generated by aerial vehicles.
  • 6. The method of claim 5, wherein the aerial based image data comprises aerial lidar data that images a ground from a top-down perspective.
  • 7. The method of claim 1, further comprising: enhancing the terrestrial source image data by performing densification to add image details using interpolation.
  • 8. The method of claim 7, wherein a machine learning scheme is trained to perform densification to the terrestrial source image data.
  • 9. The method of claim 1, further comprising: stitching structure from motion (SfM) point clouds associated with the portions of the enhanced terrestrial source image data sets without correlating the SfM point clouds with each other; andgenerating a blended 3D point cloud based on the SfM point clouds.
  • 10. The method of claim 1, wherein the correlating points comprises applying a point co-registration scheme to correlate of the terrestrial source image data and the aerial based image data.
  • 11. A system comprising: one or more processors of a machine; andat least one memory storing instructions that, when executed by the one or more processors, cause the machine to perform operations comprising: identifying terrestrial source image data generated using a plurality of client devices;identifying aerial based image data that is generated from an orthogonal perspective relative to the terrestrial source image data;generating enhanced terrestrial source image data by correlating points of the terrestrial source image data and the aerial based image data; andgenerating a three-dimensional map from the enhanced terrestrial source image data, the 3D map comprising stitched portions of enhanced terrestrial source image data sets from different client devices of the plurality of client devices, the stitched portions of the enhanced terrestrial source image data sets projected on the 3D map with colors or shading corresponding to the different client devices.
  • 12. The system of claim 11, wherein the terrestrial source image data comprises a plurality of point clouds.
  • 13. The system of claim 12, wherein the plurality of point clouds are generated by applying an imaging scheme to video sequences generated by the plurality of client devices.
  • 14. The system of claim 13, wherein the imaging scheme is a photometric imaging scheme that generates point cloud data from image data.
  • 15. The system of claim 11, wherein the aerial based image data is generated by aerial vehicles.
  • 16. The system of claim 15, wherein the aerial based image data comprises aerial lidar data that images a ground from a top-down perspective.
  • 17. The system of claim 11, further comprising: enhancing the terrestrial source image data by performing densification to add image details using interpolation.
  • 18. The system of claim 17, wherein a machine learning scheme is trained to perform densification to the terrestrial source image data.
  • 19. The system of claim 11, further comprising: stitching structure from motion (SfM) point clouds associated with the portions of the enhanced terrestrial source image data sets without correlating the SfM point clouds with each other; andgenerating a blended 3D point cloud based on the SfM point clouds.
  • 20. A non-transitory machine-storage media embodying instructions that, when executed by a machine, cause the machine to perform operations comprising: identifying terrestrial source image data generated using a plurality of client devices;identifying aerial based image data that is generated from an orthogonal perspective relative to the terrestrial source image data;generating enhanced terrestrial source image data by correlating points of the terrestrial source image data and the aerial based image data; andgenerating a three-dimensional map from the enhanced terrestrial source image data, the 3D map comprising stitched portions of enhanced terrestrial source image data sets from different client devices of the plurality of client devices, the stitched portions of the enhanced terrestrial source image data sets projected on the 3D map with colors or shading corresponding to the different client devices.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of priority to U.S. Provisional Application No. 63/335,552, filed on Apr. 27, 2022, which is incorporated herein by reference in its entirety.

US Referenced Citations (621)
Number Name Date Kind
666223 Shedlock Jan 1901 A
4581634 Williams Apr 1986 A
4975690 Torres Dec 1990 A
5072412 Henderson, Jr. et al. Dec 1991 A
5493692 Theimer et al. Feb 1996 A
5713073 Warsta Jan 1998 A
5754939 Herz et al. May 1998 A
5855008 Goldhaber et al. Dec 1998 A
5883639 Walton et al. Mar 1999 A
5999932 Paul Dec 1999 A
6012098 Bayeh et al. Jan 2000 A
6014090 Rosen et al. Jan 2000 A
6029141 Bezos et al. Feb 2000 A
6038295 Mattes Mar 2000 A
6049711 Ben-Yehezkel et al. Apr 2000 A
6154764 Nitta et al. Nov 2000 A
6167435 Druckenmiller et al. Dec 2000 A
6204840 Petelycky et al. Mar 2001 B1
6205432 Gabbard et al. Mar 2001 B1
6216141 Straub et al. Apr 2001 B1
6285381 Sawano et al. Sep 2001 B1
6285987 Roth et al. Sep 2001 B1
6310694 Okimoto et al. Oct 2001 B1
6317789 Rakavy et al. Nov 2001 B1
6334149 Davis, Jr. et al. Dec 2001 B1
6349203 Asaoka et al. Feb 2002 B1
6353170 Eyzaguirre et al. Mar 2002 B1
6446004 Cao et al. Sep 2002 B1
6449657 Stanbach, Jr. et al. Sep 2002 B2
6456852 Bar et al. Sep 2002 B2
6484196 Maurille Nov 2002 B1
6487601 Hubacher et al. Nov 2002 B1
6523008 Avrunin et al. Feb 2003 B1
6542749 Tanaka et al. Apr 2003 B2
6549768 Fraccaroli Apr 2003 B1
6618593 Drutman et al. Sep 2003 B1
6622174 Ukita et al. Sep 2003 B1
6631463 Floyd et al. Oct 2003 B1
6636247 Hamzy et al. Oct 2003 B1
6636855 Holloway et al. Oct 2003 B2
6643684 Malkin et al. Nov 2003 B1
6658095 Yoakum et al. Dec 2003 B1
6665531 Soderbacka et al. Dec 2003 B1
6668173 Greene Dec 2003 B2
6684238 Dutta Jan 2004 B1
6684257 Camut et al. Jan 2004 B1
6698020 Zigmond et al. Feb 2004 B1
6700506 Winkler Mar 2004 B1
6720860 Narayanaswami Apr 2004 B1
6724403 Santoro et al. Apr 2004 B1
6757713 Ogilvie et al. Jun 2004 B1
6832222 Zimowski Dec 2004 B1
6834195 Brandenberg et al. Dec 2004 B2
6836792 Chen Dec 2004 B1
6898626 Ohashi May 2005 B2
6959324 Kubik et al. Oct 2005 B1
6970088 Kovach Nov 2005 B2
6970907 Ullmann et al. Nov 2005 B1
6980909 Root et al. Dec 2005 B2
6981040 Konig et al. Dec 2005 B1
7020494 Spriestersbach et al. Mar 2006 B2
7027124 Foote et al. Apr 2006 B2
7072963 Anderson et al. Jul 2006 B2
7085571 Kalhan et al. Aug 2006 B2
7110744 Freeny, Jr. Sep 2006 B2
7124164 Chemtob Oct 2006 B1
7149893 Leonard et al. Dec 2006 B1
7173651 Knowles Feb 2007 B1
7188143 Szeto Mar 2007 B2
7203380 Chiu et al. Apr 2007 B2
7206568 Sudit Apr 2007 B2
7227937 Yoakum et al. Jun 2007 B1
7237002 Estrada et al. Jun 2007 B1
7240089 Boudreau Jul 2007 B2
7269426 Kokkonen et al. Sep 2007 B2
7280658 Amini et al. Oct 2007 B2
7315823 Brondrup Jan 2008 B2
7349768 Bruce et al. Mar 2008 B2
7356564 Hartselle et al. Apr 2008 B2
7394345 Ehlinger et al. Jul 2008 B1
7411493 Smith Aug 2008 B2
7423580 Markhovsky et al. Sep 2008 B2
7454442 Cobleigh et al. Nov 2008 B2
7508419 Toyama et al. Mar 2009 B2
7519670 Hagale et al. Apr 2009 B2
7535890 Rojas May 2009 B2
7546554 Chiu et al. Jun 2009 B2
7607096 Oreizy et al. Oct 2009 B2
7639943 Kalajan Dec 2009 B1
7650231 Gadler Jan 2010 B2
7668537 DeVries Feb 2010 B2
7770137 Forbes et al. Aug 2010 B2
7778973 Choi et al. Aug 2010 B2
7779444 Glad Aug 2010 B2
7787886 Markhovsky et al. Aug 2010 B2
7796946 Eisenbach Sep 2010 B2
7801954 Cadiz et al. Sep 2010 B2
7856360 Kramer et al. Dec 2010 B2
8001204 Burtner et al. Aug 2011 B2
8032586 Challenger et al. Oct 2011 B2
8082255 Carlson, Jr. et al. Dec 2011 B1
8090351 Klein Jan 2012 B2
8098904 Ioffe et al. Jan 2012 B2
8099109 Altman et al. Jan 2012 B2
8112716 Kobayashi Feb 2012 B2
8131597 Hudetz et al. Mar 2012 B2
8135166 Rhoads et al. Mar 2012 B2
8136028 Loeb et al. Mar 2012 B1
8146001 Reese Mar 2012 B1
8161115 Yamamoto Apr 2012 B2
8161417 Lee Apr 2012 B1
8195203 Tseng Jun 2012 B1
8199747 Rojas et al. Jun 2012 B2
8208943 Petersen et al. Jun 2012 B2
8214443 Hamburg Jul 2012 B2
8234350 Gu et al. Jul 2012 B1
8276092 Narayanan et al. Sep 2012 B1
8279319 Date Oct 2012 B2
8280406 Ziskind et al. Oct 2012 B2
8285199 Hsu et al. Oct 2012 B2
8287380 Nguyen et al. Oct 2012 B2
8301159 Hamynen et al. Oct 2012 B2
8306922 Kunal et al. Nov 2012 B1
8312086 Velusamy et al. Nov 2012 B2
8312097 Siegel et al. Nov 2012 B1
8326315 Phillips et al. Dec 2012 B2
8326327 Hymel et al. Dec 2012 B2
8332475 Rosen et al. Dec 2012 B2
8352546 Dollard Jan 2013 B1
8379130 Forutanpour et al. Feb 2013 B2
8385950 Wagner et al. Feb 2013 B1
8402097 Szeto Mar 2013 B2
8405773 Hayashi et al. Mar 2013 B2
8418067 Cheng et al. Apr 2013 B2
8423409 Rao Apr 2013 B2
8471914 Sakiyama et al. Jun 2013 B2
8472935 Fujisaki Jun 2013 B1
8510383 Hurley et al. Aug 2013 B2
8527345 Rothschild et al. Sep 2013 B2
8554627 Svendsen et al. Oct 2013 B2
8560612 Kilmer et al. Oct 2013 B2
8594680 Ledlie et al. Nov 2013 B2
8613089 Holloway et al. Dec 2013 B1
8660358 Bergboer et al. Feb 2014 B1
8660369 Llano et al. Feb 2014 B2
8660793 Ngo et al. Feb 2014 B2
8682350 Altman et al. Mar 2014 B2
8718333 Wolf et al. May 2014 B2
8724622 Rojas May 2014 B2
8732168 Johnson May 2014 B2
8744523 Fan et al. Jun 2014 B2
8745132 Obradovich Jun 2014 B2
8761800 Kuwahara Jun 2014 B2
8768876 Shim et al. Jul 2014 B2
8775972 Spiegel Jul 2014 B2
8788680 Naik Jul 2014 B1
8790187 Walker et al. Jul 2014 B2
8797415 Arnold Aug 2014 B2
8798646 Wang et al. Aug 2014 B1
8856349 Jain et al. Oct 2014 B2
8874677 Rosen et al. Oct 2014 B2
8886227 Schmidt et al. Nov 2014 B2
8909679 Root et al. Dec 2014 B2
8909725 Sehn Dec 2014 B1
8972357 Shim et al. Mar 2015 B2
8995433 Rojas Mar 2015 B2
9015285 Ebsen et al. Apr 2015 B1
9020745 Johnston et al. Apr 2015 B2
9040574 Wang et al. May 2015 B2
9055416 Rosen et al. Jun 2015 B2
9094137 Sehn et al. Jul 2015 B1
9100806 Rosen et al. Aug 2015 B2
9100807 Rosen et al. Aug 2015 B2
9113301 Spiegel et al. Aug 2015 B1
9119027 Sharon et al. Aug 2015 B2
9123074 Jacobs Sep 2015 B2
9143382 Bhogal et al. Sep 2015 B2
9143681 Ebsen et al. Sep 2015 B1
9152477 Campbell et al. Oct 2015 B1
9191776 Root et al. Nov 2015 B2
9204252 Root et al. Dec 2015 B2
9225897 Sehn et al. Dec 2015 B1
9258459 Hartley Feb 2016 B2
9344606 Hartley et al. May 2016 B2
9385983 Sehn Jul 2016 B1
9396354 Murphy et al. Jul 2016 B1
9407712 Sehn Aug 2016 B1
9407816 Sehn Aug 2016 B1
9430783 Sehn Aug 2016 B1
9439041 Parvizi et al. Sep 2016 B2
9443227 Evans et al. Sep 2016 B2
9450907 Pridmore et al. Sep 2016 B2
9459778 Hogeg et al. Oct 2016 B2
9489661 Evans et al. Nov 2016 B2
9491134 Rosen et al. Nov 2016 B2
9532171 Allen et al. Dec 2016 B2
9537811 Allen et al. Jan 2017 B2
9628950 Noeth et al. Apr 2017 B1
9710821 Heath Jul 2017 B2
9854219 Sehn Dec 2017 B2
10223829 Wu Mar 2019 B2
10674311 Bouba et al. Jun 2020 B1
10893385 Berardino et al. Jan 2021 B1
10922881 Tran Feb 2021 B2
10936066 Jaureguiberry et al. Mar 2021 B1
10939246 Dancie et al. Mar 2021 B1
10945098 Dancie et al. Mar 2021 B2
11032670 Baylin et al. Jun 2021 B1
11039270 Bouba et al. Jun 2021 B2
11127202 Krishna Sep 2021 B2
11166123 Guillaume Nov 2021 B1
11275439 Jaureguiberry et al. Mar 2022 B2
11294936 Jaureguiberry Apr 2022 B1
11307747 Dancie et al. Apr 2022 B2
11508115 Ackerson Nov 2022 B2
20020047868 Miyazawa Apr 2002 A1
20020078456 Hudson et al. Jun 2002 A1
20020087631 Sharma Jul 2002 A1
20020097257 Miller et al. Jul 2002 A1
20020122659 Mcgrath et al. Sep 2002 A1
20020128047 Gates Sep 2002 A1
20020144154 Tomkow Oct 2002 A1
20030001846 Davis et al. Jan 2003 A1
20030016247 Lai et al. Jan 2003 A1
20030017823 Mager et al. Jan 2003 A1
20030020623 Cao et al. Jan 2003 A1
20030023874 Prokupets et al. Jan 2003 A1
20030037124 Yamaura et al. Feb 2003 A1
20030052925 Daimon et al. Mar 2003 A1
20030101230 Benschoter et al. May 2003 A1
20030110503 Perkes Jun 2003 A1
20030126215 Udell Jul 2003 A1
20030148773 Spriestersbach et al. Aug 2003 A1
20030164856 Prager et al. Sep 2003 A1
20030229607 Zellweger et al. Dec 2003 A1
20040027371 Jaeger Feb 2004 A1
20040064429 Hirstius et al. Apr 2004 A1
20040078367 Anderson et al. Apr 2004 A1
20040111467 Willis Jun 2004 A1
20040158739 Wakai et al. Aug 2004 A1
20040189465 Capobianco et al. Sep 2004 A1
20040203959 Coombes Oct 2004 A1
20040215625 Svendsen et al. Oct 2004 A1
20040243531 Dean Dec 2004 A1
20040243688 Wugofski Dec 2004 A1
20050021444 Bauer et al. Jan 2005 A1
20050022211 Veselov et al. Jan 2005 A1
20050048989 Jung Mar 2005 A1
20050078804 Yomoda Apr 2005 A1
20050097176 Schatz et al. May 2005 A1
20050102381 Jiang et al. May 2005 A1
20050104976 Currans May 2005 A1
20050114783 Szeto May 2005 A1
20050119936 Buchanan et al. Jun 2005 A1
20050122405 Voss et al. Jun 2005 A1
20050193340 Amburgey et al. Sep 2005 A1
20050193345 Klassen et al. Sep 2005 A1
20050198128 Anderson Sep 2005 A1
20050223066 Buchheit et al. Oct 2005 A1
20050288954 McCarthy et al. Dec 2005 A1
20060026067 Nicholas et al. Feb 2006 A1
20060107297 Toyama et al. May 2006 A1
20060114338 Rothschild Jun 2006 A1
20060119882 Harris et al. Jun 2006 A1
20060242239 Morishima et al. Oct 2006 A1
20060252438 Ansamaa et al. Nov 2006 A1
20060265417 Amato et al. Nov 2006 A1
20060270419 Crowley et al. Nov 2006 A1
20060287878 Wadhwa et al. Dec 2006 A1
20070004426 Pfleging et al. Jan 2007 A1
20070038715 Collins et al. Feb 2007 A1
20070040931 Nishizawa Feb 2007 A1
20070073517 Panje Mar 2007 A1
20070073823 Cohen et al. Mar 2007 A1
20070075898 Markhovsky et al. Apr 2007 A1
20070082707 Flynt et al. Apr 2007 A1
20070136228 Petersen Jun 2007 A1
20070192128 Celestini Aug 2007 A1
20070198340 Lucovsky et al. Aug 2007 A1
20070198495 Buron et al. Aug 2007 A1
20070208751 Cowan et al. Sep 2007 A1
20070210936 Nicholson Sep 2007 A1
20070214180 Crawford Sep 2007 A1
20070214216 Carrer et al. Sep 2007 A1
20070233556 Koningstein Oct 2007 A1
20070233801 Eren et al. Oct 2007 A1
20070233859 Zhao et al. Oct 2007 A1
20070243887 Bandhole et al. Oct 2007 A1
20070244750 Grannan et al. Oct 2007 A1
20070255456 Funayama Nov 2007 A1
20070281690 Altman et al. Dec 2007 A1
20080022329 Glad Jan 2008 A1
20080025701 Ikeda Jan 2008 A1
20080032703 Krumm et al. Feb 2008 A1
20080033930 Warren Feb 2008 A1
20080043041 Hedenstroem et al. Feb 2008 A2
20080049704 Witteman et al. Feb 2008 A1
20080062141 Chandhri Mar 2008 A1
20080076505 Nguyen et al. Mar 2008 A1
20080092233 Tian et al. Apr 2008 A1
20080094387 Chen Apr 2008 A1
20080104503 Beall et al. May 2008 A1
20080109844 Baldeschwieler et al. May 2008 A1
20080120409 Sun et al. May 2008 A1
20080147730 Lee et al. Jun 2008 A1
20080148150 Mall Jun 2008 A1
20080158230 Sharma et al. Jul 2008 A1
20080168033 Ott et al. Jul 2008 A1
20080168489 Schraga Jul 2008 A1
20080189177 Anderton et al. Aug 2008 A1
20080207176 Brackbill et al. Aug 2008 A1
20080208692 Garaventi et al. Aug 2008 A1
20080214210 Rasanen et al. Sep 2008 A1
20080222545 Lemay Sep 2008 A1
20080255976 Altberg et al. Oct 2008 A1
20080256446 Yamamoto Oct 2008 A1
20080256577 Funaki et al. Oct 2008 A1
20080266421 Takahata et al. Oct 2008 A1
20080270938 Carlson Oct 2008 A1
20080288338 Wiseman et al. Nov 2008 A1
20080306826 Kramer et al. Dec 2008 A1
20080313329 Wang et al. Dec 2008 A1
20080313346 Kujawa et al. Dec 2008 A1
20080318616 Chipalkatti et al. Dec 2008 A1
20090006191 Arankalle et al. Jan 2009 A1
20090006565 Velusamy et al. Jan 2009 A1
20090015703 Kim et al. Jan 2009 A1
20090024956 Kobayashi Jan 2009 A1
20090030774 Rothschild et al. Jan 2009 A1
20090030999 Gatzke et al. Jan 2009 A1
20090040324 Nonaka Feb 2009 A1
20090042588 Lottin et al. Feb 2009 A1
20090058822 Chaudhri Mar 2009 A1
20090079846 Chou Mar 2009 A1
20090089678 Sacco et al. Apr 2009 A1
20090089710 Wood et al. Apr 2009 A1
20090093261 Ziskind Apr 2009 A1
20090132341 Klinger et al. May 2009 A1
20090132453 Hangartner et al. May 2009 A1
20090132665 Thomsen et al. May 2009 A1
20090148045 Lee et al. Jun 2009 A1
20090153492 Popp Jun 2009 A1
20090157450 Athsani et al. Jun 2009 A1
20090157752 Gonzalez Jun 2009 A1
20090160970 Fredlund et al. Jun 2009 A1
20090163182 Gatti et al. Jun 2009 A1
20090177299 Van De Sluis et al. Jul 2009 A1
20090192900 Collison Jul 2009 A1
20090199242 Johnson et al. Aug 2009 A1
20090215469 Fisher et al. Aug 2009 A1
20090232354 Camp, Jr. et al. Sep 2009 A1
20090234815 Boerries et al. Sep 2009 A1
20090239552 Churchill et al. Sep 2009 A1
20090249222 Schmidt et al. Oct 2009 A1
20090249244 Robinson et al. Oct 2009 A1
20090265647 Martin et al. Oct 2009 A1
20090288022 Almstrand et al. Nov 2009 A1
20090291672 Treves et al. Nov 2009 A1
20090292608 Polachek Nov 2009 A1
20090319607 Belz et al. Dec 2009 A1
20090327073 Li Dec 2009 A1
20100062794 Han Mar 2010 A1
20100082427 Burgener et al. Apr 2010 A1
20100082693 Hugg et al. Apr 2010 A1
20100100568 Papin et al. Apr 2010 A1
20100113065 Narayan et al. May 2010 A1
20100130233 Parker May 2010 A1
20100131880 Lee et al. May 2010 A1
20100131895 Wohlert May 2010 A1
20100153144 Miller et al. Jun 2010 A1
20100159944 Pascal et al. Jun 2010 A1
20100161658 Hamynen et al. Jun 2010 A1
20100161831 Haas et al. Jun 2010 A1
20100162149 Sheleheda et al. Jun 2010 A1
20100183280 Beauregard et al. Jul 2010 A1
20100185552 Deluca et al. Jul 2010 A1
20100185665 Horn et al. Jul 2010 A1
20100191631 Weidmann Jul 2010 A1
20100197318 Petersen et al. Aug 2010 A1
20100197319 Petersen et al. Aug 2010 A1
20100198683 Aarabi Aug 2010 A1
20100198694 Muthukrishnan Aug 2010 A1
20100198826 Petersen et al. Aug 2010 A1
20100198828 Petersen et al. Aug 2010 A1
20100198862 Jennings et al. Aug 2010 A1
20100198870 Petersen et al. Aug 2010 A1
20100198917 Petersen et al. Aug 2010 A1
20100201482 Robertson et al. Aug 2010 A1
20100201536 Robertson et al. Aug 2010 A1
20100214436 Kim et al. Aug 2010 A1
20100223128 Dukellis et al. Sep 2010 A1
20100223343 Bosan et al. Sep 2010 A1
20100250109 Johnston et al. Sep 2010 A1
20100257196 Waters et al. Oct 2010 A1
20100259386 Holley et al. Oct 2010 A1
20100273509 Sweeney et al. Oct 2010 A1
20100281045 Dean Nov 2010 A1
20100306669 Della Pasqua Dec 2010 A1
20110004071 Faiola et al. Jan 2011 A1
20110010205 Richards Jan 2011 A1
20110029512 Folgner et al. Feb 2011 A1
20110040783 Uemichi et al. Feb 2011 A1
20110040804 Peirce et al. Feb 2011 A1
20110050909 Ellenby et al. Mar 2011 A1
20110050915 Wang et al. Mar 2011 A1
20110064388 Brown et al. Mar 2011 A1
20110066743 Hurley et al. Mar 2011 A1
20110083101 Sharon et al. Apr 2011 A1
20110102630 Rukes May 2011 A1
20110119133 Igelman et al. May 2011 A1
20110137881 Cheng et al. Jun 2011 A1
20110145564 Moshir et al. Jun 2011 A1
20110159890 Fortescue et al. Jun 2011 A1
20110164163 Bilbrey et al. Jul 2011 A1
20110197194 D'Angelo et al. Aug 2011 A1
20110202598 Evans et al. Aug 2011 A1
20110202968 Nurmi Aug 2011 A1
20110211534 Schmidt et al. Sep 2011 A1
20110213845 Logan et al. Sep 2011 A1
20110215966 Kim et al. Sep 2011 A1
20110225048 Nair Sep 2011 A1
20110238763 Shin et al. Sep 2011 A1
20110255736 Thompson et al. Oct 2011 A1
20110273575 Lee Nov 2011 A1
20110282799 Huston Nov 2011 A1
20110283188 Farrenkopf et al. Nov 2011 A1
20110314419 Dunn et al. Dec 2011 A1
20110320373 Lee et al. Dec 2011 A1
20120028659 Whitney et al. Feb 2012 A1
20120033718 Kauffman et al. Feb 2012 A1
20120036015 Sheikh Feb 2012 A1
20120036443 Ohmori et al. Feb 2012 A1
20120054797 Skog et al. Mar 2012 A1
20120059722 Rao Mar 2012 A1
20120062805 Candelore Mar 2012 A1
20120084731 Filman et al. Apr 2012 A1
20120084835 Thomas et al. Apr 2012 A1
20120099800 Llano et al. Apr 2012 A1
20120108293 Law et al. May 2012 A1
20120110096 Smarr et al. May 2012 A1
20120113143 Adhikari et al. May 2012 A1
20120113272 Hata May 2012 A1
20120123830 Svendsen et al. May 2012 A1
20120123871 Svendsen et al. May 2012 A1
20120123875 Svendsen et al. May 2012 A1
20120124126 Alcazar et al. May 2012 A1
20120124176 Curtis et al. May 2012 A1
20120124458 Cruzada May 2012 A1
20120131507 Sparandara et al. May 2012 A1
20120131512 Takeuchi et al. May 2012 A1
20120143760 Abulafia et al. Jun 2012 A1
20120150978 Monaco Jun 2012 A1
20120165100 Lalancette et al. Jun 2012 A1
20120166971 Sachson et al. Jun 2012 A1
20120169855 Oh Jul 2012 A1
20120172062 Altman et al. Jul 2012 A1
20120173991 Roberts et al. Jul 2012 A1
20120176401 Hayward et al. Jul 2012 A1
20120184248 Speede Jul 2012 A1
20120197724 Kendall Aug 2012 A1
20120200743 Blanchflower et al. Aug 2012 A1
20120209924 Evans et al. Aug 2012 A1
20120210244 De Francisco Lopez et al. Aug 2012 A1
20120212632 Mate et al. Aug 2012 A1
20120220264 Kawabata Aug 2012 A1
20120226748 Bosworth et al. Sep 2012 A1
20120233000 Fisher et al. Sep 2012 A1
20120236162 Imamura Sep 2012 A1
20120239761 Linner et al. Sep 2012 A1
20120250951 Chen Oct 2012 A1
20120252418 Kandekar et al. Oct 2012 A1
20120254325 Majeti et al. Oct 2012 A1
20120278387 Garcia et al. Nov 2012 A1
20120278692 Shi Nov 2012 A1
20120290637 Perantatos et al. Nov 2012 A1
20120299954 Wada et al. Nov 2012 A1
20120304052 Tanaka et al. Nov 2012 A1
20120304080 Wormald et al. Nov 2012 A1
20120307096 Ford et al. Dec 2012 A1
20120307112 Kunishige et al. Dec 2012 A1
20120319904 Lee et al. Dec 2012 A1
20120323933 He et al. Dec 2012 A1
20120324018 Metcalf et al. Dec 2012 A1
20130006759 Srivastava et al. Jan 2013 A1
20130024757 Doll et al. Jan 2013 A1
20130036364 Johnson Feb 2013 A1
20130045753 Obermeyer et al. Feb 2013 A1
20130050260 Reitan Feb 2013 A1
20130055083 Fino Feb 2013 A1
20130057587 Leonard et al. Mar 2013 A1
20130059607 Herz et al. Mar 2013 A1
20130060690 Oskolkov et al. Mar 2013 A1
20130063369 Malhotra et al. Mar 2013 A1
20130067027 Song et al. Mar 2013 A1
20130071093 Hanks et al. Mar 2013 A1
20130080254 Thramann Mar 2013 A1
20130085790 Palmer et al. Apr 2013 A1
20130086072 Peng et al. Apr 2013 A1
20130090171 Holton et al. Apr 2013 A1
20130095857 Garcia et al. Apr 2013 A1
20130104053 Thornton et al. Apr 2013 A1
20130110885 Brundrett, III May 2013 A1
20130111514 Slavin et al. May 2013 A1
20130128059 Kristensson May 2013 A1
20130129252 Lauper et al. May 2013 A1
20130132477 Bosworth et al. May 2013 A1
20130145286 Feng et al. Jun 2013 A1
20130159110 Rajaram et al. Jun 2013 A1
20130159919 Leydon Jun 2013 A1
20130169822 Zhu et al. Jul 2013 A1
20130173729 Starenky et al. Jul 2013 A1
20130182133 Tanabe Jul 2013 A1
20130185131 Sinha et al. Jul 2013 A1
20130191198 Carlson et al. Jul 2013 A1
20130194301 Robbins et al. Aug 2013 A1
20130198176 Kim Aug 2013 A1
20130218965 Abrol et al. Aug 2013 A1
20130218968 Mcevilly et al. Aug 2013 A1
20130222323 Mckenzie Aug 2013 A1
20130227476 Frey Aug 2013 A1
20130232194 Knapp et al. Sep 2013 A1
20130263031 Oshiro et al. Oct 2013 A1
20130265450 Barnes, Jr. Oct 2013 A1
20130267253 Case et al. Oct 2013 A1
20130275505 Gauglitz et al. Oct 2013 A1
20130290443 Collins et al. Oct 2013 A1
20130304646 De Geer Nov 2013 A1
20130311255 Cummins et al. Nov 2013 A1
20130325964 Berberat Dec 2013 A1
20130344896 Kirmse et al. Dec 2013 A1
20130346869 Asver et al. Dec 2013 A1
20130346877 Borovoy et al. Dec 2013 A1
20140006129 Heath Jan 2014 A1
20140011538 Mulcahy et al. Jan 2014 A1
20140019264 Wachman et al. Jan 2014 A1
20140032682 Prado et al. Jan 2014 A1
20140043204 Basnayake et al. Feb 2014 A1
20140045530 Gordon et al. Feb 2014 A1
20140047016 Rao Feb 2014 A1
20140047045 Baldwin et al. Feb 2014 A1
20140047335 Lewis et al. Feb 2014 A1
20140049652 Moon et al. Feb 2014 A1
20140052485 Shidfar Feb 2014 A1
20140052633 Gandhi Feb 2014 A1
20140057660 Wager Feb 2014 A1
20140082651 Sharifi Mar 2014 A1
20140092130 Anderson et al. Apr 2014 A1
20140096029 Schultz Apr 2014 A1
20140114565 Aziz et al. Apr 2014 A1
20140122658 Haeger et al. May 2014 A1
20140122787 Shalvi et al. May 2014 A1
20140129953 Spiegel May 2014 A1
20140143143 Fasoli et al. May 2014 A1
20140149519 Redfern et al. May 2014 A1
20140155102 Cooper et al. Jun 2014 A1
20140173424 Hogeg et al. Jun 2014 A1
20140173457 Wang et al. Jun 2014 A1
20140189592 Benchenaa et al. Jul 2014 A1
20140207679 Cho Jul 2014 A1
20140212028 Ciarcia Jul 2014 A1
20140214471 Schreiner, III Jul 2014 A1
20140222564 Kranendonk et al. Aug 2014 A1
20140258405 Perkin Sep 2014 A1
20140265359 Cheng et al. Sep 2014 A1
20140266703 Dalley, Jr. et al. Sep 2014 A1
20140279061 Elimeliah et al. Sep 2014 A1
20140279436 Dorsey et al. Sep 2014 A1
20140279540 Jackson Sep 2014 A1
20140280537 Pridmore et al. Sep 2014 A1
20140282096 Rubinstein et al. Sep 2014 A1
20140287779 O'keefe et al. Sep 2014 A1
20140289833 Briceno Sep 2014 A1
20140306986 Gottesman et al. Oct 2014 A1
20140317302 Naik Oct 2014 A1
20140324627 Haver et al. Oct 2014 A1
20140324629 Jacobs Oct 2014 A1
20140325383 Brown et al. Oct 2014 A1
20150020086 Chen et al. Jan 2015 A1
20150046278 Pei et al. Feb 2015 A1
20150071619 Brough Mar 2015 A1
20150087263 Branscomb et al. Mar 2015 A1
20150088622 Ganschow et al. Mar 2015 A1
20150095020 Leydon Apr 2015 A1
20150096042 Mizrachi Apr 2015 A1
20150116529 Wu et al. Apr 2015 A1
20150169827 Laborde Jun 2015 A1
20150172534 Miyakawa et al. Jun 2015 A1
20150178260 Brunson Jun 2015 A1
20150222814 Li et al. Aug 2015 A1
20150261917 Smith Sep 2015 A1
20150312184 Langholz et al. Oct 2015 A1
20150350136 Flynn, III et al. Dec 2015 A1
20150365795 Allen et al. Dec 2015 A1
20150378502 Hu et al. Dec 2015 A1
20160006927 Sehn Jan 2016 A1
20160014063 Hogeg et al. Jan 2016 A1
20160085773 Chang et al. Mar 2016 A1
20160085863 Allen et al. Mar 2016 A1
20160099901 Allen et al. Apr 2016 A1
20160179830 Schmalstieg et al. Jun 2016 A1
20160180887 Sehn Jun 2016 A1
20160182422 Sehn Jun 2016 A1
20160182875 Sehn Jun 2016 A1
20160239248 Sehn Aug 2016 A1
20160277419 Allen et al. Sep 2016 A1
20160321708 Sehn Nov 2016 A1
20170006094 Abou Mahmoud et al. Jan 2017 A1
20170061308 Chen et al. Mar 2017 A1
20170287006 Azmoodeh et al. Oct 2017 A1
20190188906 Krishna Jun 2019 A1
20200314586 Bouba et al. Oct 2020 A1
20200382912 Dancie et al. Dec 2020 A1
20200401225 Jaureguiberry et al. Dec 2020 A1
20210011612 Dancie et al. Jan 2021 A1
20210152979 Berardino et al. May 2021 A1
20210266704 Dancie et al. Aug 2021 A1
20210377693 Bouba et al. Dec 2021 A1
20210409904 Baylin et al. Dec 2021 A1
20220174455 Guillaume Jun 2022 A1
20220269345 Jaureguiberry et al. Aug 2022 A1
20230334850 Harvey Oct 2023 A1
Foreign Referenced Citations (36)
Number Date Country
2887596 Jul 2015 CA
111724477 Sep 2020 CN
119110965 Dec 2024 CN
2051480 Apr 2009 EP
2151797 Feb 2010 EP
3885871 Sep 2021 EP
2399928 Sep 2004 GB
19990073076 Oct 1999 KR
20010078417 Aug 2001 KR
101223242 Jan 2013 KR
WO-1996024213 Aug 1996 WO
WO-1999063453 Dec 1999 WO
WO-2000058882 Oct 2000 WO
WO-2001029642 Apr 2001 WO
WO-2001050703 Jul 2001 WO
WO-2006118755 Nov 2006 WO
WO-2007092668 Aug 2007 WO
WO-2009043020 Apr 2009 WO
WO-2011040821 Apr 2011 WO
WO-2011119407 Sep 2011 WO
WO-2013008238 Jan 2013 WO
WO-2013045753 Apr 2013 WO
WO-2014006129 Jan 2014 WO
WO-2014068573 May 2014 WO
WO-2014115136 Jul 2014 WO
WO-2014194262 Dec 2014 WO
WO-2015192026 Dec 2015 WO
WO-2016044424 Mar 2016 WO
WO-2016054562 Apr 2016 WO
WO-2016065131 Apr 2016 WO
WO-2016100318 Jun 2016 WO
WO-2016100318 Jun 2016 WO
WO-2016100342 Jun 2016 WO
WO-2016149594 Sep 2016 WO
WO-2016179166 Nov 2016 WO
WO-2023212035 Nov 2023 WO
Non-Patent Literature Citations (23)
Entry
“A Whole New Story”, Snap, Inc., [Online] Retrieved from the Internet: <URL: https://www.snap.com/en-us/news/>, (2017), 13 pgs.
“Adding photos to your listing”, eBay, [Online] Retrieved from the Internet: <URL: http://pages.ebay.com/help/sell/pictures.html>, (accessed May 24, 2017), 4 pgs.
“BlogStomp”, StompSoftware, [Online] Retrieved from the Internet: <URL: http://stompsoftware.com/blogstomp>, (accessed May 24, 2017), 12 pgs.
“Cup Magic Starbucks Holiday Red Cups come to life with AR app”, Blast Radius, [Online] Retrieved from the Internet: <URL: https://web.archive.org/web/20160711202454/http://www.blastradius.com/work/cup-magic>, (2016), 7 pgs.
“Daily App: InstaPlace (IOS/Android): Give Pictures a Sense of Place”, TechPP, [Online] Retrieved from the Internet: <URL: http://techpp.com/2013/02/15/instaplace-app-review>, (2013), 13 pgs.
“InstaPlace Photo App Tell The Whole Story”, [Online] Retrieved from the Internet: <URL: youtu.be/uF_gFkg1hBM>, (Nov. 8, 2013), 113 pgs., 1:02 min.
“International Application Serial No. PCT/US2015/037251, International Search Report mailed Sep. 29, 2015”, 2 pgs.
“International Application Serial No. PCT/US2023/019950, International Search Report mailed Aug. 4, 2023”, 3 pgs.
“International Application Serial No. PCT/US2023/019950, Written Opinion mailed Aug. 4, 2023”, 5 pgs.
“Introducing Snapchat Stories”, [Online] Retrieved from the Internet: <URL: https://web.archive.org/web/20131026084921/https://www.youtube.com/watch?v=88Cu3yN-LIM>, (Oct. 3, 2013), 92 pgs.; 00:47 min.
“Macy's Believe-o-Magic”, [Online] Retrieved from the Internet: <URL: https://web.archive.org/web/20190422101854/https://www.youtube.com/watch?v=xvzRXy3J0Z0&feature=youtu.be>, (Nov. 7, 2011), 102 pgs.; 00:51 min.
“Macy's Introduces Augmented Reality Experience in Stores across Country as Part of Its 2011 Believe Campaign”, Business Wire, [Online] Retrieved from the Internet: <URL: https://www.businesswire.com/news/home/20111102006759/en/Macys-Introduces-Augmented-Reality-Experience-Stores-Country>, (Nov. 2, 2011), 6 pgs.
“Starbucks Cup Magic”, [Online] Retrieved from the Internet: <URL: https://www.youtube.com/watch?v=RWwQXI9RGOw>, (Nov. 8, 2011), 87 pgs.; 00:47 min.
“Starbucks Cup Magic for Valentine's Day”, [Online] Retrieved from the Internet: <URL: https://www.youtube.com/watch?v=8nvqOzjq10w>, (Feb. 6, 2012), 88 pgs.; 00:45 min.
“Starbucks Holiday Red Cups Come to Life, Signaling the Return of the Merriest Season”, Business Wire, [Online] Retrieved from the Internet: <URL: http://www.businesswire.com/news/home/20111115005744/en/2479513/Starbucks-Holiday-Red-Cups-Life-Signaling-Return>, (Nov. 15, 2011), 5 pgs.
Carthy, Roi, “Dear All Photo Apps: Mobli Just Won Filters”, TechCrunch, [Online] Retrieved from the Internet: <URL: https://techcrunch.com/2011/09/08/mobli-filters>, (Sep. 8, 2011), 10 pgs.
Janthong, Isaranu, “Instaplace ready on Android Google Play store”, Android App Review Thailand, [Online] Retrieved from the Internet: <URL: http://www.android-free-app-review.com/2013/01/instaplace-android-google-play-store.html>, (Jan. 23, 2013), 9 pgs.
MacLeod, Duncan, “Macys Believe-o-Magic App”, [Online] Retrieved from the Internet: <URL: http://theinspirationroom.com/daily/2011/macys-believe-o-magic-app>, (Nov. 14, 2011), 10 pgs.
MacLeod, Duncan, “Starbucks Cup Magic Lets Merry”, [Online] Retrieved from the Internet: <URL: http://theinspirationroom.com/daily/2011/starbucks-cup-magic>, (Nov. 12, 2011), 8 pgs.
Notopoulos, Katie, “A Guide to The New Snapchat Filters and Big Fonts”, [Online] Retrieved from the Internet: <URL: https://www.buzzfeed.com/katienotopoulos/a-guide-to-the-new-snapchat-filters-and-big-fonts?utm_term=.bkQ9qVZWe#.nv58YXpkV>, (Dec. 22, 2013), 13 pgs.
Panzarino, Matthew, “Snapchat Adds Filters, a Replay Function and for Whatever Reason, Time, Temperature and Speed Overlays”, TechCrunch, [Online] Retrieved form the Internet: <URL: https://techcrunch.com/2013/12/20/snapchat-adds-filters-new-font-and-for-some-reason-time-temperature-and-speed-overlays/>, (Dec. 20, 2013), 12 pgs.
Tripathi, Rohit, “Watermark Images in PHP and Save File on Server”, [Online] Retrieved from the Internet: <URL: http://code.rohitink.com/2012/12/28/watermark-images-in-php-and-save-file-on-server>, (Dec. 28, 2012), 4 pgs.
“International Application Serial No. PCT/US2023/019950, International Preliminary Report on Patentability mailed Nov. 7, 2024”, 7 pgs.
Related Publications (1)
Number Date Country
20230351690 A1 Nov 2023 US
Provisional Applications (1)
Number Date Country
63335552 Apr 2022 US