Pointing device like a mouse, a trackball, a touchpad, a joystick, and so on is a powerful input tool for a computer system. Pointing device detects user's motion through the mechanical, optical, or electronic or combinations of these techniques. Conventional system usually cannot be used for three-dimensional purpose. Until now, some techniques or devices for three-dimensional pointing device are proposed or commercialized. The followings are some of the examples.
Combining two-dimensional pointing devices with other device such as a keyboard or other pointing device is one method for obtaining the three-dimensional point function. This method is less perceivable and requires a great effort to learn and manipulate. Some other methods are more convenient because these methods use a three-dimensional detecting system.
First example is an acoustic three dimensional positioning method using distance measurement between a microphone source and multiple speakers which transmit ultrasonic signal as described in U.S. Pat. No. 5,963,197. The time delays among the speakers determine the position of the pointing device. This acoustic method can be susceptible to echoes, sound speed variation through different environmental conditions, and ultrasonic interference.
A magnetic three-dimensional positioning method is a very popular one in the virtual-reality environments. Three orthogonal electromagnetic coils generate a magnetic filed in the three-dimensional space and a movable sensor in the pointing device detects the field intensity and gradient to determine the position in the three-dimensional magnetic fields as described in U.S. Pat. No. 6,509,888. Interference between the magnetic fields and other materials around the system makes the exact positioning to be difficult. Even the computer system itself generates a magnetic field and interferes with this kind of pointing device.
Optical three-dimensional positioning method uses multiple image sensors and emitters.
In a pointing device, an object emits or reflects lights so that the image sensors can detect the object. The position is calculated by camera imaging algorithms. One example is direct linear transform which provides three-dimensional positions from two-dimensional image data taken by two-dimensional camera. In this system an image sensor captures ambient images without light sources and the image processing method is applied to determine the relative movement of the object as described in U.S. Pat. No. 6,765,555. Currently available three-dimensional positioning devices discussed above or other methods require some specific environment and a large space due to the multiple transmitters and receivers. These constraints are the major obstacles for the applications of three-dimensional pointing devices for most applications which need a pointing device.
The present invention provides a three-dimensional optical mouse system which can manipulates the pointer in the three-dimensional space. A camera system images a pointing tool in three-dimensional space for finding the position of the pointing tool. Anything even fingers can be used as a pointing tool in this device. This three-dimensional optical mouse system uses three-dimensional imaging technique using a Micromirror Array Lens (MMAL) with variable focal length, which is described in U.S. patent application Ser. No. 10/822,414.
In three-dimensional optical mouse system, a MMAL with fast response time makes images in the image sensor varying the focal length of the MMAL. These two-dimensional images with depth information determine the three-dimensional position of the pointing tool. Then finally, this three-dimensional position information can be used as an input of the computer device. This device can also extract some other information from the special action of the pointing tool.
The MMAL is so compact that it can be installed in a smallest sized cellular phone. Since the device needs only one image sensor input, the system can be smaller than the multiple emitter or detector system.
Thanks to the fast time response of the MMAL, the three-dimensional optical mouse system can have a fast response time for rapid movements of the pointing tool. The MMAL can track fast moving pointing tool.
Since detecting the position of the pointing tool needs no extra light or ultrasound for indicating the positions of the pointing tool, the pointing tool in the three-dimensional optical mouse system can be wireless and free to move from the electrical connection or the movement constraints.
All the response from the three-dimensional optical mouse system is made by the fast focal length change of the MMAL acting as a variable focal length lens.
The MMAL includes a plurality of micromirrors. The translation and/or rotation of each micromirror of the MMAL are controlled to vary the focal length of the MMAL.
The micromirrors of the MMAL are arranged to form one or more concentric circles.
Each micromirror of the MMAL may have a fan shape to enhance the optical efficiency.
The reflective surface of each micromirror of the MMAL is substantially flat. Alternatively, the reflective surface of each micromirror of the MMAL can have a curvature. The curvature of the micromirrors can be controlled.
Preferably, the reflective surface of the micromirror is made or metal.
Each micromirror of the MMAL is actuated by the electrostatic force and/or electromagnetic force.
The MMAL further includes a plurality of mechanical structures upholding the micromirrors and actuating components for rotating and translating the micromirrors. The mechanical structures and the actuating components are located under the micromirrors for maximize the reflecting surface to enhance the optical efficiency.
Each micromirror has the same function as a mirror. The array of micromirrors works as a reflective focusing lens by making all light scattered from an object converge into a focal plane and meet periodic phase condition among the lights from different micromirrors. In order to perform this procedure, the micromirrors are electrostatically and/or electromagnetically controlled by actuating components to have desired positions. The focal length of the lens is changed by controlling translation of micromirrors, by controlling rotation of micromirrors, or by controlling both translation and rotation of micromirrors.
The MMAL is a spatial light modulator (SLM). The MMAL compensates for phase errors of light introduced by the medium between an object and its image.
The MMAL includes micromirrors and actuating components, and uses a very simple mechanism to control the focal length. The focal length of the MMAL can be changed by translation and/or rotation of each micromirror.
Since micromirror has a tiny mass, the lens comprising the micromirror has a very fast response time down to hundreds of microseconds. The lens also has a large focal length variation and a high optical focusing efficiency. In addition, the lens design makes a large size lens possible, makes the focusing system very simple, and requires low power consumption. The lens has a low production cost because of the advantage of mass productivity.
The MMAL can compensate for aberration. For example, The MMAL can compensate for aberration introduced by the medium between the object and its image and/or a lens system.
The MMAL can have a polar array of micromirrors. For the polar array, each micromirror has a fan shape to increase the optical efficiency by expanding active reflecting region. The aberration of the MMAL can be reduced by micromirrors with curvatures. The optical efficiency of the MMAL can be increased by locating a mechanical structure upholding the micromirror and the actuating components under the micromirror to enhance the optical efficiency by increasing the active area of reflecting surface. Electric circuits to operate the micromirrors can be replaces with know semiconductor technologies such as MOS and CMOS.
The MMAL used in present invention has the following advantages: (1) the MMAL has a very fast response time thanks to the tiny mass of the micromirror; (2) the lens has compactness in size suitable for a portable device such as cellular phone, PDA, and so on; (3) the lens has a large focal length variation because large numerical aperture variations can be achieved by increasing the maximum rotational angle of the micromirror; (4) the lens has a high optical efficiency; (5) the lens can have a large size aperture without losing optical performance. Since the MMAL includes discrete micromirrors, the increase of the lens size does not enlarge the aberration caused by the shape error of a lens; (6) the cost is inexpensive because of the advantage of mass productivity of microelectronics manufacturing technology; (7) the lens can compensate for aberration.; (8) the lens makes the focusing system much simpler; (9) the lens requires small power consumption when electrostatic actuation is used to control it.
The invention of three-dimensional optical mouse system has the following advantages: (1) the system has a very fast response time to track the pointing tool; (2) anything even the finger of the user can be used as a pointing tool; (3) the system has no macroscopic mechanical movement other than the pointing tool movement by the user; (4) the system has a small volume in size; (5) the system has a compact and simple mechanism; (6) the system can distinguish various kinds of the pointing tool; (7) the input action of the system can be anything if the motion is detectable by the image sensor; (8) the system can have high depth resolution; (9) the cost is inexpensive because the MMAL is inexpensive; (10) the system is very simple because there is no macroscopic mechanical displacement or deformation of the lens; (13) the system requires small power consumption since the MMAL is actuated by electrostatic force.
Although the present invention is brief summarized herein, the full understanding of the invention can be obtained by the following drawings, detailed description, and appended claims.
These and other features, aspects, and advantages of the present invention will become better understood with reference to the accompanying drawings, wherein:
Since the Micromirror Array Lens (MMAL) with variable focal length can change its optical axis and focal length, the system can find the pointing tool only if it lies in the view of the device. Through the image processing, the system can have three-dimensional imaging and track the motion of the pointing tool.
The mechanical structures upholding each micromirror and the actuating components to rotate and translate the micromirrors 52 are located under the micromirrors 52 so that the micromirrors 52 have larger active area.
The focal length f of the MMAL 61 is adjustable by controlling the rotation and/or translation of the micromirror 64. The operation of the MMAL 61 is possible by controlling only rotation regardless of the phase condition. In this case, the quality of the image generated by the MMAL is degraded by the aberration. Also translation only without rotation can form a Fresnel diffraction lens with the aberration. The smaller the sizes of the micromirrors 64 can reduce the aberration. Even though the focusing ability of the one motion by either rotation or translation is not powerful, the lens with one motion has the advantage of simple control and fabrication.
Since the ideal shape of the conventional lens 62 has a curvature even in the small size of the micromirror, it is strongly desired that each of the micromirrors 64 has a curvature itself. However, since the aberration of the lens with flat micromirrors 64 is not much different from the lens with curvature if the size of each micromirror is small enough, there is not much need to control the curvature.
While the invention has been shown and described with reference to different embodiments thereof, it will be appreciated by those skills in the art that variations in form, detail, compositions and operation may be made without departing from the spirit and scope of the invention as defined by the accompanying claims.
This application is a continuation-in-part of, and claims priority to U.S. patent application Ser. No. 10/822,414 filed Apr. 12, 2004, U.S. patent application Ser. No. 10/855,715 filed May 27 2004, U.S. patent application Ser. No. 10/857,714 filed May 28 2004, U.S. patent application Ser. No. 10/857,280 filed May 28, 2004, U.S. patent application Ser. No. 10/872,241 filed Jun. 18, 2004, U.S. patent application Ser. No. 10/893,039, filed Jul. 16, U.S. patent application Ser. No. 10/979,619 filed Nov. 2, 2004, U.S. patent application Ser. No. 10/983,353 filed Nov. 8, 2004, U.S. patent application Ser. No. 11/072,597 filed Mar. 4, 2005, U.S. patent application Ser. No. 11/072,296 filed Mar. 4, 2005, U.S. patent application Ser. No. 11/076,616 filed Mar. 10, 2005, U.S. patent application Ser. No. 11/191,886 filed Jul. 28, 2005 and U.S. patent application Ser. No. 11/294,944 filed Dec. 6, 2005, all of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2002376 | Mannheimer | May 1935 | A |
4407567 | Michelet | Oct 1983 | A |
4834512 | Austin | May 1989 | A |
5004319 | Smither | Apr 1991 | A |
5212555 | Stoltz | May 1993 | A |
5369433 | Baldwin | Nov 1994 | A |
5402407 | Eguchi | Mar 1995 | A |
5467121 | Allcock | Nov 1995 | A |
5612736 | Vogeley et al. | Mar 1997 | A |
5696619 | Knipe | Dec 1997 | A |
5881034 | Mano | Mar 1999 | A |
5897195 | Choate | Apr 1999 | A |
5963197 | Bacon | Oct 1999 | A |
5986811 | Wohlstadter | Nov 1999 | A |
6025951 | Swart | Feb 2000 | A |
6028689 | Michaliek | Feb 2000 | A |
6064423 | Geng | May 2000 | A |
6084843 | Abe | Jul 2000 | A |
6104425 | Kanno | Aug 2000 | A |
6111900 | Suzudo | Aug 2000 | A |
6123985 | Robinson | Sep 2000 | A |
6282213 | Gutin | Aug 2001 | B1 |
6315423 | Yu | Nov 2001 | B1 |
6329737 | Jerman | Dec 2001 | B1 |
6498673 | Frigo | Dec 2002 | B1 |
6507366 | Lee | Jan 2003 | B1 |
6509888 | Tuovinen | Jan 2003 | B1 |
6549730 | Hamada | Apr 2003 | B1 |
6625342 | Staple | Sep 2003 | B2 |
6649852 | Chason | Nov 2003 | B2 |
6650461 | Atobe | Nov 2003 | B2 |
6658208 | Watanabe | Dec 2003 | B2 |
6711319 | Hoen | Mar 2004 | B2 |
6741384 | Martin | May 2004 | B1 |
6765555 | Wu | Jul 2004 | B2 |
6784771 | Fan | Aug 2004 | B1 |
6833938 | Nishioka | Dec 2004 | B2 |
6885819 | Shinohara | Apr 2005 | B2 |
6900901 | Harada | May 2005 | B2 |
6900922 | Aubuchon | May 2005 | B2 |
6906848 | Aubuchon | Jun 2005 | B2 |
6906849 | Mi | Jun 2005 | B1 |
6914712 | Kurosawa | Jul 2005 | B2 |
6919982 | Nimura | Jul 2005 | B2 |
6934072 | Kim | Aug 2005 | B1 |
6934073 | Kim | Aug 2005 | B1 |
6943950 | Lee | Sep 2005 | B2 |
6958777 | Pine | Oct 2005 | B1 |
6970284 | Kim | Nov 2005 | B1 |
6995909 | Hayashi | Feb 2006 | B1 |
6999226 | Kim | Feb 2006 | B2 |
7023466 | Favalora et al. | Apr 2006 | B2 |
7031046 | Kim | Apr 2006 | B2 |
7046447 | Raber | May 2006 | B2 |
7068416 | Gim | Jun 2006 | B2 |
7077523 | Seo | Jul 2006 | B2 |
7095548 | Cho et al. | Aug 2006 | B1 |
7161729 | Kim | Jan 2007 | B2 |
20020018407 | Komoto | Feb 2002 | A1 |
20020102102 | Watanabe | Aug 2002 | A1 |
20020135673 | Favalora | Sep 2002 | A1 |
20030058520 | Yu | Mar 2003 | A1 |
20030071125 | Yoo | Apr 2003 | A1 |
20030174234 | Kondo | Sep 2003 | A1 |
20030184843 | Moon | Oct 2003 | A1 |
20040009683 | Hiraoka | Jan 2004 | A1 |
20040012460 | Cho | Jan 2004 | A1 |
20040021802 | Yoshino | Feb 2004 | A1 |
20040052180 | Hong | Mar 2004 | A1 |
20040246362 | Konno | Dec 2004 | A1 |
20040252958 | Abu-Ageel | Dec 2004 | A1 |
20050024736 | Bakin | Feb 2005 | A1 |
20050057812 | Raber | Mar 2005 | A1 |
20050136663 | Terence Gan | Jun 2005 | A1 |
20050174625 | Huiber | Aug 2005 | A1 |
20050180019 | Cho | Aug 2005 | A1 |
20050212856 | Temple | Sep 2005 | A1 |
20050224695 | Mushika | Oct 2005 | A1 |
20050225884 | Gim | Oct 2005 | A1 |
20050231792 | Alain | Oct 2005 | A1 |
20050264867 | Cho | Dec 2005 | A1 |
20050264870 | Kim | Dec 2005 | A1 |
20060012766 | Klosner | Jan 2006 | A1 |
20060012852 | Cho | Jan 2006 | A1 |
20060028709 | Cho | Feb 2006 | A1 |
20060187524 | Sandstrom | Aug 2006 | A1 |
20060209439 | Cho | Sep 2006 | A1 |
Number | Date | Country |
---|---|---|
08-043881 | Feb 1996 | JP |
11-069209 | Mar 1999 | JP |
2002-288873 | Oct 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20060158432 A1 | Jul 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11294944 | Dec 2005 | US |
Child | 11341214 | US | |
Parent | 11191886 | Jul 2005 | US |
Child | 11294944 | US | |
Parent | 11076616 | Mar 2005 | US |
Child | 11191886 | US | |
Parent | 11072296 | Mar 2005 | US |
Child | 11076616 | US | |
Parent | 11072597 | Mar 2005 | US |
Child | 11072296 | US | |
Parent | 10983353 | Nov 2004 | US |
Child | 11072597 | US | |
Parent | 10979619 | Nov 2004 | US |
Child | 10983353 | US | |
Parent | 10893039 | Jul 2004 | US |
Child | 10979619 | US | |
Parent | 10872241 | Jun 2004 | US |
Child | 10893039 | US | |
Parent | 10857280 | May 2004 | US |
Child | 10872241 | US | |
Parent | 10857714 | May 2004 | US |
Child | 10857280 | US | |
Parent | 10855715 | May 2004 | US |
Child | 10857714 | US | |
Parent | 10822414 | Apr 2004 | US |
Child | 10855715 | US |