Various neural interface devices are under development for numerous applications involving restoration of lost function due to traumatic injury or neurological disease. Often the neural interface approaches place sensors or electrodes in a specific area of the brain or peripheral nerve such that a stimulus or electrical signal sent to the electrode can produce a response, such as a movement of a particular muscle group and/or sensations. For example, the electrodes can enable thought control of voluntary movement of body parts.
In application, the electrodes can be used to control affected paralyzed regions, artificial limbs or prosthetic devices, as well as a number of other devices such as computers, robots, and the like. Paralysis, loss of limbs, and various other afflictions can result in a reduced quality of life. However, neural interfaces can assist an afflicted person with regaining functionality and with improving the quality of life.
Some neural interfaces activate a large group of neurons. However, such an approach has limited application due to the inability to selectively activate specific neurons. Also, some approaches result in significant damage to nerve tissues and can limit the usefulness of the neural interface. A neural interface system which enables selective activation of neurons and reduces damage to nerve tissue would further the development of a useful neural interface device and further enhance the usefulness of neural interface devices to an afflicted person.
These drawings are provided for illustration purposes only such that alterations in relative dimensions, contours, and designs can be made consistent with the following description.
Although these exemplary embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, it should be understood that other embodiments may be realized and that various changes to the invention may be made without departing from the spirit and scope of the present invention. Thus, the following more detailed description of the embodiments of the present invention is not intended to limit the scope of the invention, as claimed, but is presented for purposes of illustration only and not limitation to describe the features and characteristics of the present invention, to set forth the best mode of operation of the invention, and to sufficiently enable one skilled in the art to practice the invention. Accordingly, the scope of the present invention is to be defined solely by the appended claims.
Definitions
In describing and claiming the present invention, the following terminology will be used.
The singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a coating” includes reference to one or more of such coatings and reference to “stimulating” refers to one or more such steps for accomplishing the desired stimulus.
As used herein with respect to an identified property or circumstance, “substantially” refers to a degree of deviation that is sufficiently small so as to not measurably detract from the identified property or circumstance. The exact degree of deviation allowable may in some cases depend on the specific context.
As used herein, “adjacent” refers to the proximity of two structures or elements. Particularly, elements that are identified as being “adjacent” may be either abutting or connected. Such elements may also be near or close to each other without necessarily contacting each other. The exact degree of proximity may in some cases depend on the specific context.
As used herein, the term “electrode” or “microelectrode” can refer to an electrical conductor or an optrode. An “optrode”, as used herein, is an optical counterpart of an electrical electrode. For example, both an electrode and an optrode can be used to provide a signal or stimulus to biological tissue. The terms electrode or microelectrode as used herein encompass both electrical and optical electrodes unless otherwise specified. Usage of the terms optrode or micro-optrode refer to an electrode which includes at least an optical conductor (e.g., waveguide, optical fiber, lens, etc.), but which does not necessarily include an electrical electrode. However, as will be appreciated from the following discussion, electrical and optical electrodes can be formed and used together (e.g. an electro-optrode) in a same device in accordance with embodiments of the present technology. Thus, in some cases the electrodes can include an optical waveguide and an electrically conductive pathway along the same electrode body. Thus, micro-optrodes can be both optically and electrically addressable. Alternatively, optrodes can form a portion of the while a separate portion of the microelectrodes are electrically conductive. Such mixed arrays can have optrodes and electrodes in segregated regions or intermixed.
As used herein, a plurality of items, structural elements, compositional elements, and/or materials may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a de facto equivalent of any other member of the same list solely based on their presentation in a common group without indications to the contrary.
Concentrations, amounts, and other numerical data may be presented herein in a range format. It is to be understood that such range format is used merely for convenience and brevity and should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. For example, a numerical range of about 1 to about 4.5 should be interpreted to include not only the explicitly recited limits of 1 to about 4.5, but also to include individual numerals such as 2, 3, 4, and sub-ranges such as 1 to 3, 2 to 4, etc. The same principle applies to ranges reciting only one numerical value, such as “less than about 4.5,” which should be interpreted to include all of the above-recited values and ranges. Further, such an interpretation should apply regardless of the breadth of the range or the characteristic being described.
Any steps recited in any method or process claims may be executed in any order and are not limited to the order presented in the claims. Means-plus-function or step-plus-function limitations will only be employed where for a specific claim limitation all of the following conditions are present in that limitation: a) “means for” or “step for” is expressly recited; and b) a corresponding function is expressly recited. The structure, material or acts that support the means-plus function are expressly recited in the description herein. Accordingly, the scope of the invention should be determined solely by the appended claims and their legal equivalents, rather than by the descriptions and examples given herein.
Optical Neural Interface
An optical neural interface can allow the presentation of a complex spatial temporal pattern of optical stimulation at specified depths of neural tissue. Such a device can be capable of guiding light to the tips of a microelectrode array. Any suitable microelectrode or micro-optrode array design can be used. The array 100 shown in
The plurality of microelectrodes can have tips 125 oriented in a common plane such as a traditional flat UEA, UOA, USEA or USOA. Alternatively, the tips can define a non-planar surface such as a contoured profile or varying heights across the array. Frequently, the entire plurality of microelectrodes are electrically isolated from one another via an insulating material such that they are independently addressable. However, in some cases a portion of the electrodes can be used as a ground or otherwise made dependent on other electrodes, e.g. as one or more reference electrodes. Resolution and performance can generally be improved by providing increased numbers of independently addressable microelectrodes. Typical electrode arrays can include 100 electrodes or more, such that implementation of the optical aspects presented below can allow a large number of independent stimulation and recording sites.
An optical neural interface can include an optical waveguide along at least one microelectrode so as to direct light towards a distal end of the microelectrode. In one alternative, a microelectrode array can have a plurality of microelectrodes secured in a common unit. Optionally, at least a first portion of the plurality of microelectrodes can be independently electrically addressable and at least a second portion of the plurality of microelectrodes includes an optical waveguide along the microelectrode. The first portion and the second portion of microelectrodes can, in some cases, include the same microelectrodes. However, in some aspects, the first portion and the second portion of microelectrodes can have some or no microelectrodes in common among their respective pluralities.
The optical waveguide can be formed in any profile that allows light to be transferred from the microelectrode near a distal end of the microelectrode. The light can be transferred sufficiently close to the tip to affect stimulation of a neuron in the vicinity of the tip. Generally, the optical waveguide can be formed of material which allows light of a given wavelength to travel its length. Various materials can be chosen and matched to a given wavelength. The optical waveguide can be formed of a material selected from the group consisting of silicon, silicon dioxide, silicon oxide, silica, acrylic, polystyrene, and combinations thereof. Even a 2-μm thick silicon oxide layer can act as a good optical wave guide for visible light. Specific choice of material can depend on the wavelength of light used, e.g. near-infrared, mid-infrared, visible, etc. Furthermore, suitable cladding material can be part of the optical waveguide to reduce transmission losses. For example, the cladding can be deposited along most of the length of the electrodes to prevent unwanted light escape by confining light along the optical waveguide, except at the tips, where light can be intentionally emitted. Metal films can be deposited on both curved surfaces (inner and outer surfaces) of the wave guide material to create good total-internal reflection and reduce light ‘escape’ during transfer to the tip. This technique can be used to transport light of practically any wavelength as long as the correct wave-guide material is chosen. Non-limiting examples of suitable cladding include a metal such as iridium oxide, gold, platinum, or combination of metal films, etc., fluorinated polymer, silicone or other opaque material.
In one optional embodiment, the optical waveguide is a coating along a central shaft of the microelectrode. This optical waveguide has an entrance configured to accept incoming light and direct the light along the optical waveguide to an exit configured to direct the light from the microelectrode into surrounding tissue.
In one aspect, a seamless optical waveguide along the length of the electrodes can be provided by coating each electrode in the array with a thin layer (<5 μm) of optical wave guide material and have an optical-opening close to the electrode tip. Although various methods can be used such as CVD and PVD, CVD allows for more highly conformal coatings to be formed. Further, coatings can be stoichiometrically consistent to improve optical clarity along the waveguide.
In another optional embodiment, the optical waveguide 415 can be a central shaft of the microelectrode 410 as generally illustrated in
In a third design, microchannels 515 inside the electrodes 510 in an array 500 are used to direct the light 540 from a light source 525a, 525b via an entrance 520 to the electrode tips 535 and out the exit 530 as generally illustrated in
A suitable light source can also be provided and connected to the optical waveguide or waveguides of the interface. A single light source can be used or a plurality of light sources can be used. A single light source can be used to illuminate multiple adjacent optical waveguides simultaneously or light gates can be provided to selectively block light from entering selected waveguides. Optionally, a plurality of light sources can be operatively connected to the optical waveguide of each of the second portion of the plurality of microelectrodes.
Although other options can be used, the light source can be provided by mounting a laser diode (LD) to the backside of the microelectrode at the waveguide inlet. The LD can be preassembled and then mounted to the waveguide inlet or manufactured directly on the backside of the microelectrode. Laser diodes fabricated on the base of individual electrodes will generally transmit more light to the electrode tips than pre-fabricated and assembled diodes because in the former case the reflective losses at the silicon-air/silicon interface are minimal Specialty glass or optically opaque material can be used to electrically and optically isolate the electrodes at the electrode-bottom or base of the array while the electrodes are mechanically held together by the same material.
For optical stimulation, infrared (IR) or other laser source(s) can be either fabricated or assembled on the back of the arrays (e.g., by directly soldering or flip-chip bonding individual diodes or chips to bondpads on the back of the array, placing the light sources on top of the electrode shafts, or via other means). Multiple different sources, controlled independently, would allow stimulation via each electrode independently. Alternatively (in the limit), a single light source can be directed to individual electrodes, e.g., by having controllable microshutters that permit or block light transmission into the hollow microchannels for each electrode.
The optical source can be any suitable light source, although one example is a laser ranging in the near-IR up to 2 μm wavelengths and can be provided as an array of miniaturized (90×90 μm) LDs. For silicon waveguide material, wavelengths from about 1200 nm to 8000 nm can be used. Other wavelengths can also be suitable with corresponding choice of waveguide materials. The array of light sources can be integrated and controlled by an ASIC. An energy input of 10 mJ/cm3 is typically sufficient to stimulate the neurons optically and the thin film silicon oxide waveguides have been shown to have greater than 90% transmittance. Specific energy and transmittance can be optimized for a particular design and choice of materials.
As mentioned above, one option is to provide a base light source oriented in proximity to a localized portion (e.g., 1-9 electrodes) of the second portion of microelectrodes and configured to simultaneously transfer light along multiple adjacent optical waveguides.
In a first approach to creating open intraelectrode microchannels, the microchannels can be created in conventional-type, already-fabricated silicon electrodes. For example, Nd:YAG or other micromachining lasers, or DRIE or other processes can be used to create the hollow microchannels by material removal (subtractive process). The tips can optionally be metalized for improved conductivity, e.g., with sputtered iridium. The metallization process can be similar to that used the conventional UEAs/USEAs, except that there is a channel through the tips themselves and their metal coating to emit light. The metal film or other opaque material, e.g. iridium oxide, gold, platinum, or combination of metal films, etc., can be deposited along most of the length of the electrodes to prevent unwanted light escape, while still allowing light to be emitted at the opening of the microchannels at the tip. The metal deposited around the electrode shafts to shield the light can optionally be insulated by an electrically insulating material such as Parylene, except close to the tip area which would act as the electrical recording site.
A second approach for creating intraelectrode microchannels is illustrated in
Referring to
Referring to
Referring to
While
In some examples, activation of biological tissue with optrodes can be performed through a trial and error process. More specifically, where the scale of the array and the nerve tissues are small, identifying which optrodes activate which nerves and which optrodes more effectively activate the nerves than other optrodes can be determined by individually testing each of the optrodes. In another example, rather than individually testing each of the optrodes, an electrically conducting portion of the optrode (i.e., the electrical electrode) can be used to measure and record signals from the nerve tissue as the nerves are activated through functioning biological pathways.
Reference will now be made to
Even in sections of the sciatic nerve that did not respond or responded only weakly to extraneural stimulation (presumably because the underlying fascicles were too far from the surface for axons to be activated), stimulating through the same optrode (fiber optic) intraneurally evoked a strong, reasonably selective response, indicating improved activation capabilities. Further, the shape of the EMG (electromyography) response evoked by intraneural stimulation was nearly identical to that evoked by intrafascicular stimulation with a USEA (Utah Slanted Electrode Array), when USEA stimulus strength (duration) was adjusted to achieve matched response amplitudes. However, USEA intrafascicular stimulation was still more selective (less activation of other muscles) than intraneural stimulation. This experiment used a first-pass, non-optimized methodology, and penetrating the fascicle with the blunt optical probe that was used was not readily possible. Likely, however, intrafascicular stimulation will provide still further benefits relative to intraneural (extrafascicular) stimulation.
Because the efficacy of the various intrafascicular and extrafascicular approaches is demonstrated, electrode- and optrode-based neural interfaces are demonstrated to be able to provide improved sensory feedback in prosthetic limbs. Example uses of such interfaces include: 1) the intrafascicular implanting of Utah Slanted Optrode Arrays (USOAs) in nerves for highly selective stimulation of multiple, independent afferent fibers for sensory feedback; 2) the provision of vertical-cavity surface-emitting laser (VCSEL) packages to provide multiple, independent IR laser sources suitable for integrating with multi-optrode USOAs; and 3) the integration of such devices with a highly advanced neuroprosthetic arm or other type of limb.
In one example, an integrated USOA having 100 optrodes can be formed with a VSCEL array arranged on a side of the substrate opposite from the optrodes. Micro-lenses, such as the previously described Fresnel lenses can be formed or positioned between the optrodes and the VSCEL array. The neural interface can be wired for external control of VCSELs. In another example, the VSCELs are separate and external to the neural interface and the implantation site and optical fibers can be used to carry optical beams from the VSCELs to the optrodes for nerve stimulation.
Relative to other designs for integrating laser stimulation with UEAs/USEAs/UOAs/OSOAs, there would be relatively less loss of light in the microchannels, compared with light absorbed in or reflected from silicon or other waveguide materials. Further, the transmission of light would not depend on its wavelength. For example, certain forms of optical stimulation involving insertion of channelrhodopsin into neurons utilize light wavelengths of 480 nm, a wavelength poorly transmitted by silicon (almost 100% absorbed), and certain voltage sensitive optical reporters also emit light in wavelengths poorly transmitted by silicon.
The microchannels can also be used to administer agents to be incorporated into and modify local neurons, such as light-sensitive molecules for enhanced optical stimulation to excite neurons (e.g., channelrhodopsin) or inhibit neurons (e.g., halorhodopsin), or voltage-dependent, light-emitting molecules (voltage-sensitive optical reporters, e.g. green fluorescent protein (GFP) or voltage-sensitive dyes) for optical recording of neural activity. Similarly, agents can be delivered to enhance responses to light in the infrared portion of the spectrum. Selective promoters or other approaches can be used to allow particular molecules to be incorporated selectively into only certain types of neurons, thereby allowing selective stimulation of only those types of neurons. Note, however, that the use of such agents is not required for this device to be functional. For example, optical stimulation with wavelengths in the infrared or near infrared region can excite neural tissue directly. Such microchannels can also be used to sample the tissue environment.
Notably, portions of these three different approaches can be optionally combined. For example, use of the external waveguides can be combined with electrodes having internal microchannels for delivering agents to be incorporated into and modify local neurons, such as light-sensitive molecules for enhanced optical stimulation, or voltage-dependent, light-emitting molecules for optical recording.
A method 1500 of optically stimulating neurons is shown in
Another method 1600 of optically stimulating neurons is shown in
This device, besides allowing localized optical stimulation, can sense or record the neuronal electrical activity. In an additional optional feature, the optical waveguides can be used to optically record neural activity. Using IR spectroscopy, the device may be used to optically record the neural activity. Further, optogenetics can be used, i.e. alteration of cells to either convert an optical signal into an electrical impulse or vice versa, conversion of electrical signal into an optical emission that can be recorded using the spectroscopic techniques when the emitted light is transferred from the tip to base of the electrode. Voltage-sensitive dyes can also be injected for optical recording. Electrical neural recording is also possible by fabricating recording sites on the tips of the electrodes, somewhat similar to present conventional microelectrode arrays, but while leaving the tips free to emit light. The electrical recording sites can also serve as electrical stimulation sites. The metal deposited around the electrode shafts to shield the light can be insulated by an electrically insulating material such as Parylene except close to the tip area which would now act as electrical recording site.
This approach integrates the optical stimulation and electrical recording seamlessly into one small device and allows localized selective stimulation, more comprehensive access to nerve fibers, and a wider range of safe stimulation parameters, including higher rates of stimulation suitable for activating neurons in their normal physiological range. This approach also provides penetration into the neural tissue in a way that allows light to be delivered closely to the neurons of interest, and to allow a large number of independent probes. The above methods and devices can also selectively activate subsets of fibers within a single fascicle, and safely use a wide range of stimulation intensities or frequencies, which provides an ability to activate neurons at the full range of physiologically meaningful rates. The present devices also allow a large number of independent stimulation sites and a bidirectional neural interface for stimulating and recording such that a three-dimensional, high-channel count, penetrating optical-electrical neural interface can be provided. As noted above, electrical stimulation capabilities would also be retained through the same pathways used for electrical recording, allowing either mode of stimulation, as well as allowing the comparability and relative advantages of the two forms of stimulation to be compared. In short, this single device provides optical stimulation, electrical stimulation, and electrical recording, and variations of this device also allow for optical recording as described above.
Another advantage of the hybrid optical-electrical device is that the use of optical stimulation can reduce or eliminate stimulation artifacts resulting from conventional electrical stimulation. Such artifacts typically preclude simultaneous electrical recordings from the near vicinity. Hence, it is now possible to maintain recording on adjacent or perhaps even the same electrode through which light stimulation is occurring. Simultaneous recording and stimulation is not readily possible with present wired or wireless UEAs/USEAs. Thus, only a single device can be implanted instead of two devices, which could be advantageous clinically, and which allows new opportunities for investigation of interactions between local neurons.
The foregoing detailed description describes the invention with reference to specific exemplary embodiments. However, it will be appreciated that various modifications and changes can be made without departing from the scope of the present invention as set forth in the appended claims. The detailed description and accompanying drawings are to be regarded as merely illustrative, rather than as restrictive, and all such modifications or changes, if any, are intended to fall within the scope of the present invention as described and set forth herein.
This application claims the benefit of U.S. Patent Application Ser. No. 61/259,524, filed Nov. 9, 2009, the entire contents of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2010/056050 | 11/9/2010 | WO | 00 | 10/9/2012 |
Number | Date | Country | |
---|---|---|---|
61259524 | Nov 2009 | US |