1. Field of the Invention
The present invention relates to a three-dimensional object imaging device, and more particularly to a three-dimensional object imaging device which reconstructs an image of a three-dimensional object from multiple unit images captured by compound-eye imaging means.
2. Description of the Related Art
A device is known which reconstructs a single image by image processing from multiple unit images captured by a compound-eye camera having multiple microlenses (refer, for example to Japanese Laid-open Patent Publication 2005-167484). The compound-eye camera has an advantage that it can be manufactured to be thin, and also can obtain a bright image easily. However, it also has a disadvantage that the definition of each captured unit image is low. In order to improve the definition of the images in the image processing to reconstruct a single image from the multiple unit images, various methods such as arithmetic mean, pseudo-inverse matrix and pixel rearrangement have been developed. The arithmetic mean is a method to use the center of gravity of each unit image as a reference to superimpose the images. On the other hand, the pseudo-inverse matrix is a method to use vectors for expressing an object to be imaged and unit images, and to use a matrix for describing a point image distribution function of an optical system, so as to mathematically calculate an inverse matrix of the point image distribution function, thereby forming a reconstructed image.
Japanese Laid-open Patent Publication 2005-167484 discloses a pixel rearrangement method which is one of the methods for reconstructing a single image with high definition from multiple unit images. Now, a brief description of an image forming device described in Japanese Laid-open Patent Publication 2005-167484 will be made with reference to
As shown in
In this known device or method, there are problems to be solved. The image forming device shown in Japanese Laid-open Patent Publication 2005-167484 uses the pixel rearrangement method to reconstruct a two-dimensional image from multiple unit images of an object, and makes it possible to obtain reconstructed images with higher definition than by using the arithmetic mean method, the pseudo-inverse matrix method or the like. However, in order to reconstruct the two-dimensional image in this device, each pixel of the multiple unit images is rearranged on a rearrangement plane which is a fixed plane set at a predetermined distance (position of the object as originally placed) from the compound-eye camera.
Accordingly, if the object to be captured is a three-dimensional object with a depth, it is difficult to obtain a reconstructed image with high definition. Further, this device has a disadvantage that it can be used only if the distance from the compound-eye camera to the object is known. Note that this Japanese Laid-open Patent Publication 2005-167484 describes, as a second invention, the derivation of the distance between an object and a compound-eye camera from a shift amount and known parameters such as lens-to-lens distance and lens focal length of the compound-eye camera. However, it has a problem that various parameter values are required to be obtained in advance in a process other than the imaging process, and moreover that it does not disclose a specific method of deriving the distance.
On the other hand, there is a known three-dimensional shape extraction device which derives a distribution of distances to an object (to be imaged) based on multiple images captured by a camera moving relative to the object, and which creates a two-dimensional image based on the derived distance distribution (refer, for example, to Japanese Laid-open Patent Publication Hei 9-187038). However, the device described in Japanese Laid-open Patent Publication Hei 9-187038 uses a single-eye camera as imaging means rather than a compound-eye camera, in which a shutter is opened and closed multiple times as the single-eye camera moves so as to obtain multiple images from different view points. Thus, the distance between the object and the imaging means varies each time the image is captured, so that it is not possible to obtain a reconstructed image of the object with high definition.
There are other known methods or devices. For example, Japanese Patent 3575178 discloses a method to derive a distance to an object (to be captured) by using parallax between images of the object based on the principle of triangulation so as to detect an existence range of the object. Further, Japanese Laid-open Patent Publication 2001-167276 discloses an imaging device to use a distance sensor for measuring a distance distribution such that an image area of an image of an object captured by a CCD (Charge Coupled Device) imaging device is divided for each distance based on the measured distance distribution, so as to create a predetermined synthetic image. However, according to such method and device disclosed in these patent publications, a reconstructed image of an object with high definition cannot be obtained easily by a simple process.
An object of the present invention is to provide a three-dimensional object imaging device to reconstruct an image of the three-dimensional object from multiple unit images captured by compound-eye imaging means, in which a reconstructed image with high definition can be obtained easily by a simple process.
This object is achieved according to the present invention by a three-dimensional object imaging device comprising compound-eye imaging means and image reconstructing means for reconstructing an image of a three-dimensional object based on multiple unit images with pixels captured by the compound-eye imaging means, wherein the image reconstructing means comprises: distance calculating means for calculating a distance (hereafter referred to as “pixel distance”) between the three-dimensional object and the compound-eye imaging means for each pixel forming the unit images; and reconstructed image creating means for creating a reconstructed image by rearranging the multiple unit images pixel-by-pixel on a plane located at the pixel distance.
The three-dimensional object imaging device as thus constructed according to the present invention makes it possible to calculate the pixel distance between the three-dimensional object and the compound-eye imaging means for each pixel of the multiple unit images captured by the compound-eye imaging means, while each unit image is rearranged pixel-by-pixel on the plane located at the pixel distance. Thus, a reconstructed image with high definition can be obtained easily by a simple process.
The three-dimensional object imaging device can be designed so that the distance calculating means comprises: temporary reconstructed image creating means for (a) performing a temporary reconstructed image creating process to create a temporary reconstructed image of the multiple unit images on each of multiple planes located at predetermined distances from the pixels of the unit images in which for a first one (hereafter referred to as “first temporary distance”) of the predetermined distances, the multiple unit images are rearranged pixel-by-pixel on a first one (hereafter referred to as “first temporary distance plane”) of the planes located at the first temporary distance, and (b) repeating the temporary reconstructed image creating process for the other planes (hereafter referred to as “subsequent temporary distance planes”) located at the other predetermined distances (hereafter referred to as “subsequent temporary distances”), so as to create multiple temporary reconstructed images; reverse projection image creating means for (a) performing a reverse projection image creating process to create reverse projection images, corresponding to the respective unit images and corresponding also in number to the unit images, on each of the first and subsequent temporary distance planes in which for the first temporary distance, each of the unit images is reversely projected pixel-by-pixel onto the first temporary distance plane, and (b) repeating the reverse projection image creating process for the subsequent temporary distance planes located at the subsequent temporary distances, so as to create multiple reverse projection images for each of the unit images; comparing means for comparing the first and subsequent temporary distances based on the temporary reconstructed image and the reverse projection images of the respective unit images on each of the first and subsequent temporary distance planes; and pixel distance determining means for determining the pixel distance based on the comparison by the comparing means.
Preferably the reconstructed image creating means comprises: high-frequency component unit image creating means for creating multiple high-frequency component unit images by extracting a high-frequency component from each of the multiple unit images; low-frequency component unit image creating means for creating multiple low-frequency component unit images by extracting a low-frequency component from each of the multiple unit images; high-frequency component reconstructed image creating means for creating a high-frequency component reconstructed image by rearranging, on the plane located at the pixel distance, the multiple high-frequency component unit images created by the high-frequency component unit image creating means; image selecting means for selecting a low-frequency component unit image with lower noise from the multiple low-frequency component unit images created by the low-frequency component unit image creating means; low-frequency component reverse projection image creating means for creating a low-frequency component reverse projection image by reversely projecting pixel-by-pixel the low-frequency component unit image selected by the image selecting means onto the plane located at the pixel distance; and summing means for summing the high-frequency component reconstructed image created by the high-frequency component reconstructed image creating means with the low-frequency component reverse projection image created by the low-frequency component reverse projection image creating means so as to obtain the reconstructed image.
The three-dimensional object imaging device as thus constructed divides the multiple unit images captured by the compound-eye imaging means into high-frequency components and low-frequency components. Both components are used to create a high-frequency component reconstructed image and low-frequency component reverse projection images. Then, the high-frequency component reconstructed image is summed with one of the low-frequency component reverse projection images which has the lowest noise, so as to obtain a reconstructed image. Thus, this three-dimensional object imaging device can reduce the effect of e.g. limb darkening or low-frequency noise which is likely to be generated by using the compound-eye imaging means, making it possible to obtain a reconstructed image with a further higher definition.
While the novel features of the present invention are set forth in the appended claims, the present invention will be better understood from the following detailed description taken in conjunction with the drawings.
The present invention will be described hereinafter with reference to the annexed drawings. It is to be noted that all the drawings are shown for the purpose of illustrating the technical concept of the present invention or embodiments thereof, wherein:
Embodiments of the present invention, as best mode for carrying out the invention, will be described hereinafter with reference to the drawings. The present invention relates to a three-dimensional object imaging device. It is to be understood that the embodiments described herein are not intended as limiting, or encompassing the entire scope of, the present invention. Note that like parts are designated by like reference numerals, characters or symbols throughout the drawings.
Referring to
The microprocessor 4 serves as claimed “distance calculating means”, “reconstructed image creating means”, “temporary reconstructed image creating means”, “reverse projection image creating means”, “comparing means”, “pixel distance determining means”, “high-frequency component unit image creating means”, “low-frequency component unit image creating means”, “high-frequency component reconstructed image creating means”, “image selecting means”, “low-frequency component reverse projection image creating means” and “summing means”. Two different-sized spherical objects Sb1, Sb2 and one cubic object Sc are placed at different distances d1, d2, d3 in front of the compound-eye imaging unit 2 (more specifically optical lens array 6), respectively.
The nine optical lenses L respectively collect light from the object A on the solid-state imaging element 7 to form nine unit images k1 to k9 in a matrix of three rows and three columns. Here, the relation h=H×f/D holds where D is the distance from the object A to the optical lens array 6, f is the distance (focal length) from the optical lens array 6 to the solid-state imaging element 7, H is the vertical length (size) of the object A, and h is the vertical length (size) of each of the unit images k1 to k9. Actually, the focal length f of the compound-eye imaging unit 2 has an extremely small value, so that the size h of each unit image also has a small value.
Further, the unit images k1 to k9 are images having parallaxes therebetween. For example, the unit image k5 formed by the central optical lens L is different in view point (shifted left and right) from the unit images k4, k6 each by a distance d between the optical lenses L, since the unit images k4, k6 are formed by the optical lenses L which are positioned left and right of the central optical lens L at the distance d. As apparent from
Next, referring to the flow charts of
First, the microprocessor 4 reads a first temporary distance D1 (first predetermine distance) from multiple preset temporary distances D1 to Dn, and sets the temporary distance D1 (claimed “first temporary distance”) (S11). Here, the temporary distances D1 to Dn are candidates of the distance D from the optical lens array 6 to the object, and are prepared or stored in advance in the ROM 8 or the memory 11 as discrete values. An object (to be captured) located farther from the optical lens array 6 gives a smaller parallax angle θ, making it more difficult to determine the distance based on the shift between the unit images. Thus, actually, a relatively large number of temporary distances are set at relatively short intervals for a closer range (closer distance area) to the optical lens array 6, whereas a relatively small number of temporary distances are set at relatively long intervals for a farther range (farther distance area) from the optical lens array 6. For example, the temporary distances D1 to Dn can be discrete values u defined by the exponential function u=av.
Next, based on the temporary distance D1 as set above, the microprocessor 4 creates one reconstructed image from the nine stored unit images k1 to k9 (S12). The process of creating the reconstructed image can be performed by a similar image rearrangement method as described in Japanese Laid-open Patent Publication 2005-167484. Referring now to
More specifically, the microprocessor 4 creates the reconstructed image Ad1 as follows. The microprocessor 4 performs a first pixel rearrangement step such that the pixels g(1,1) positioned at a coordinate (x=1, y=1) of the respective unit images k1 to k9 are rearranged on the temporary distance plane located at the temporary distance D1, correcting the parallax in the unit images k1 to k9 based on the relation tan θ=d/D described above, which can be correspondingly expressed by tan θ1=d/D1 here, as if the lights from the object A collected on the solid-state imaging element 7 along the light collection paths via respective optical lenses L to form the unit images k1 to k9 return along the same light collection paths to the object A, respectively. Next, the microprocessor performs a second pixel rearrangement step such that the pixels g(2,1) positioned at a coordinate (x=2, y=1) of the respective unit images k1 to k9 are rearranged on the temporary distance plane located at the temporary distance D1, correcting the parallax in the unit images k1 to k9 in the same manner as for the pixels g(1,1). By repeating the subsequent pixel rearrangement steps until all the pixels g(x,y) are rearranged on the temporary distance plane in this way, the reconstructed image Ad1 is created.
In the reconstructed image as thus created, an area G(x,y) corresponding to the pixels g(x,y) is formed as shown in
Next, based on the temporary distance D1, the microprocessor 4 creates nine reverse projection images from the nine stored unit image k1 to k9 (S 13). Referring to
More specifically, the microprocessor 4 creates the reverse projection image Ard of the unit image k5 as follows. As shown in
By repeating the subsequent pixel projection steps until all the pixels g(x,y) of the unit image k5 are enlarged and projected onto the temporary distance plane in this way, the reverse projection image Ard is created. In the thus created reverse projection image Ard, an area G(x,y) which corresponds to the pixel g(x,y) is formed of the one pixel g(x,y). The microprocessor 4 repeats the process of creating the projection image as described above for all the unit images k1 to k9 so as to create nine reverse projection images Ard which will be designated hereinafter by Ard1 to Ard9 although not shown. The reverse projection image of the unit image k5 as described above can be designated by Ard5. The nine reverse projection images Ard1 to Ard9 as thus created are stored e.g. in the memory 11.
Next, based on the one reconstructed image Ad1 and the nine reverse projection images Ard1 to Ard9 as created above, the microprocessor 4 calculates evaluation values for each pixel on the xy coordinate plane (S14). More specifically, an evaluation value SSD(x,y) is given by the following equation:
In this equation, i represents the number of a unit image (as in i-th unit image ki), and Ri(x,y) represents the digital value of a pixel G at an xy coordinate position of a reverse projection image Ardi of the i-th unit image ki, while B(x,y) represents the digital value of a pixel G at an xy coordinate position of the reconstructed image Ad1, and n is the number of unit images which is 9 (nine) in the present embodiment.
More specifically, the microprocessor 4 calculates the square of the difference between the reconstructed image Ad1 and the reverse projection image Ard1 of the first unit image k1 for each pixel g on the xy coordinate plane so as to calculate a deviation of the reverse projection image Ard1 of the first unit image k1 from the reconstructed image Ad1. In the same way, the microprocessor 4 calculates the square of the difference between the reconstructed image Ad1 and the reverse projection image Ard2 of the second unit image k2 so as to calculate a deviation of the reverse projection image Ard2 of the second unit image k2 from the reconstructed image Ad1. By repeating the subsequent calculations in this way for all the reverse projection images Ard3 to Ard9, the microprocessor 4 obtains nine deviations. The microprocessor 4 sums the nine deviations to calculate the evaluation value SSD(x,y), which is then stored e.g. in the memory 11.
Next, the microprocessor 4 determines whether the steps S11 to S14 for each of the temporary distances D1 to Dn (claimed “subsequent temporary distances” for those other than the “first temporary distance”) as set in S11 have been completed, using temporary distance planes (claimed “subsequent temporary distance planes” for those other than the “first temporary distance plane” for D1) (S15). If not completed (NO in S15), the process goes back to the step S11 again to renew the temporary distance Di (S11). Normally, the process is performed in order of magnitude of the temporary distance, so that the renewal of the temporary distance Di is normally made from Di to D(i+1). In this case, a reconstructed image Ad(i+1) is created at a location farther from the optical lens array 6 than the reconstructed image Adi (S12).
Then, nine reverse projection images Ard1 to Ard9 for the temporary distance D(i+1) are created on a temporary distance plane (one of the claimed “subsequent temporary distance planes”) (S13). Based on the nine reverse projection images Ard1 to Ard9, an evaluation value SSD(x,y) for the temporary distance D(i+1) is calculated, and is stored e.g. in the memory 11. The microprocessor 4 repeats these steps until all the steps S11 to S14 for all the temporary distances D1 to Dn are completed, so as to obtain n evaluation values SSD(x,y) corresponding in number to the temporary distances D1 to Dn, and to store the group of n evaluation values SSD(x,y) e.g. in the memory 11.
Thereafter, if the microprocessor 4 determines that the steps S11 to S14 for each of the temporary distances D1 to Dn have been completed to calculate the evaluation values SSD(x,y) for all the temporary distances D1 to Dn (YES in S15), the microprocessor 4 determines which one of the temporary distances D1 to Dn gives a minimum evaluation value SSD(x,y) among the evaluation values SSD(x,y) for the pixels g(x,y) at each xy coordinate position. The microprocessor 4 also determines that the temporary distance Di giving the minimum evaluation value SSD(x,y) is the pixel distance D for the pixel g(x,y) at each xy coordinate position (S16). In other words, the microprocessor 4 searches, in the z direction, the evaluation values SSD for each pixel g on the xy coordinate plane from the group of evaluation values shown in
The reconstructed image Adi in
Next, based on the distance image PD as thus derived above, the microprocessor 4 rearranges the nine unit images k1 to k9 on a temporary distance plane located at a specific position (pixel distance) for each pixel g so as to create a reconstructed image (S3). This reconstruction process will be described below with an example in which the three objects Sb1, Sb2 and Sc described above are used as three-dimensional objects by neglecting the difference in pixel distance among the pixels forming each of the objects Sb1, Sb2 and Sc, namely by hypothetically assuming that each of the objects Sb1, Sb2 and Sc is a two-dimensional object having no depth.
As shown conceptually in
Next, referring to the flow chart of
The microprocessor 4 applies the unit images k1 to k9 obtained in S21 to a known smoothing filter to extract a low-frequency component of each unit image so as to create low-frequency component unit images kl1 to kl9 (S23). Next, the microprocessor 4 subtracts the low-frequency component unit images kl1 to kl9 from the original unit images k1 to k9 to create high-frequency component unit images kh1 to kh9, respectively (S24). The low-frequency component unit images kl1 to kl9 and the high-frequency component unit images kh1 to kh9 as thus created are stored e.g. in the memory 11. Based on the distance image PD obtained in the step of calculating the pixel distance (S22), the microprocessor 4 further rearranges pixel-by-pixel the high-frequency component unit images kh1 to kh9 on a temporary distance plane located at each pixel distance D(x,y) so as to create one high-frequency component reconstructed image (S25). Similarly as in the step of creating a reconstructed image in the first embodiment, the step S25 of creating a high-frequency component reconstructed image rearranges the unit pixels kh1 to kh9 on a temporary distance plane located at a specific pixel position D(x,y) for each pixel. The high-frequency component reconstructed image as thus created is stored e.g. in the memory 11.
Next, from low-frequency component unit images kl1 to kl9 as created in S23, the microprocessor 4 selects one low-frequency component unit image with lower noise such as one which has a lower brightness than a predetermined threshold value, or one which has a large gradation in the one low-frequency component unit image (S26). Generally, the optical lens array 6 of the compound-eye imaging unit 2 has a feature in the structure that limb or peripheral unit images (e.g. unit images k1, k3, k7 and k9) are darker than central unit images (e.g. unit image k5) which is called limb or peripheral darkening. Thus, normally in S26, the microprocessor 4 selects the brightest and low noise low-frequency component unit image such as kl5 with reference to the brightness value, the degree of gradation and so on.
Thereafter, based on the distance image PD as obtained in the step of pixel distance calculation (S22), the microprocessor 4 reversely projects the thus selected low-frequency component unit image (e.g. kl5) pixel-by-pixel onto a temporary distance plane located at the pixel distance D(x,y) so as to create a low-frequency component reverse projection image (S27). The thus created low-frequency component reverse projection image is stored e.g. in the memory 11. Finally, the microprocessor 4 reads the high-frequency component reconstructed image and the low-frequency component reverse projection image stored e.g. in the memory 11, and sums both images to form a reconstructed image (S28). Here, the microprocessor 4 can multiply a coefficient of 1 or larger with the digital value of each pixel of the high-frequency component reconstructed image in advance of the summing step in S28, so as to emphasize the high-frequency component reconstructed image, making it possible to sharpen the image.
As described in the foregoing, the three-dimensional object imaging device 1 of the second embodiment divides the multiple unit images k1 to k9 captured by the compound-eye imaging unit 2 into high-frequency components and low-frequency components. Both components are used to create a high-frequency component reconstructed image and low-frequency component unit images. Thereafter, the high-frequency component reconstructed image is summed with a low-frequency component reverse projection image created from one (e.g. kl5) of the low-frequency component unit images which has the lowest noise, so as to obtain a reconstructed image. Thus, the three-dimensional object imaging device 1 can reduce the effect of e.g. limb darkening which is likely to be generated by using the compound-eye imaging unit 2, making it possible to obtain a reconstructed image with a further higher definition.
The present invention has been described above using presently preferred embodiments, but such description should not be interpreted as limiting the present invention. Various modifications will become obvious, evident or apparent to those ordinarily skilled in the art, who have read the description. Accordingly, the appended claims should be interpreted to cover all modifications and alterations which fall within the spirit and scope of the present invention.
This application is based on Japanese patent application 2007-080172 filed Mar. 26, 2007, the content of which is hereby incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
2007-080172 | Mar 2007 | JP | national |