Three dimensional printing material system and method using peroxide cure

Information

  • Patent Grant
  • 7905951
  • Patent Number
    7,905,951
  • Date Filed
    Friday, December 7, 2007
    16 years ago
  • Date Issued
    Tuesday, March 15, 2011
    13 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Wu; David
    • Nguyen; Vu A
    Agents
    • Goodwin Procter LLP
Abstract
A materials system and methods are provided to enable the formation of articles by Three Dimensional Printing. The materials system includes a transition metal catalyst that facilitates the reaction of an acrylate-containing binder with a particulate material.
Description
TECHNICAL FIELD

This invention relates generally to rapid prototyping techniques and, more particularly, to a three-dimensional printing material and method using a peroxide cure.


BACKGROUND

The field of rapid prototyping involves the production of prototype articles and small quantities of functional parts, as well as structural ceramics and ceramic shell molds for metal casting, directly from computer-generated design data.


Two well-known methods for rapid prototyping include a selective laser sintering process and a liquid binder Three Dimensional Printing process. These techniques are similar, to the extent that they both use layering techniques to build three-dimensional articles. Both methods form successive thin cross-sections of the desired article. The individual cross-sections are formed by bonding together adjacent grains of a granular, (i.e., particulate) material on a generally planar surface of a bed of the granular material. Each layer is bonded to a previously formed layer at the same time as the grains of each layer are bonded together to form the desired three-dimensional article. The laser-sintering and liquid binder techniques are advantageous because they create parts directly from computer-generated design data and can produce parts having complex geometries. Moreover, Three Dimensional Printing may be quicker and less expensive than machining of prototype parts or production of cast or molded parts by conventional “hard” or “soft” tooling techniques that can take from a few weeks to several months, depending on the complexity of the item.


An early Three Dimensional Printing technique, described in U.S. Pat. No. 5,204,055, incorporated herein by reference in its entirety, describes the use of an ink-jet style printing head to deliver a liquid or colloidal binder material to sequentially applied layers of powdered material. The three-dimensional inkjet printing technique or liquid binder method involves applying a layer of a powdered material to a surface using a counter-roller. After the powdered material is applied to the surface, the inkjet printhead delivers a liquid binder in a predetermined pattern to the layer of powder. The binder infiltrates into gaps in the powder material and hardens to bond the powder material into a solidified layer. The hardened binder also bonds each layer to the previous layer. After the first cross-sectional portion is formed, the previous steps are repeated, building successive cross-sectional portions until the final article is formed. Optionally, an adhesive may be suspended in a carrier that evaporates, leaving the hardened adhesive behind. The powdered material may be ceramic, plastic or a composite material. The liquid binder material may be organic or inorganic. Typical organic binder materials used are polymeric resins or ceramic precursors, such as polycarbosilazane. Inorganic binders are used where the binder is incorporated into the final articles; silica is typically used in such an application.


Some groups, e.g., Fuji, have performed ultraviolet cure of acrylate binders over particulate material. Acrylate binders provide several advantages. First of all, they are curable by ultraviolet (UV) light, thereby enabling a faster forming process then is possible with other typical curing methods. Secondly, they allow the formation of articles having surfaces with plastic appearances, thereby enabling more realistic modeling of various objects. Finally, because acrylate binders are essentially solids, no evaporation takes place after the binders are printed, thereby allowing the formation of stable, tough structures.


The fast curing mechanism of UV initiation of (meth)acrylate polymerization may cause excessive distortion in free flowing particulate material, resulting in curling of the printed part, which may make the printing of parts having a thickness greater than 1 millimeter exceedingly difficult. To reduce curling due to fast curing, a first printed layer may be formed on a glass build plate, adhering thereto.


SUMMARY OF THE INVENTION

In an embodiment of the invention, strong parts may be made by Three Dimensional Printing over particulate material build material without a need for infiltration. Typical existing printing processes include a post-processing infiltration step to increase the strength of the printed article. Articles printed with the peroxide-containing binders described herein have strengths comparable to that of infiltrated articles, e.g., about 20 MPa, thereby eliminating a need for the infiltration step.


The fast curing mechanism of UV initiation of (meth)acrylate polymerization may cause curling and distortions to occur immediately from shrinkage due to the instantaneous decrease in free volume from the conversion of carbon-to-carbon double bonds of the individual (meth)acrylate monomer to single carbon-to-carbon bonds to another (meth)acrylate monomer. This may hinder the production of articles thicker than 1 mm from free-flowing particulate build materials, as articles tend to be destroyed in the process. The slower curing mechanism of the peroxide initiation according to the invention slows down the rate of carbon-to-carbon double bond conversion into single bonds and thus reduces the immediate curling and distortion. Moreover, the acrylate-containing binder cures upon contact with the particulate material, thus providing the advantage of a stable two-component product.


Both aerobic curing and anaerobic curing may be employed in embodiments of the invention. In contrast to existing processes where amines may be used as oxygen scavengers solely in ultraviolet curing, allyl ethers, as described herein, may be employed as oxygen scavengers in both ultraviolet curing and peroxide initiation.


In an embodiment, the invention features a powder material system for Three Dimensional Printing including a substantially dry particulate material that includes an insoluble filler, a soluble filler, and a transition metal catalyst. The dry particulate material is suitable for use in Three Dimensional Printing to form an article having a plurality of layers, the layers including a reaction product of the particulate material and a non-aqueous fluid that contacts the particulate material during Three Dimensional Printing.


One or more of the following features may be included. The particulate material may possess an internal angle of friction greater than 40° and less than 70°. The particulate material possess a critical surface tension greater than 20 dynes/cm. The particulate material may include about 50%-90% by weight of the insoluble filler, about 10-50% by weight of the soluble filler, and about 0.01-0.5% by weight of the transition metal catalyst.


The insoluble filler may include or consist essentially of solid glass microspheres, hollow glass microspheres, solid ceramic microspheres, hollow ceramic microspheres, potato starch, tabular alumina, calcium sulfate hemihydrate, calcium sulfate dihydrate, calcium carbonate, ultra-high molecular weight polyethylene, polyamide, poly-cyclic-olefins, polyurethane, polypropylene and combinations thereof.


The soluble filler may include or consist essentially of methyl methacrylate polymers, ethyl methacrylate polymers, butyl methacrylate polymers, polyvinylbutyral, and combinations thereof. The soluble filler may have a molecular weight between 100,000 g/mol and 500,000 g/mol.


The transition metal catalyst may include or consist essentially of cobalt (II) octoate, cobalt (II) naphthenate, vanadium (II) octoate, manganese naphthenate and combinations thereof.


The particulate material may include a pigment, e.g., about 0.5 to 5% by weight. The pigment may include or consist essentially of zinc oxide, zinc sulfide, barium sulfate, titanium dioxide, zirconium silicate, lead carbonate, and hollow borosilicate glass spheres.


The particulate material may include a processing aid, e.g., about 0.01-2.0% by weight of the processing aid. The processing aid may include or consist essentially of mineral oil, propylene glycol di(caprylate/caprate), petroleum jelly, propylene glycol, di-isobutyl phthalate, di-isononyl phthalate, polyalkyleneoxide modified heptamethyltrisiloxanes, polyalkyleneoxide modified polydimethylsiloxanes, secondary ethoxylated alcohols, fluorinated hydrocarbons, saturated hydrocarbon resin tackifiers, and combinations thereof.


In another aspect, the invention features a kit including a substantially dry particulate material including an insoluble filler, a soluble filler, and a transition metal catalyst. The kit also includes a fluid binder including a (meth)acrylate monomer, an allyl ether functional monomer and/or oligomer, and organic hydroperoxide.


One or more of the following features may be included. The fluid binder may have a contact angle of less than 25° on the particulate material. The fluid binder may include about 40%-95% by weight of the (meth)acrylate monomer, about 5-25% by weight of the allyl ether functional monomer/oligomer, and about 0.5-5% by weight of the organic hydroperoxide. The fluid binder may also include 0-1% by weight of surfactant. The fluid binder may include a (meth)acrylate oligomer, e.g., about 10-40% by weight of the (meth)acrylate oligomer. The fluid binder may include a first accelerator, e.g., up to about 2% by weight of the first accelerator. The first accelerator may include dimethylacetoacetamide.


A 1 mm penetration hardening rate of the substantially dry particulate material upon application of the fluid binder is selected from a range of 0.01/min to 1.0/min. The dry particulate material may include a pigment and/or a processing aid.


In yet another aspect, a method for forming an article by Three Dimensional Printing includes the step of providing a substantially dry particulate material including a plurality of adjacent particles, the particulate material comprising a transition metal catalyst. A fluid binder is applied to at least some of the plurality of particles in an amount sufficient to bond those particles together to define at least a portion of the article, the fluid binder including a (meth)acrylate monomer, a (meth)acrylate oligomer, an allyl ether functional monomer and/or oligomer, and organic hydroperoxide.


One or more of the following features may be included. The transition metal catalyst may induce decomposition of the organic hydroperoxide to generate free radicals and the free radicals initiate anaerobic polymerization of the (meth)acrylate monomer and oligomer, and aerobic polymerization of the allyl ether functional monomer/oligomer.


The fluid binder may include a first accelerator. The particulate material may include an insoluble filler, a soluble filler, a pigment, and/or a processing aid.





BRIEF DESCRIPTION OF THE FIGURES

The following drawings are not necessarily to scale, emphasis instead being placed generally upon illustrating the principles of the invention. The foregoing and other features and advantages of the present invention, as well as the invention itself, will be more fully understood from the following description of exemplary and preferred embodiments, when read together with the accompanying drawings, in which:



FIG. 1 is a schematic view of a first layer of a mixture of particulate material of an embodiment of the invention deposited onto a movable surface of a container on which an article is to be built, before any fluid has been delivered;



FIG. 2 is a schematic view of an inkjet nozzle delivering a fluid to a portion of the layer of particulate material of FIG. 1 in a predetermined pattern;



FIG. 3 is a schematic view of a final article of an embodiment of the invention enclosed in the container, the article made by a series of steps illustrated in FIG. 2 and embedded in the loose unactivated particles;



FIG. 4 is a schematic view of the final article of FIG. 3;



FIG. 5 is a graph illustrating a typical response from the Washburn infiltration method to determine the material constant and contact angle of a fluid against a particulate material;



FIG. 6
a is a magnified image of the particulate material consisting primarily of glass microspheres and a soluble filler as the secondary component;



FIG. 6
b is a magnified image of the particulate material consisting of a 50/50 blend by bulk volume of glass microspheres and calcium sulfate hemihydrates with a soluble filler as the third component;



FIG. 7 is a plot of flexural strength and flexural distance at break of particulate materials using soluble fillers with varying molecular weights.



FIG. 8 is a Zisman plot of a particulate material using a mineral oil processing aid;



FIG. 9 is a Zisman plot of a particulate material using a combination of mineral oil and a secondary ethoxylated alcohol surfactant as a processing aid;



FIGS. 10
a and 10b are laser profilometer images comparing the effect of proper and poor binder wetting on the bottom surfaces of articles;



FIG. 11 is a Zisman plot of a particulate material using a combination of a saturated hydrocarbon resin and mineral oil as a processing aid;



FIG. 12 is a graph illustrating a hardness development response of a particulate material and a fluid binder;



FIG. 13 is the transformed plot of FIG. 12, plotting the natural logarithm of the force measured against time;



FIG. 14 is a diagram illustrating the aerobic cure response time of thin-walled articles;



FIG. 15 is a schematic diagram of a test part used to determine aerobic cure response;



FIG. 16 is a graph illustrating the internal friction angle of various powders;



FIGS. 17
a and 17b are laser profilometer images comparing the effect of particulate materials with high internal angle of friction on finished article properties;



FIG. 17
c is a CAD drawing of the par portion printed in FIGS. 17a and 17b;



FIGS. 18
a and 18b are laser profilometer images comparing the effect of particulate material with low internal angle of friction on finished article properties; and



FIG. 18
c is a CAD drawing of the part portion printed in FIGS. 18a and 18b.





DETAILED DESCRIPTION
Three Dimensional Printing

Referring to FIG. 1, in accordance with a printing method using the materials system of the present invention, a layer or film of a particulate material 20, i.e., an essentially dry, and free-flowing powder, is applied on a linearly movable surface 22 of a container 24. The layer or film of particulate material 20 may be formed in any suitable manner, for example using a counter-roller. The particulate material 20 applied to the surface includes an insoluble filler material, a soluble filler material, and a transition metal catalyst. The particulate material 20 may also include a pigment and/or a processing aid material.


Referring to FIG. 2, an ink-jet style nozzle 28 delivers a fluid binder 26 to at least a portion 30 of the layer or film of the particulate mixture 20 in a two-dimensional pattern. The fluid binder 26 delivered to the particulate material 20 includes a (meth)acrylate functional monomer, an allylic functional monomer/oligomer, and an organic hydroperoxide. The fluid binder 26 may also include a surfactant, an accelerator, and/or a (meth)acrylate functional oligomer. According to the printing method, the fluid binder 26 is delivered to the layer or film of particulate material 20 in any predetermined two-dimensional pattern (circular, in the figures, for purposes of illustration only), using any convenient mechanism, such as a drop-on-demand (DOD) printhead driven by software in accordance with article model data from a computer-assisted-design (CAD) system.


The first portion 30 of the particulate material activates the fluid binder 26, causing the fluid binder to initiate polymerization into a solid that adheres together the particulate mixture to form a conglomerate of the particulate material 20 (powder) and fluid binder 26. The conglomerate defines an essentially solid circular layer that becomes a cross-sectional portion of an intermediate article 38 (see, e.g., FIGS. 3 and 4). As used herein, “activates” is meant to define a change in state in the fluid binder 26 from essentially stable to reactive. This definition encompasses the decomposition of the organic hydroperoxide in the fluid binder 26 once in contact with the transition metal in the particulate material 20. When the fluid initially comes into contact with the particulate mixture, it immediately flows outwardly (on a microscopic scale) from the point of impact by capillary suction, dissolving the soluble filler within a time period, such as 30 seconds to one minute. A typical droplet of fluid binder has a volume of about 50 picoliters (pl), and spreads to a diameter of about 100 micrometer (μm) after coming into contact with the particulate mixture. As the fluid binder dissolves the soluble filler, the fluid viscosity increases dramatically, arresting further migration of the fluid from the initial point of impact. Within a few minutes, the fluid with soluble filler dissolved therein flows and adheres to the insoluble filler, forming adhesive bonds between the insoluble filler particulate material. The fluid binder is capable of bonding together an amount of the particulate mixture that is several times the mass of a droplet of the fluid. As the reactive monomers/oligomer of the fluid binder polymerize, the adhesive bonds harden, joining the insoluble filler particulate material and, optionally, pigment into a rigid structure, which becomes a cross-sectional portion of the final article 40.


Any dry particulate mixture 32 that was not exposed to the fluid remains loose and free-flowing on the movable surface 22. The dry particulate mixture is typically left in place until formation of the intermediate article 38 is complete. Leaving the dry, loose particulate mixture in place ensures that the intermediate article 38 is fully supported during processing, allowing features such as overhangs, undercuts, and cavities to be defined and formed without the need to use supplemental support structures. After formation of the first cross-sectional portion of the intermediate article 38, the movable surface 22 is indexed downwardly, in an embodiment, and the process is repeated.


Using, for example, a counter-rolling mechanism, a second film or layer of the particulate mixture is then applied over the first layer, covering both the rigid first cross-sectional portion, and any proximate loose particulate mixture. A second application of fluid binder follows in the manner described above, dissolving the soluble filler and forming adhesive bonds between at least a portion of the previous cross-sectional formed portion, the insoluble filler particulate material, and, optionally, pigment of the second layer, and hardening to form a second rigid cross-sectional portion added to the first rigid cross-sectional portion of the final article. The movable surface 22 is again indexed downward.


The previous steps of applying a layer of particulate mixture, including the soluble filler, applying the fluid binder, and indexing the movable surface 22 downward are repeated until the intermediate article 38 is completed. Referring to FIG. 3, the intermediate article 38 may be any shape, such as cylindrical. At the end of the process, only a top surface 34 of the intermediate article 38 is visible in the container 24. The intermediate article 38 is typically completely immersed in a surrounding bed 36 of dry and loose particulate material. Alternatively, an article could be formed in layers upward from an immovable platform, by successively depositing, smoothing, and printing a series of such layers.


Referring to FIG. 4, the dry and loose particulate material may be removed from the intermediate article 38 by pressurized air flow or a vacuum. After removal of the dry and loose particulate material from the intermediate article 38, a post-processing treatment may be performed, such as heating in an oven, painting, etc. to define a final article 40, having the same shape as intermediate article 38, but with additional desired characteristics, such as a smooth surface appearance, neutral chroma, high lightness, toughness, strength, and flexibility.


Particulate Material


One preferred embodiment of a particulate material suitable for Three Dimensional Printing, i.e., a substantially dry particulate material, includes or consists essentially of:



















insoluble filler
50-90
wt %



soluble filler
10-50
wt %



pigment
0.0-5
wt %



transition metal catalyst
0.01-1
wt %



processing aids
0.01-2.0
wt %










A preferred particle size, i.e., diameter, of components of the particulate material is less than about 125 microns and greater than about 30 microns.


The insoluble filler provides dimensional stability and adhesion for strength of an article formed from the particulate material. One suitable insoluble filler for use with embodiments of the invention is glass microspheres. The glass microspheres may be made from borosilicate glass with an index of refraction of 1.5 and may be spherical with a particle size distribution ranging from greater than about 20 microns to less than about 125 microns, more preferably between 40 and 90 microns. The glass microspheres may be treated with an amino-silane so that the microsphere surface may have an amine functionality and provide better adhesion to a (meth)acrylate based binder. An example of such glass spheres is SPHERIGLASS 2530 CP03, available from PQ Corporation based in Valley Forge, Pa. This supplier also offers another glass microsphere product, T-4 SIGN BEADS, having an index of refraction of 1.9 that offers better light scattering to create a more neutral and lighter color than that of SPHERIGLASS 2530 CP03. Another suitable borosilicate glass bead product with an index of refraction of 1.5, but more translucent than Spheriglass 2530 CP03, is GL0179 from Mo-Sci Specialty products, LLC based in Rolla, Mo. The clearer product imparts a more neutral color to articles than both the SPHERIGLASS and T-4 SIGN BEAD products, which may be desirable for attaining a wider color gamut.


Various types of insoluble fillers suitable for use with embodiments of the invention include solid glass spheres, hollow glass spheres, solid ceramic spheres, hollow ceramic spheres, potato starch, tabular alumina, calcium sulfate hemihydrate, calcium sulfate dehydrate, calcium carbonate, ultra-high molecular weight polyethylene, polyamide, poly-cyclic-olefins, polyurethane, polypropylene, and combinations thereof.


It may be preferable that the insoluble filler consist mostly of spherical shaped particles with a particle size distribution with 10% less than 30 to 40 microns, with 90% less than 90 to 125 microns, with 50% between 50 to 70 microns. Angular, non-spheroid shaped particles with wide particle size distributions with 10% less than 3 to 30 microns, with 90% less than 60 to 90 microns, and with 50% of the particles between 20 to 60 microns are to be avoided or used less than 10% by weight in the particulate material in order to provide low capillary pressure which in turn lowers the amount of distortion. The addition of angular shaped particles may decrease the average capillary radius of the particulate material thus increasing capillary pressure and increasing distortion of the final article.


Capillary pressure may be described by Equation 1 below, which is derived into a simple form from the equation of Young and Laplace:

Δp=lv cos θ/r  Equation 1

where Δp is the capillary pressure, which is the pressure difference across the fluid interface, γlv is the surface tension at the liquid-vapor interface of the fluid, r is the average radius of the capillaries, and θ is the contact angle at the fluid-solid interface.


The contact angle, θ, is the angle of contact between a liquid and solid. A contact angle of 0° suggest that the fluid will spontaneously wet the entire surface of the solid to which it is applied, while a contact angle greater than 90° suggests that the fluid will not spontaneously spread and wet the surface of the solid to which it is applied. Spontaneously used herein is in reference to thermodynamic equilibrium, and does not denote an instance of time. The contact angle may be defined by the Young and Dupré equation:










cos





θ

=



γ
sv

-

γ
sl



γ
lv






Equation





2








where γsv, is the surface energy at the solid and vapor interface, and γsl is the surface energy at the solid and liquid interface. The difference of γsvsl in the numerator of Equation 2 may be defined as the adhesion tension of the solid at the solid-liquid-vapor interfaces. It may be desirable to have this adhesion tension greater than or equal to the surface tension of the fluid at the liquid-vapor interface. The adhesion tension may be related to the surface characteristic defined as the critical surface tension by Zisman, which is described in the following paragraphs.


One can see from Equation 1 that capillary pressure increases if the average radius of the capillaries decreases and/or if the contact angle increases through an increase of the fluid's surface tension, and/or the adhesion tension of the solid decreases. This effect of capillary pressure infiltrating a porous medium may be measured by the Washburn infiltration method. The Washburn equation describes the time a fluid takes to infiltrate into and through porous medium. The Washburn equation is often used in the following form:










cos





θ

=



m
2

t



η


ρ
2


σ





c







Equation





3








where θ is the contact angle at the liquid-solid interface, m is the mass of fluid, t is time, η is the viscosity of the fluid, ρ is the density of the fluid, and c is a material constant.


The material constant c may be determined by infiltrating a porous medium with a very low surface tension fluid that will have a contact angle of 0° against the solid surface of particles comprising the porous medium. n-Hexane is a common fluid used for such purposes, having a surface tension of 18 dynes/cm; it is assumed to have a contact angle of 0° against most solid surfaces. This makes the value of cos θ equal to 1 in Equation 3, thereby making it possible to solve for the material constant c since the fluid properties of n-hexane are known. This leaves one to measure the rate of mass increase of the fluid infiltrating the porous medium over time. This mass-time response may be measured by use of a Krüss Processor Tensiometer K100 with accessories for Washburn contact angle measurement, available from KRUSS USA based in Mathews, N.C., or by use of a KSV Sigma 70 Tensiometer from KSV Instruments USA based in Monroe, Conn. With these instruments, a vial of powder is prepared. The vial is perforated at a bottom portion, with a piece of porous filter paper preventing the powder from pouring through the perforated bottom. The vial filled with powder is attached to a microbalance, and the bottom of the vial is brought into contact to the surface of the fluid, in this case n-hexane. Software records the mass increase of the vial over time from the microbalance as the fluid is drawn into the powder in the vial largely by capillary pressure. One may then plot the mass squared over time, which should result in a straight line during the time fluid is infiltrating into the powder in the vial (see FIG. 5, that illustrates a typical response from the Washburn infiltration method to determine the material constant and contact angle of a fluid against a particulate material). The slope may be calculated from that plot, which corresponds to the value of m2/t in Equation 3. After the slope is calculated, one may solve for the material constant c.


The material constant c is sensitive to the packing density of the powder in the vial in which it is prepared, so it is preferable to use a method that consistently provides the same packing density in the vial for each test. It is theorized that the material constant has the following relationship:









c
=


1
2



π
2



r
5



n
2






Equation





4








where r is the average capillary radius of the porous medium, and n is the number of capillary channels. Loosely packed powder will have a larger average capillary radius increasing the material constant, and, conversely, densely packed powder will have smaller average capillary radius decreasing the material constant.


The Washburn method described above was used to determine the material constant of (i) a particulate material primarily composed of glass microspheres with a particle size distribution in which 10% of the particles have a particle size, i.e., diameter, of less than 50 microns, 50% are less than 70 microns, and 90% are less than 100 microns and (ii) a particulate material primarily composed of glass microspheres with calcium sulfate hemihydrate which is an angular, non-spheroid shape particle with a particle size distribution in which 10% of the particles have a particle size of less than 5 microns, 50% are less than 25 microns, and 90% are less than 70 microns. The results are given in Table 1.










TABLE 1








Particulate material consisting a 50/50 blend by bulk


Particulate material consisting primarily of
volume of glass microspheres with calcium sulfate


glass microspheres
hemihydrate












Ingredient
% by wt.
% bulk volume
Ingredient
% by wt.
% bulk volume















Potters
83.76%
~66%
US Gypsum
38.96%
~33%


Spheriglass


Hydrocal


2530 CP03


Lucite Elvacite
15.89%
~34%
Potters
44.80%
~33%


2014


Spheriglass





2530 CP03


Sigma-Aldrich
0.19%
Nil
Lucite Elvacite
15.89%
~34%


Light Mineral


2014


Oil


Sigma-Aldrich
0.16%
Nil
Sigma-Aldrich
0.19%
Nil


Cobalt Octoate,


Light Mineral


65% in Mineral


Oil


Spirits





Sigma-Aldrich
0.16%
Nil





Cobalt Octoate,





65% in Mineral





Spirits


Washburn
86.0E−09 m5
+/−3.3E−09 m5 at
Washburn
15.0E−09 m5
+/−0.7E−09 m5 at


Method

95% confidence
Method

95% confidence


Material


Material


Constant


Constant









Referring to Table 1, a comparison of material constants shows a significant difference between the two particulate formulations. The particulate material consisting primarily of glass microspheres exhibits a material constant almost six times greater than the particulate material formulation consisting of the 50/50 blend by bulk volume of glass microspheres and calcium sulfate hemihydrates. This difference suggests that the angular grains of the calcium sulfate hemihydrate impart a denser packed particulate material that leads to much smaller average capillary radii. The larger material constant of the particulate material consisting primarily of glass microspheres suggest a larger average capillary radius, allowing for a lower capillary pressure and thus would exhibit lower distortions on printed articles.


Referring to FIGS. 6a and 6b, magnified images taken from an Olympus SZX12 microscope of both particulate material formulations illustrate the particle distribution of the two materials. FIG. 6a is a magnified image of the particulate material consisting primarily of glass microspheres and a soluble filler as the secondary component. FIG. 6b is a magnified image of the particulate material consisting of a 50/50 blend by bulk volume of glass microspheres and calcium sulfate hemihydrates with a soluble filler as the third component.


The Washburn method may also be utilized to determine the contact angle the fluid binder forms with the particulate material, since the material constant is can be determined for each particulate formulation. The fluid binder formulation of Table 2 was used to determine the contact angle the fluid has with each of the above particulate formulations of Table 1











TABLE 2







% by wt.

















Fluid Binder Ingredients



Sartomer SR209 Tetraethylene glycol dimethacrylate
57.50%


Sartomer SR-506 Isobornyl methacrylate
30.00%


Sartomer CN-9101 allylic oligomer
10.00%


Sigma-Aldrich di-tert-butyl-hydroquinone
0.05%


BYK UV 3500 Surfactant
0.05%


Arkema Luperox CU90 cumene hydroperoxide
2.40%


Physical Properties


Viscosity
16.0 cP @ 21° C.


Density
1.044 g/cc


Liquid-Vapor Surface Tension
25.436 dynes/cm









The contact angles given in Table 3 were determined using the fluid binder of Table 2 to infiltrate each of the particulate material samples in a vial.










TABLE 3






Particulate material



consisting a 50/50 blend by


Particulate material consisting
bulk volume of glass microspheres


primarily of glass microspheres
with calcium sulfate hemihydrates







θ = 0° +/− 0°
θ = 86° +/− 1° at 99% confidence


(cos θresulted in a calculated value of


1.48 +/− 0.11 at 99% confidence)









The fluid binder wets the particulate material consisting primarily of glass microspheres better than the formulation containing calcium sulfate hemihydrate because it exhibits a contact angle of zero with the former. Articles printed from the particulate material consisting of calcium sulfate hemihydrate along with glass microspheres exhibit distortions such as the cupping of flat rectangular articles as capillary forces pull particles inward in the printed area where fluid binder is applied. Articles printed from particulate material formulations consisting primarily of glass microspheres between 70-90% by weight, or 50-75% by bulk volume have consistently resulted in articles with very little to no distortion from capillary forces.


The concepts presented here regarding contact angle, capillary pressure, and adhesion tension may be found in the Physical Chemistry of Surfaces, Adamson, Arthur W., Interscience Publishers, Inc., 1967, and regarding the Washburn method in “Wettability Studies for Porous Solids Including Powders and Fibrous Materials—Technical Note #302” by Rulison, Christopher, 1996, which is a manufacturer's application note from KRUSS USA, the disclosures of which are incorporated herein by reference in their entireties.


The soluble filler primarily helps to control the migration of binder through the particulate material, which controls bleed or pooling of fluid binder in selectively printed areas, and also provides extra strength and toughness to the final cured article. The soluble filler helps control binder migration of binder by dissolving into the fluid binder deposited in the selective areas to increase the viscosity of the fluid binder that decreases the rate of binder migration. Soluble fillers suitable for use with embodiments of the invention include methyl methacrylate polymers, ethyl methacrylate polymers, butyl methacrylate polymers, polyvinylbutyral, and combinations thereof.


More specifically, a suitable soluble filler is a solid methacrylate polymer with a glass transition temperature between about 40 and about 60 degrees Celsius and a molecular weight from a range of about 100,000 to about 500,000 g/mol. Another example of a suitable soluble filler is a polymethylmethacrylate/ethyl methacrylate co-polymer resin such as ELVACITE 2014, available from Lucite International based in Cordova, Tenn. Another suitable resin is a butylmethacrylate/methylmethacrylate copolymer resin such as NEOCRYL B-723, available from NeoResins based in Wilmington, Mass. The soluble filler may be processed to achieve a particle size distribution where 10% of the particles are less than 20 to 30 microns, and 90% of the particles are less than 80 to 100 microns, and 50% of the particles are between 50 and 70 microns. In some embodiments, the particulate material may be non-reactive such that it does not swell or dissolve in the fluid binder.


The effect of a molecular weight of the soluble filler may be measured with a Texture Analyzer TA-XT2i from Stable Micro System based in the United Kingdom. This instrument may be used to measure a three-point flexural strength of a bar 5 mm thick, 5.7 mm wide, and 50 mm long created from the application of fluid binder onto the particulate material on a three-dimensional printer, supported on a two-point span spaced at a distance of 40 mm. The force to break the test part with the force applied at the center of the 40 mm span may be used to calculate an estimate of flexural strength. The distance to break the test part is also recorded which may estimate the amount of strain the bar endures. Higher flexural distances at break, as the strength increase, may relate to increased toughness of the article. This test was performed on particulate material formulations using soluble fillers with varying molecular weights listed in Table 4 using the fluid binder composition listed in Table 5.

















TABLE 4





Ingredients
A
B
C
D
E
F
G
Notes







Potter's
84.57% wt. 
83.18% wt. 
85.65% wt. 
85.47% wt. 
82.54% wt. 
84.23% wt. 
83.66% wt. 



Spheriglass


2530 CP03


Dianal
13.93% wt. 






MW = 238,000 g/mol


America


MB-2847


Lucite

15.44% wt. 





MW = 119,000 g/mol


Elvacite


2014


Lucite


13.01% wt. 




MW = 165,000 g/mol


Elvacite


2046


Lucite



13.01% wt. 



MW = 19,000 g/mol


Elvacite


2927


Lucite




14.96% wt. 


MW = 33,000 g/mol


Elvacite


4026


Lucite





14.48% wt. 

MW = 110,000 g/mol


Elvacite


4044


DSM






15.03% wt. 
MW = 200,000 g/mol


NeoResins


NeoCryl


B723


Kronos
1.05% wt.
1.05% wt.
1.07% wt.
1.07% wt.
2.06% wt.
1.05% wt.
1.05% wt.


2310


Titanium


Dioxide


Sigma-
0.24% wt.
0.23% wt.
0.16% wt.
0.24% wt.
0.23% wt.
0.13% wt.
0.16% wt.


Aldrich


Light


Mineral Oil


Sigma-
0.21% wt.
0.10% wt
0.11% wt.
0.21% wt.
0.21% wt.
0.11% wt.
0.10% wt.


Aldrich


Cobalt


Octoate,


65% in


mineral


spirits

















TABLE 5






%


Ingredient
by Weight







Sigma-Aldrich Polyethylene glycol dimethacrylate
47.50%


(Mn = ~330 g/mol)


Sigma-Aldrich Isobornyl Acrylate
29.85%


Sartomer CN9101 Allylic Urethane Oligomer
14.93%


Sigma-Aldrich Trimethylol ethoxylate triacrylate (Mn = ~428)
 4.98%


Luperox CU90 cumene hydroperoxide
 2.19%


Sigma-Aldrich 4-methoxyphenol
 0.05%


Eastman Dimethylacetoacetamide
 0.5%









The flexural test bars were printed on a Spectrum Z® 510 Three Dimensional Printer available from Z Corporation in Burlington, Mass. modified to use a SM-128 piezoelectric jetting assembly along with an Apollo II Printhead Support Kit both available from FUJIFILM Dimatix based in Santa Clara, Calif. The flexural test bars were printed applying the fluid binder listed on Table 5 through the SM-128 jetting assembly over the particulate material at a layer thickness of 100 microns. The fluid was deposited selectively and uniformly at each layer to occupy 32% by volume of the flexural test part. The flexural test parts were allowed to solidify for 1 hour before they were extracted from the build bed of the Spectrum Z510 and placed in a 60° C. oven for 12 hours to cure. Table 6 summarizes flexural properties of the particulate material compositions that were measured. Referring to FIG. 7, a graphical representation of the results collected is provided. The results suggest that soluble fillers with molecular weights less than 100,000 g/mol exhibit lower flexural properties than soluble fillers with molecular weights greater than 100,000 g/mol.











TABLE 6







Flexural


Formulation
Flexural Strength at Break
Distance at Break







A
27.6 +/− 1.1 MPa at 90% confidence
0.6 +/− 0.1 mm




at 90% confidence


B
44.9 +/− 4.2 MPa at 90% confidence
1.1 +/− 0.1 mm




at 90% confidence


C
33.9 +/− 1.9 MPa at 90% confidence
0.8 +/− 0.1 mm




at 90% confidence


D
20.4 +/− 2.0 MPa at 90% confidence
0.5 +/− 0.1 mm




at 90% confidence


E
15.9 +/− 1.7 MPa at 90% confidence
0.4 +/− 0.1 mm




at 99% confidence


F
33.2 +/− 4.3 MPa at 90% confidence
0.8 +/− 0.1 mm




at 90% confidence


G
24.4 +/− 2.0 MPa at 90% confidence
0.6 +/− 0.1 mm




at 99% confidence









Inclusion of pigments may be used to impart a neutral color to provide a greater color gamut and a high brightness to make white-looking articles. Preferably, the particulate material may include pigments in a concentration of 0.5-5% by weight. Titanium dioxide is a pigment with a refractive index of 2.4 that may be used, but its listing as a possible IARC carcinogen makes it undesirable for use in an office environment. Zinc oxide is an alternative pigment with a refractive index of 2.0, and it is not listed as a carcinogen. Zinc oxide, available from Sigma-Aldrich based in Milwaukee, Wis., imparts the most neutral color over titanium dioxide. Other suitable pigments include zinc sulfide, barium sulfate, zirconium silicate, lead carbonate, and hollow borosilicate glass spheres.


Pigments may also be incorporated and bound into the insoluble filler or soluble filler, which may be advantageous to prevent the particulate material from exhibiting excessive dust and to agglomerate as the unbound pigments may adhere to the processing aids used to control the desired spreading characteristics, causing the particulate formulation to lose its desired flowability characteristics. OMNICOLOR UN0005 from Clariant based in Charlotte, N.C., is white colorant compound of pigment and a resin for injection molded plastics which can be use as an alternative pigment source where the pigment is bound in the resin, reducing the dustiness and maintaining the desired flowability characteristics while providing color. This colorant and other types of colorant commonly used in injection molding applications may also be used to color the soluble filler, such as ELVACITE 2014, through melt processing to make a more uniform colored particulate formulation. DECOSOFT and DECOSILK are pigmented polyurethane and acrylic microbeads respectively from Microchem based in Erlenback, Switzerland commonly used to make colored or transparent, low gloss, soft-feel coatings. These products may be used as an insoluble filler to impart tougher material properties while imparting the desired color because of the pigment incorporated into the microbead product, thus decreasing the dust and maintaining the desired flowability characteristics.


The transition metal catalyst may induce the decomposition of the organic hydroperoxide in the fluid binder to generate free radicals and to catalyze the absorption of oxygen for allyllic polymerization. Transition metals are metal ions that have multiple oxidation states and can readily lose or gain electrons in the presence of oxidizing or reducing agents, respectively. Metal catalysts based on copper, iron, vanadium, manganese titanium, and cobalt are preferred, although other metal catalysts may be used. In particular, one suitable transition metal catalyst includes cobalt (II) octoate in 65% mineral spirits from Sigma-Aldrich based in St. Louis, Mo. Other suitable metal catalysts include, e.g., cobalt (II) naphthenate, vanadium (II) octoate, manganese naphthenate, and combinations thereof.


Processing aids may be used to affect particulate material spreading characteristics to achieve a desirable internal angle of friction (see discussion below) and to reduce capillary forces between the particulate material in contact with the fluid binder. Processing aids can further assist in reducing nuisance dust of the particulate material. Mineral oil is a typical processing aid that affects the flowability of the particulate material; it may be used from 0.01% to 1% by weight in the particulate formulation. The particulate material remains substantially dry upon the inclusion of this small amount of mineral oil. Mineral oil, e.g., from Sigma-Aldrich, may provide a good balance of particulate cohesion and low plasticizing of the soluble filler without reducing capillary pressure. Hydrogenated hydrocarbon resins, such as REGALREZ 1094 from Eastman based in Kingsport, Tenn., are tackifiers that may be used as processing aid to increase the viscosity of the mineral oil and may be 0.01 to 2% by wt of the particulate material. The hydrocarbon resin increases the viscosity of the processing aid that imparts a unique cohesiveness and flowability characteristic, whereby the particulate material, under shear from a counter-rolling spreader rod, becomes a free-flowing powder. The desired cohesion is restored while at rest to resist dragging while successive layers are being spread. The increase in viscosity assists in the fracture of the inter-particle adhesive necks of fluid that the processing aids create to control flowability characteristics under shear; the adhesive necks of fluid then slowly reform while the particulate material is at rest. The inter-particular adhesive necks of fluid that lower viscosity processing aid imparts do not fracture as easily under shear because the processing aids are allowed to flow more easily and faster to reform the inter-particular adhesive necks of fluid.


Other processing aids suitable for use with embodiments of the invention include, e.g., propylene glycol di(caprylate/caprate), petroleum jelly, propylene glycol, di-isobutyl phthalate, di-isononyl phthalate, polyalkyleneoxide modified heptamethyltrisiloxanes, polyalkyleneoxide modified polydimethylsiloxanes, secondary alcohol ethoxylates, hydrogenated hydrocarbon resins, and combinations thereof.


A surfactant is a typical processing aid that may be used in conjunction with mineral oil to reduce the capillary forces between the particulate material in contact with the fluid binder by increasing the critical surface tension of the particulate material. Surfactants may be used in a range of 0 to 1% by weight of the particulate material. Silicone surfactants, such as SILWET L-7608 or COATOSIL L-77 from General Electric Company based in Wilton, Conn. having a reported capability of reducing surface tension of water to less than 25 dynes/cm, may effectively reduce capillary forces between particles of the particulate material in contact with the non-aqueous fluid binder. Secondary ethoxylated alcohols hydrocarbon surfactants, such as TERGITOL 15-S-7 and TERGITOL-15-S-5 from DOW based in Midland, Mich., also may effectively reduce capillary forces between particles of the particulate material in contact with the non-aqueous fluid binder.


The effect of the surfactant increasing the surface energy of the particulate material may be measured using the Washburn method describe earlier by infiltrating a particulate material formulation with a series of liquid solutions with varying surface tension values. The contact angles, θ, are determined for each surface tension. Then the cos θ values are plotted against the surface tension values to construct a Zisman plot. The data are used to linearly extrapolate a trend line to the value where cos θ equals 1 (when θ=0°) to determine the critical surface tension of the particulate material which was described earlier to be related to the adhesion tension of the solid at the solid-liquid-vapor interfaces. This test was performed on the formulations listed in Table 7. See FIG. 8 (particulate material with paraffinic oil processing aid) and 9 (particulate material with a paraffinic oil and surfactant blend processing aid).


Further discussion regarding critical surface tension may be found in Physical Chemistry of Surfaces, Adamson, Arthur W., Interscience Publishers, Inc., 1967, and regarding the Washburn method in “Wettability Studies for Porous Solids Including Powders and Fibrous Materials—Technical Note #302” by Rulison, Christopher, 1996, which is a manufacturer's application note from KRUSS USA; these disclosures are incorporated herein by reference in their entireties.










TABLE 7







Particulate material prepared with a paraffinic
Particulate material prepared with a paraffinic oil


oil processing aid
and surfactant processing aid














% bulk


% bulk


Ingredient
% by wt.
volume
Ingredient
% by wt.
volume















MO-SCI
83.81%
~66%
MO-SCI GL0179
83.85%
~66%


GL0179 glass


glass microspheres


microspheres


Lucite Elvacite
15.73%
~34%
Lucite Elvacite
15.73%
~34%


2014


2014


Sigma-Aldrich
0.24%
Nil
Sigma-Aldrich
0.18%
Nil


Light Mineral


Light Mineral Oil


Oil


Sigma-Aldrich
0.22%
Nil
DOW TERGITOL
0.18%
Nil


Cobalt Octoate,


15-S-5


65% in Mineral


Spirits





Sigma-Aldrich
0.06%
Nil





Cobalt Octoate,





65% in Mineral





Spirits


Zisman Plot
33 +/− 1 dynes/cm

Zisman Plot
36 +/− 2 dynes/cm


Critical Surface
at

Critical Surface
at


Tension
99.5%

Tension
99.5%



confidence


confidence










There is a slight increase in the critical surface tension of the particulate material including a surfactant, suggesting that using a surfactant as at least part of the processing aid may help to decrease capillary pressure exerted by the fluid binder as it wets the powder.


Fluid Binder


One preferred embodiment of a fluid binder suitable for Three Dimensional Printing includes or consists essentially of:



















(meth)acrylate monomer
40-90
wt %



(meth)acrylate oligomer
0-40
wt %



allyl ether functional monomer/oligomer
5-25
wt %



organic hydroperoxide
0.5-5
wt %



accelerator
0-2
wt %



surfactant
0-1
wt %










The (meth)acrylate (i.e., methacrylate and/or acrylate) monomers and oligomers provide the properties of strength and flexibility. Such monomers and oligomers may be procured from Sartomer based in Exton, Pa.


The allyl ether monomer/oligomer provides the oxidative drying of the binder on the surface of the article so that the surface is not tacky. Allyl ether monomers may be procured from Perstorp based in Sweden. Suitable oligomers with allyl functionality may be obtained from Sartomer, who offers CN-9101 urethane allyl functional oligomer. Bomar Specialty Chemicals based in CT offers BXI-100, a poly-allyl-glycidyl-ether oligomer, another suitable allyl functional oligomer.


The organic hydroperoxide is the free radical initiator for the anaerobic polymerization of the (meth)acrylate monomers and oligomer, and the aerobic polymerization of the allylic monomer/oligomer. A suitable organic hydroperoxide is cumene hydroperoxide available as LUPEROX CU90 from Arkema based in Philadelphia, Pa. The transition metal catalyst induces the decomposition of the organic hydroperoxide, thus providing free radicals for subsequent reactions and catalyzes the absorption of oxygen at the surface. Another organic hydroperoxide suitable for use with some embodiments is tert-butyl hydroperoxide, is available as T-HYDRO from Lyondell Chemical Company based in Houston Tex.


The surfactant is a preferred additive in the formulation of the fluid binders used in Three Dimensional Printing to reduce the surface tension of the binder so that the surface tension is equal to or less than the critical surface tension of the particulate material, such that the contact angle of the fluid binder against the particulate material is less than 25°, but preferably closer to if not equal to 0°. This allows the fluid binder to wet out onto the particulate material without creating large capillary forces that may cause (i) fissuring at points where the printed area on the particulate material splits apart and (ii) balling where the fluid binder sits on the surface of the particulate material. Both of these occurrences may cause surface defects on the bottoms of flat surfaces of printed articles.


Referring to FIGS. 10a and 10b, the effect of the fluid binder formulation is illustrated by laser profilometer scans of flat bottom surfaces of articles at 50 micron resolution on the x and y axes. FIG. 10a illustrates an example of good wetting behavior with contact angles less than 25° when the binder has a surface tension at or below a critical surface tension of the particulate material and wets smoothly over the particulate material. For example, the critical surface tension of the particulate material may be greater than 20 dynes/cm. FIG. 10b illustrates an example of poor wetting behavior with contact angles greater than 25° when the binder has a surface tension greater than the critical surface tension of the particulate material causing the binder to wet irregularly over the particulate material and creating fissures.


A suitable surfactant is a polyether modified acryl functional polydimethylsiloxane surfactant available as BYK UV 3500 from BYK Chemie based in Hartford, Conn. This surfactant is a wetting agent commonly used in UV curable coatings to ensure a smooth finish on substrates and, when used at 0.05% by weight in the fluid formulation, reduces the surface tension to about 25+/−1 dynes/cm. Other suitable surfactants may include fluorinated surfactants such as the ZONYL surfactants available from DuPont, which can reduce the surface tension of the fluid binder down to 20 dynes/cm.


Fluid formulations of various embodiments of the instant invention are somewhat similar to anaerobic adhesive formulations commonly known as “threadlockers” such as LOCTITE 290 from Loctite based in Rocky Hill, Conn. and which is disclosed by Krieble in U.S. Pat. No. 2,895,950 assigned in 1957 to American Sealants Company based in Hartford, Conn., incorporated herein by reference in its entirety. Aerobically curing formulations using allyl ethers are also known to the art, as described by Cantor et al. in U.S. Pat. No. 5,703,138 assigned to Dymax Corporation, incorporated herein by reference in its entirety. FUJIFILM Dimatix based in Santa Clara, Calif. has a published application note describing the application of LOCTITE 290 adhesive through one of their piezo jetting assemblies to accurately deliver adhesive to a substrate. However, these formulations do not include a surfactant. The fluid adhesive products described in these references do not have the proper surface tension requirements needed for proper wetting, if they were applied onto the particulate material as described in various embodiments of the instant invention. These materials are not intentionally designed to have a surface tension lower than that of the substrate to which they are to be applied, thereby achieving a contact angle of less than 25 degrees. This can be demonstrated by using the Washburn method with the following particulate formulation (Table 8) and binder formulations (Tables 9 and 10).









TABLE 8







Particulate material prepared with a mineral oil and


surfacant processing aid











Ingredient
% by wt.
% bulk volume















MO-SCI GL0179
83.85%
~66%



glass microspheres



Lucite Elvacite
15.73%
~34%



2014



Sigma-Aldrich
0.18%
Nil



Light Mineral Oil



DOW TERGITOL
0.18%
Nil



15-S-5



Sigma-Aldrich
0.06%
Nil



Cobalt Octoate,



65% in Mineral



Spirits



















TABLE 9







% by wt.

















Fluid Binder Ingredients



Sartomer SR209 Tetraethylene glycol
57.50%


dimethacrylate


Sartomer SR-506 Isobornyl methacrylate
30.00%


Sartomer CN-9101 allylic oligomer
10.00%


Sigma-Aldrich di-tert-butyl-hydroquinone
0.05%


BYK UV 3500 Surfactant
0.05%


Arkema Luperox CU90 cumene hydroperoxide
2.40%


Physical Properties


Viscosity
18.3 cP @ 19.9° C.


Density
1.004 g/cc


Liquid-Vapor Surface Tension
23.733 dynes/cm
















TABLE 10





LOCTITE 290 Properties


















Viscosity
14.0 @ 19.9° C.



Density
1.088 g/cm3



Liquid-Vapor Surface Tension
35.0 dynes/cm


















TABLE 11





Fluid Binder in Table 6
LOCTITE 290







θ = 0° (cos θ values calculated to 1.10 +/− 0.03 at
θ = 61° +/− 1°


99% confidence)









Referring to Table 11, the high contact angle LOCTITE 290 has on the particulate material formulation indicates that this product would not wet out properly onto the particulate material when applied during Three Dimensional Printing, and would create articles with rough, irregular bottom surfaces, having defects similar to the defects illustrated in FIG. 10b. A fluid binder properly formulated to have a surface tension lowered to at least 25 dynes/cm so that it has a contact angle less than 25° and close to, if not equal to 0° will wet out the powder properly, resulting in a smooth bottom facing surface with less edge curling distortion, as is exhibited in FIG. 10a.


Surfactants may be used in photocurable inkjet fluid formulation, as disclosed, for example, in U.S. Pat. No. 6,433,038 to Tanabe, where surfactants are used to stabilize dyes and pigments in the disclosed fluid inkjet formulation. Huo et al., in an international patent application PCT/US2005/025074 disclose the use of surfactants to improve wettability of the fluid over non-porous plastic substrates and to control the dynamic surface tension of the fluid for faster meniscus reformation at the nozzle of a DOD device during jetting. These formulations do not use surfactants to decrease the capillary pressure exerted by the fluid when applied on a particulate material, as disclosed herein.


Another exemplary formulation listed on Table 12 shows a particulate powder formulation with a lower critical surface tension than critical surface tensions of particulate formulations disclosed on Table 7. See FIG. 11, which is a Zisman plot of a particulate material including a tackifier processing aid. The surface tension of the fluid binder is essentially at the critical surface tension of the particulate material, and therefore results in a contact angle equal to 0°. The contact angle may be greater than 0° and possibly less than 25° if the critical surface tension is 2 dynes/cm less than the surface tension of the binder. This upper limit of a contact angle is estimated from Equation 2 by dividing the critical surface tension of the solid by the surface tension of the fluid. The contact angle of the fluid binder against both of the particular material listed in Table 12 was determined from the Washburn method to have an average cos θ value of 1.02+/−0.05 at 99% confidence, which would result in a contact angle between 0° and 14° within the 99% confidence interval range of the cos θ value. This fluid binder, when applied to the particulate material disclosed in Table 12, results in proper wetting of the fluid binder over the particulate material to impart a smooth bottom finish, as illustrated in FIG. 10a.












TABLE 12





Particulate Material





Ingredients
% by wt.
Fliud Binder Ingredients
% by wt


















MOSCI GL0179 glass
84.58%
Sartomer SR-423A Isobornyl Acrylate
20.00% 


microspheres


Elvacite 2014
15.20%
Sartomer SR-209 Tetraethylene glycol
67.5%




dimethacrylate


Regalrez 1094
0.10%
Sartomer CN9101 Allylic Oligomer
10.00% 


Light Mineral Oil
0.07%
di-tert-butyl hydroquinone
0.05%


Tergitol 15-S-5
0.01%
BYK UV 3500 surfactant
0.05%


Cobalt Octoate, 65%
0.04%
Luperox CU90
 2.4%


in mineral spirits







Physical Properties










Zisman's Critical
24+/2 dynes/cm at
Viscosity
17.5 cP @ 24° C.


Surface Tension
99.5% confidenece




Surface Tension
23.733 dynes/cm




Density
1.004 g/cc










Kit


A kit may include various combinations of the substantially dry particulate material and a fluid binder described above. For example, a kit may include (i) a substantially dry particulate material comprising an insoluble filler, a soluble filler, and a transition metal catalyst, and (ii) a fluid binder including a (meth)acrylate monomer, at least one of an allyl ether functional monomer or an allyl ether functional oligomer, and an organic hydroperoxide.


The fluid binder may have a contact angle of less than 25° on the particulate material. In an embodiment, the fluid binder may include about 40%-95% by weight of the (meth)acrylate monomer, about 5-25% by weight of the allyl ether functional monomer/oligomer, and about 0.5-5% by weight of the organic hydroperoxide. The fluid binder may also include 0%-1% by weight of surfactant. The fluid binder may include a (meth)acrylate oligomer, e.g., about 10-40% by weight of the (meth)acrylate oligomer. The fluid binder may also include a first accelerator such as dimethylacetoacetamide, e.g., up to about 2% by weight of the first accelerator.


A 1 mm penetration hardening rate of the substantially dry particulate material upon application of the fluid binder may be e.g., 0.01/min to 1.0/min. The dry particulate material may include a pigment and/or a processing aid.


Printing Method


An article may be defined by selectively printing the fluid binder over particulate material. The fluid binder includes a (meth)acrylate monomer, a (meth)acrylate oligomer, an allyl ether functional monomer and/or oligomer, and organic hydroperoxide and, optionally, a first accelerator. The amount of binder deposited onto the particulate layer can range from 20% to 35% of the volume of the selectively printed area at a predetermined layer thickness between 50 to 175 microns, and more preferably between 75 and 125 microns. The particulate material includes a plurality of adjacent particles, comprising a transition metal catalyst and, at least one of an insoluble filler, a soluble filler, a pigment, a second accelerator, and a processing aid. The transition metal catalyst induces decomposition of the organic hydroperoxide to generate free radicals. The free radicals initiate anaerobic polymerization of the (meth)acrylate monomer and oligomer, and aerobic polymerization of the allyl ether functional monomer/oligomer.


The complete polymerization, i.e., cure, of the article may take between about 30 minutes and about 6 hours to complete after the formation of a solid article, after all the layers of the article have been printed. In a conventional UV curing process, the curing happens substantially instantaneously, so that the printed article may be removed from the printer as soon as the printing is complete. Sano, in U.S. Patent Application Publication No. 2007/0007698 and U.S. Pat. No. 7,300,613, describes primarily the use of photocurable resins applied onto powder via a drop-on-demand printhead as well as two component curing strategies such as epoxy-amine thermosetting resins; Kramer, et al, in U.S. Pat. No. 7,120,512 assigned to Hewlett-Packard in Houston, Tex., also disclose the use of photocurable resins applied over powder using a drop-on-demand printhead, as well as alternative embodiments of two component systems.


It was found that photocurable fluid binders are generally not Suitable for Three Dimensional Printing because of the instantaneous curing leading to immediate shrinkage, which leads to the first 2 to 10 layers of selectively printed areas to curl and warp out of the plane of the build bed to be eventually dragged and displaced in or completely off the build bed. Sano suggests the use of photocutable resins that polymerize via ring opening mechanism such as epoxides and oxetanes to limit the degree of shrinkage. However, such mechanisms tend to be sensitive to humidity and the alkalinity of the environment and substrate to which the resins are applied.


Patel, et al., have international applications published through the World Intellectual Property Organization (publication numbers WO 03/016030 and WO 02/064354 A1) with Vantico as the assignee (now owned by Hunstman based in TX) that describe the use of various embodiments of applying photocurable resins and two-component resins. Three Dimensional Printing apparatuses and methods using ultraviolet cure are disclosed by Yamane, et al, in U.S. Pat. No. 5,149,548 assigned to Brother Kogyo Kabushiki Kaisha in Japan, which describes the use of a two part curable resin utilizing microcapsules encapsulating a curing agent deposited with a drop-on-demand printhead. The microcapsules are broken upon exposure to ultraviolet light.


Oriakhi, et al., in the U.S. Patent Application 2005/0093194 assigned to Hewlett-Packard, discloses the use of a particulate material comprising primarily a polymeric filler and a peroxide initiator, and a fluid binder comprising an activator for the peroxide initiator. This is the reverse of the current embodiment, and also does not include an aerobic curing mechanism for the surface of the article.


In embodiments of the current invention employing a peroxide cure process, a user typically waits the above-indicated time after the article is printed before removing the article from the printer. The article may be heated to a range of about 40° C. to about 100° C. to accelerate the aerobic cure at the surface of the article. Heat may be supplied through convection, conduction, infra-red radiation, microwave radiation, radio-wave radiation, or any other suitable method.


The cure rate between a photocurable binder and the current embodiment may be illustrated by comparing the hardening rate by measuring the force it takes to penetrate 1 mm into the surface of a mass mixture consisting of fluid binder and particulate material with a 0.5 inch spherical probe. Such a test of a 1 mm penetration hardening rate may be performed with a Texture Analyzer TA-XT2i with a P/0.5S stainless steel spherical probe from Stable Micro System based in the United Kingdom. The following particulate material system used in this test is listed in Table 13.














TABLE 13








% by wt.
% by wt.
% by wt.



Ingredient
A
B
C





















MO-SCI GL0179
83.85%
83.69%
83.88%



glass microspheres



Lucite Elvacite
15.73%
15.73%
15.73%



2014



Sigma-Aldrich
0.18%
0.18%
0.18%



Light Mineral Oil



DOW TERGITOL
0.18%
0.18%
0.18%



15-S-5



Sigma-Aldrich
0.06%
0.22%
0.03%



Cobalt Octoate,



65% in Mineral



Spirits











The binder formulation used in this test is given in Table 14.












TABLE 14






% by wt.
% by wt.
% by wt.


Fluid Binder Ingredients
1
2
3


















Sartomer SR209 Tetraethylene
57.50%
57.45%
69%


glycol dimethacrylate


Sartomer SR-506 Isobornyl
30.00%
30.00%
29%


methacrylate


Sartomer CN-9101 allylic
10.00%
10.00%



oligomer


Sigma-Aldrich di-tert-butyl-
0.05%
0.05%



hydroquinone


Sigma-Aldrich hydroquinone

0.05%



BYK UV3500 Surfactant
0.05%
0.05%



Arkema Luperox CU90
2.40%
2.40%



cumene hydroperoxide


CIBA Irgacure 819


 2%










Mixtures, listed in Table 15, totaling 24 to 26 grams were prepared and placed in a polypropylene dish 40 mm in diameter and 11 mm deep; enough of each of the mixture was used to completely fill the polypropylene dish; usually about 18 to 20 grams.













TABLE 15






Particulate

% weight fluid



Test
Material
Fluid Binder
binder
Notes



















1
A
1
16.0%
1X stabilizer, 60 PPM






cobalt(II)


2
A
1
14.0%
1X stabilizer, 60 PPM






cobalt(II)


3
A
1
21.0%
1X stabilizer, 60 PPM






cobalt(II)


4
A
1
17.3%
1X stabilizer, 60 PPM






cobalt(II)


5
A
1
27.4%
1X stabilizer, 60 PPM






cobalt(II)


6
B
1
17.3%
240 PPM






cobalt(II), 1X






stabilizer


7
B
1
27.4%
240 PPM






cobalt(II), 1X






stabilizer


8
A
2
17.3%
2X stabilizer, 60 PPM






cobalt(II)


9
C
1
17.3%
30 PPM Cobalt(II)


10
A
3
17.3%
Photocurable






example










The hardness development was measured at 15 minute intervals using the spherical probe to measure the force to penetrate 1 mm into the mixture contained in the polypropylene dish. In the case of the photocurable example, the mixture in the polypropylene dish was exposed to 30 seconds of ultraviolet light using a RC250B Flash Curing unit from XENON Corporation based in Wilmington, Mass. The hardness development of the photocurable example is the plot of the penetration force at 30 seconds. FIG. 12 shows the typical development response collected, i.e., of particulate material A mixed with a fluid binder 1. The natural logarithm of the force is taken to determine the hardening rate from the slope of the transformed data before the force plateaus. Referring to FIG. 13, a transformed plot of FIG. 12 plots the natural logarithm of the force measured against time. The hardness development can be modeled by the following equation:

F=F0emt  Equation 5

where F0 is the initial penetration force that would be measured at time zero, m is the hardness rate, and t is the time. Table 16 lists hardness rates determined from the data collected.














TABLE 16








%







weight



Particulate
Fluid
fluid
Hardness


Test
Material
Binder
binder
Rate, m
Notes




















1
A
1
16.0%
0.076/min
1X stabilizer, 60 PPM







cobalt(II)


2
A
1
14.0%
0.062/min
1X stabilizer, 60 PPM







cobalt(II)


3
A
1
21.0%
0.076/min
1X stabilizer, 60 PPM







cobalt(II)


4
A
1
17.3%
0.070/min
1X stabilizer, 60 PPM







cobalt(II)


5
A
1
27.4%
0.082/min
1X stabilizer, 60 PPM







cobalt(II)


6
B
1
17.3%
0.074/min
240 PPM







cobalt(II), 1X







stabilizer


7
B
1
27.4%
0.094/min
240 PPM







cobalt(II), 1X







stabilizer


8
A
2
17.3%
0.051/min
2X stabilizer, 60 PPM







cobalt(II)


9
C
1
17.3%
0.055/min
30 PPM







Cobalt(II)


10
A
3
17.3%
  62/min
Photocurable







example









One can see that the photocurable example exhibits a hardness development rate on the order of 1000× greater than the current embodiment. This hardness rate is related to the rate of conversion of double bonds on the (meth)acrylate monomer. The conversion of the carbon-to-carbon double bonds into single carbon-to-carbon bonds with other monomers decreases the amount of free volume in the fluid binder as it polymerizes. The instantaneous conversion of monomers into a polymer in a photocurable fluid binder causes an instantaneous shrinkage upon exposure to ultraviolet light, which forces selectively printed areas to curl and warp out of the plane of the build bed, causing the selectively printed areas to be dragged and displaced as successive layers are spread. The slower hardening rate of some embodiments relates to a slower conversion rate and where selectively printed areas do not exhibit the immediate distortion of curling and warping out of the plane of the build bed to successively print layer upon layer without dragging or displacement of features on an article. Preferably, the 1 mm penetration hardening rate is between 0.01/minute and 1.0/minute.


Strength development of the current embodiment can also be measured using the earlier described Texture Analyzer to measure a three-point flexural strength of a bar 5 mm thick, 5.7 mm wide, and 50 mm long, supported on a two-point span spaced at a distance of 40 mm. The force to break the test part when applied at the center of the 40 mm span can be used to calculate an estimate of flexural strength. The current embodiment can typically exhibit flexural strengths between 10 and 20 MPa after 60 minutes, and 15 to 25 MPa and greater after 120 minutes in the build bed after the last layer of the article completed printing. This strength represents mostly the anaerobic strength development that occurs within the article, while the aerobic curing occurring within 200 microns from the surface of the article is still ongoing at a slower rate. The article may exhibit a tacky surface at 60 minutes, but may exhibit a durable and handle-able strength.



FIG. 14 shows the typical response of aerobic cure when measured using the test part 1500 shown in FIG. 15. No curing occurred when the wall on the test part sagged to the point that it touched the bottom surface of the test part 5 mm away. Partial cure occurred when the wall crept and sagged downwards but did not touch the bottom surface of the test part. Full curing occurred when the wall remained horizontal when extracted from the build bed. From this test, it was determined that after 4 hours, an article with wall thickness of 0.4 mm and less would have sufficient duration of aerobic curing to develop enough strength to be extracted from the build bed. The particulate material and fluid binder formulations listed in Table 17 were used to conduct this test.












TABLE 17





Particulate Material

Fliud Binder



Ingredients
% by wt.
Ingredients
% by wt


















MOSCI GL0179 glass
18.25%
Isobornyl Acrylate
25.00%


microspheres


Potter's T-4 Sign Beads
70.01%
Sartomer SR454
10.00%




Ethoxylated




Trimethylolpropane




Triacrylate


Elvacite 2014
11.25%
Tetraethylene glycol
50.00%




dimethacrylate


Regalrez 1094
0.35%
Sartomer CN9101
10.00%




Allylic Oligomer


Light Mineral Oil
0.09%
di-tert-butyl
0.05%




hydroquinone


Tergitol 15-S-5
0.02%
BYK UV3500
0.05%




surfactant


Cobalt Octoate, 65% in
0.03%
Eastman dimethyl
2.45%


mineral spirits

acetoacetamide




Luperox CU90
2.45%










Mechanisms of Anaerobic and Aerobic Reaction of the Peroxide Initiated Material System


When a fluid binder including monomers and/or oligomers with (meth)acrylate functional groups, monomers and/or oligomers with allyl functional groups, and an organic hydroperoxide comes in contact with a transition metal catalyst present in a particulate material suitable for Three Dimensional Printing the organic hydroperoxide is decomposed to initiate a free radical polymerization. Two reaction mechanisms can be involved at this point of contact: anaerobic polymerization and aerobic polymerization.


Anaerobic polymerization occurs where no oxygen is present in the interior portions of the three dimensional articles being created, e.g., at depths greater than about 0.2 mm from the surface of the printed article. Aerobic polymerization occurs at the surface and at a depth into which oxygen is capable of diffusing.


A simplified kinetic mechanism for free radical polymerization may be represented by the following steps:















Radical Generation
Initiator → Free Radicals


Initiation
Free radical + Monomer → Radical Monomer


Propagation
Radical Monomer + Monomer → Radical Polymer


Termination
Radical Polymer + Radical Polymer → Polymer









Anaerobic radical generation occurs when the hydroperoxide is decomposed by a transition metal capable of oxidizing and reducing its valence charge, such as cobalt. This is represented by the following mechanism:

Co+2+ROOH→Co+3+RO.+OH

The oxidized Co+3 ion can then be reduced to Co+2 via

Co+3+ROOH →Co+2+ROO.+H+
and/or
Co+3+OH→Co+2+.OH


RO., ROO., and .OH are radicals species that can react with a monomer or oligomer species and start polymerization. The RO. and .OH radicals are more efficient under anaerobic conditions with (meth)acrylate functional monomers and oligomers. Oxygen may react with these radical species to form weak radicals, or may be scavenged by free radical inhibitors that use oxygen to function, such as the most common type of inhibitors based on hydroquinones. The anaerobic polymerization continues to propagate under anaerobic conditions until terminated.


Transition metals like cobalt also assist in the auto-oxidative drying (aerobic curing) of the allyl ether functional monomers or oligomers by increasing oxygen absorption at the surface. A radical center is created at the place of allylic hydrogen, where the hydrogen is abstracted by radicals species from the organic hydroperoxide; or with the assistance of cobalt, the allylic hydrogen is abstracted by oxygen. The radical center of the allyl group now reacts further with oxygen to make a peroxide radical. The peroxide radical species can add to double bonds of (meth)acrylate functional groups or other allyl groups, terminate with other radicals, or abstract further hydrogen atoms from monomers, oligomers, or the propagating polymer. The abstraction of hydrogen atoms with and from allyl ethers has a higher probability to propagate over the termination of peroxy radicals because it can regenerate easily with other abstractable hydrogens present and is abundant in the formulation based on (meth)acrylate and allyl functional monomers and oligomers. This aerobic mechanism proceeds at a much slower rate than the anaerobic mechanism.


The result of this aerobic mechanism is a highly crosslink polymer network that forms a non-tacky surface.


Background information regarding the decomposition mechanisms of hydroperoxides using cobalt may be found in the Handbook of Adhesive Technology, Pizzi, A. and Mittal, K. L., Marcel Dekker, Inc., 2003, and regarding the mechanism of allyllic polymerization in “Polyallyl Glycidyl Ether Resins for Very Fast Curing High Performance Coatings,” presented by Knapczyk, J. at the 65th Annual Meeting of the Federation of Societies for Coatings Technology, in Dallas, Tex., on Oct. 6, 1987, the disclosures of these references are incorporated herein by reference in their entireties.


Flow Properties of Build Materials


Compositions have been disclosed that relate to control of the flow properties of the build material in Three Dimensional Printers. The three principal methods are the addition of liquid “processing aids,” control of grain size distribution, and the addition of solid fillers that contribute to the frictional behavior of the build material. Many candidate materials have been disclosed previously, for example, in U.S. Patent Publication Number 2005/0003189, the disclosure of which is incorporated herein by reference in its entirety. Some mechanical properties of dry particulate build materials are disclosed in the following discussion that are particularly suited for use in Three Dimensional Printing, especially in contrast to other formulations of similar materials for other uses that do not require special flow characteristics of the raw materials.


A method that may be used to quantify a particulate material's suitability for Three Dimensional Printing includes placing 1 liter in bulk volume of a particulate material in a metal cylinder with an inside dimension of 6.1 inches, and inside height of 6.2 inches so that the height of the powder is between 2.5 to 3.0 inches when the cylinder is capped with a translucent cover and laid on its side (i.e., the height of the cylinder is horizontal). The drum is then slowly rolled with a rotational velocity of 2.5 rotations/min+/−0.5 rotations/min until the powder reaches an angle where it avalanches upon itself. The distance that the drum rolled, s, is recorded and the angle, φ, can be determined from Equation 6:









ϕ
=


s
r

·

180
π






Equation





6








where r would equal the outside radius of the drum. The angle, φ, is the internal angle of friction that particulate material has under these particular test conditions at a room temperature between 65 to 75° F. Various particulate materials known to have good and bad spreading characteristics are compared using this test method, and desirable range of internal angles of friction were determined. Table 18 summarizes the particulate material compositions that were measured. Referring to FIG. 16, a graphical representation of the results collected is provided.











TABLE 18









Particulate Material Compositions % by wt
















Ingredients
A
B
C
D
E
F
G
H
I



















Potter's
84.64%

79.72%


100%
99.8%




Spheriglass 2530


CP03


MoSci GL0179

84.58%


Zinc Oxide


4.75%


Pigment


Lucite Elvacite
15.00%
15.20%
15.19%


2014


Eastman Regalrez

0.10%


1094


Mineral Oil
0.19%
0.07%
0.18%



0.2%


DOW Tergitol

0.01%


15-S-5


Cobalt Octoate,
0.17%
0.04%
0.16%


65% in Mineral


Spirits


Z Corporation



100%


zp102


Z Corporation




100%


zp100


Z Corporation







100%


zp130


Z Corporation








100%


ZCast 501


Internal Angle of
77° +/− 3°
64° +/− 3°
36° +/− 3°
53° +/− 12°
59° +/− 13°
32° +/− 3°
81° +/− 9°
48° +/− 5°
55° +/− 11°


Friction +/− 95%


Confidence


Interval


Three
Too
Good
Too
Good
Good
Too
Too
Good
Good


Dimensional
Cohesive

Flowable


Flowable
Cohesive


Printing


suitability










Based on the results indicated in Table 18 and illustrated in FIG. 16, one can conclude that powders that have an internal angle of friction greater than 40° and less than 70° are suitable for Three Dimensional Printing.



FIGS. 17
a and 17b compare surface finish scans from a VIKING laser profilometer from Solarius. As one may expect, a particulate material with an internal angle of friction that is between 40° and 70° (FIG. 17a) provides a smoother finish than a particulate material with an internal angle of friction greater than 70° (FIG. 17b) where the powder is too cohesive to spread an even layer of particulate material, resulting in an article that has very rough and uneven surface finish. FIG. 17c is a CAD drawing of the formed part illustrated in FIGS. 17a and 17b.



FIGS. 18
a and 18b compare surface finish scans from a VIKING laser profilometer from Solarius. As one may expect, a particulate material with an internal angle of friction that is between 40° and 70° (FIG. 18a) provides a smoother finish than a particulate material with an internal angle of friction less than 40° (FIG. 18b) where the powder is too flowable and unable to resist the spreading forces causing previous printed layers to be displaced, resulting in an article that has a rough and uneven surface finish, or even artifacts missing from the surface of the article because they were displaced. FIG. 18c is a CAD drawing of the formed part illustrated in FIGS. 18a and 18b.


This test is a fairly useful technique for identifying relative performance properties between different candidate materials. The preferred method for evaluating flow properties of candidate build materials during formal optimization after the initial selection period is to test samples of the material on a working three dimensional printer. Certain pathological geometries are known to those experienced in the art, and they can be evaluated either qualitatively or quantitatively. One particularly useful part for observing stability during spreading is a flat plate studded with pegs that are oriented downward during the build. During printing, the earliest layers addressed are a series of disconnected patches that are relatively free to shift in the build material. After these have been formed, a plate is printed that joins all of the pegs together in a single object. One can easily examine whether the pegs are uniform and straight, and one can evaluate the quality of spreading on that basis.


Those skilled in the art will readily appreciate that all compositions and parameters listed herein are meant to be exemplary and actual compositions and parameters depend upon the specific application for which the methods and materials of the present invention are used. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, the invention may be practiced otherwise than as specifically described.

Claims
  • 1. A kit comprising: a substantially dry particulate material comprising: an insoluble filler;a soluble filler; anda transition metal catalyst, anda fluid binder comprising: a (meth)acrylate monomer;at least one of an allyl ether functional monomer or an allyl ether functional oligomer; andorganic hydroperoxide,wherein the insoluble filler is insoluble in the fluid binder and the soluble filler is soluble in the fluid binder.
  • 2. The kit of claim 1, wherein the fluid binder comprises about 40%-95% by weight of the (meth)acrylate monomer, about 5-25% by weight of the allyl ether functional monomer/oligomer, and about 0.5-5% by weight of the organic hydroperoxide.
  • 3. The kit of claim 1, wherein a contact angle of the fluid binder is less than 25° when in contact with the particulate material.
  • 4. The kit of claim 1, wherein a 1 mm penetration hardening rate of the substantially dry particulate material upon application of the fluid binder ranges from 0.01/min to 1.0/min.
  • 5. The kit of claim 1, wherein the fluid binder further comprises a (meth)acrylate oligomer.
  • 6. The kit of claim 5, wherein the fluid binder comprises about 10-40% by weight of the (meth)acrylate oligomer.
  • 7. The kit of claim 1, wherein the fluid binder further comprises a surfactant.
  • 8. The kit of claim 1, wherein the dry particulate material further comprises at least one of a pigment or a processing aid.
  • 9. The kit of claim 1, wherein the dry particulate material is suitable for use in three dimensional printing to form an article comprised of a plurality of layers, the layers including a reaction product of the particulate material and the fluid binder that contacts the particulate material during three dimensional printing.
  • 10. The kit of claim 1, wherein an internal angle of friction of the particulate material has a value ranging from 40° to 70°.
  • 11. The kit of claim 1, wherein a critical surface tension of the particulate material is greater than 20 dynes/cm.
  • 12. The kit of claim 1, wherein the particulate material comprises about 50%-90% by weight of the insoluble filler, about 10-50% by weight of the soluble filler, and about 0.01-0.5% by weight of the transition metal catalyst.
  • 13. The kit of claim 1, wherein the insoluble filler is selected from the group consisting of solid glass spheres, hollow glass spheres, solid ceramic spheres, hollow ceramic spheres, potato starch, tabular alumina, calcium sulfate hemihydrate, calcium sulfate dehydrate, calcium carbonate, ultra-high molecular weight polyethylene, polyamide, poly-cyclic-olefins, polyurethane, polypropylene and combinations thereof.
  • 14. The kit of claim 1, wherein the soluble filler is selected from the group consisting of methyl methacrylate polymers, ethyl methacrylate polymers, butyl methacrylate polymers, polyvinylbutyral, and combinations thereof.
  • 15. The kit of claim 14, wherein the soluble filler has a weight-average molecular weight selected from a range of 100,000 g/mol to 500,000 g/mol.
  • 16. The kit of claim 1, wherein the transition metal catalyst is selected from the group consisting of cobalt (II) octoate, cobalt (II) naphthenate, vanadium (II) octoate, manganese naphthenate and combinations thereof.
  • 17. The kit of claim 8, wherein the particulate material comprises the pigment.
  • 18. The kit of claim 17, wherein the particulate material comprises about 0.5-5% by weight of the pigment.
  • 19. The kit of claim 17, wherein the pigment is selected from the group consisting of zinc oxide, zinc sulfide, barium sulfate, titanium dioxide, zirconium silicate, lead carbonate, and hollow borosilicate glass spheres.
  • 20. The kit of claim 8, wherein the particulate material comprises the processing aid.
  • 21. The kit of claim 20, wherein the particulate material comprises about 0.01-2.0% by weight of the processing aid.
  • 22. The kit of claim 20, wherein the processing aid is selected from the group consisting of mineral oil, propylene glycol di(caprylate/caprate), petroleum jelly, propylene glycol, di-isobutyl phthalate, di-isononyl phthalate, polyalkyleneoxide modified heptamethyltrisiloxanes, polyalkyleneoxide modified polydimethylsiloxanes, secondary alcohol ethoxylated hydrocarbons, hydrogenated hydrocarbon resins, and combinations thereof.
RELATED APPLICATION

This application claims priority to U.S. Provisional Patent Application Ser. No. 60/873,730, filed Dec. 8, 2006, the disclosure of which is hereby incorporated by reference in its entirety.

US Referenced Citations (419)
Number Name Date Kind
2522548 Streicher Sep 1950 A
2662024 Riddell et al Dec 1953 A
3297601 Maynard et al. Jan 1967 A
3303147 Elden Feb 1967 A
3309328 Carroll et al. Mar 1967 A
3476190 Jenny et al. Nov 1969 A
3525632 Enoch Aug 1970 A
3642683 Fry Feb 1972 A
3821006 Schwartz Jun 1974 A
3835074 Desmarais Sep 1974 A
3852083 Yang Dec 1974 A
3870538 Burkard et al. Mar 1975 A
3890305 Weber et al. Jun 1975 A
3926870 Keegan et al. Dec 1975 A
3930872 Toeniskoetter et al. Jan 1976 A
3932923 DiMatteo Jan 1976 A
4041476 Swainson Aug 1977 A
4042408 Murray et al. Aug 1977 A
4078229 Swanson et al. Mar 1978 A
4247508 Housholder Jan 1981 A
4288861 Swainson et al. Sep 1981 A
4310996 Mulvey et al. Jan 1982 A
4327156 Dillon et al. Apr 1982 A
4369025 von der Weid et al. Jan 1983 A
4443392 Becker et al. Apr 1984 A
4444594 Paddison et al. Apr 1984 A
4476190 Clarke et al. Oct 1984 A
4575330 Hull Mar 1986 A
4613627 Sherman et al. Sep 1986 A
4618390 Powell Oct 1986 A
4649077 Lauchenauer et al. Mar 1987 A
4665492 Masters May 1987 A
4752352 Feygin Jun 1988 A
4752498 Fudim Jun 1988 A
4755227 Sherif et al. Jul 1988 A
4758278 Tomic Jul 1988 A
4801477 Fudim Jan 1989 A
4844144 Murphy et al. Jul 1989 A
4863538 Deckard Sep 1989 A
4929402 Hull May 1990 A
4938816 Beaman et al. Jul 1990 A
4940412 Blumenthal et al. Jul 1990 A
4942001 Murphy et al. Jul 1990 A
4942003 Bold et al. Jul 1990 A
4942060 Grossa et al. Jul 1990 A
4943928 Campbell et al. Jul 1990 A
4944817 Bourell et al. Jul 1990 A
4945032 Murphy et al. Jul 1990 A
4961154 Pomerantz et al. Oct 1990 A
4996010 Modrek Feb 1991 A
4996282 Noren et al. Feb 1991 A
4999143 Hull et al. Mar 1991 A
5009585 Hirano et al. Apr 1991 A
5011635 Murphy et al. Apr 1991 A
5015312 Kinzie May 1991 A
5015424 Smalley May 1991 A
5017317 Marcus May 1991 A
5017753 Deckard May 1991 A
5031120 Pomerantz et al. Jul 1991 A
5038014 Pratt et al. Aug 1991 A
5040005 Davidson et al. Aug 1991 A
5051334 Fan Sep 1991 A
5053090 Beaman et al. Oct 1991 A
5058988 Spence Oct 1991 A
5059021 Spence et al. Oct 1991 A
5059266 Yamane et al. Oct 1991 A
5059359 Hull et al. Oct 1991 A
5071337 Heller et al. Dec 1991 A
5071503 Berman et al. Dec 1991 A
5076869 Bourell et al. Dec 1991 A
5076974 Modrek et al. Dec 1991 A
5088047 Bynum Feb 1992 A
5089184 Hirano et al. Feb 1992 A
5089185 Hirano et al. Feb 1992 A
5094935 Vassiliou et al. Mar 1992 A
5096491 Nagai et al. Mar 1992 A
5096530 Cohen Mar 1992 A
5104592 Hull et al. Apr 1992 A
5106288 Hughes et al. Apr 1992 A
5121329 Crump Jun 1992 A
5122441 Lawton et al. Jun 1992 A
5123734 Spence et al. Jun 1992 A
5127037 Bynum Jun 1992 A
5128235 Vassiliou et al. Jul 1992 A
5130064 Smalley et al. Jul 1992 A
5132143 Deckard Jul 1992 A
5133987 Spence et al. Jul 1992 A
5134569 Masters Jul 1992 A
5135379 Fudim Aug 1992 A
5135695 Marcus Aug 1992 A
5137662 Hull et al. Aug 1992 A
5139338 Pomerantz et al. Aug 1992 A
5139711 Nakamura et al. Aug 1992 A
5141680 Almquist et al. Aug 1992 A
5143663 Leyden et al. Sep 1992 A
5143817 Lawton et al. Sep 1992 A
5147587 Marcus et al. Sep 1992 A
5149548 Yamane et al. Sep 1992 A
5151813 Yamamoto et al. Sep 1992 A
5154762 Mitra et al. Oct 1992 A
5155321 Grube et al. Oct 1992 A
5155324 Deckard et al. Oct 1992 A
5157423 Zur et al. Oct 1992 A
5158858 Lawton et al. Oct 1992 A
5164882 Kanai et al. Nov 1992 A
5167882 Jacobine et al. Dec 1992 A
5169579 Marcus et al. Dec 1992 A
5171490 Fudim Dec 1992 A
5173220 Reiff et al. Dec 1992 A
5174931 Almquist et al. Dec 1992 A
5174943 Hull Dec 1992 A
5175077 Grossa et al. Dec 1992 A
5176188 Quinn et al. Jan 1993 A
5182055 Allison et al. Jan 1993 A
5182056 Spence et al. Jan 1993 A
5182134 Sato Jan 1993 A
5182715 Vorgitch et al. Jan 1993 A
5183598 Helle et al. Feb 1993 A
5184307 Hull et al. Feb 1993 A
5192469 Smalley et al. Mar 1993 A
5192559 Hull et al. Mar 1993 A
5198159 Nakamura et al. Mar 1993 A
5203944 Prinz et al. Apr 1993 A
5204055 Sachs et al. Apr 1993 A
5204124 Secretan et al. Apr 1993 A
5204823 Schlotterbeck Apr 1993 A
5207371 Prinz et al. May 1993 A
5209878 Smalley et al. May 1993 A
5216616 Masters Jun 1993 A
5217653 Mashinsky et al. Jun 1993 A
5234636 Hull et al. Aug 1993 A
5236637 Hull Aug 1993 A
5236812 Vassiliou et al. Aug 1993 A
5238614 Uchinono et al. Aug 1993 A
5238639 Vinson et al. Aug 1993 A
5247180 Mitcham et al. Sep 1993 A
5248249 Yamamoto et al. Sep 1993 A
5248456 Evans, Jr. et al. Sep 1993 A
5252264 Forderhase et al. Oct 1993 A
5256340 Allison et al. Oct 1993 A
5258146 Almquist et al. Nov 1993 A
5260009 Penn Nov 1993 A
5263130 Pomerantz et al. Nov 1993 A
5264061 Juskey et al. Nov 1993 A
5267013 Spence Nov 1993 A
5273691 Hull et al. Dec 1993 A
5275916 Kato et al. Jan 1994 A
5278442 Prinz et al. Jan 1994 A
5279665 Yunovich et al. Jan 1994 A
5281789 Merz et al. Jan 1994 A
5286573 Prinz et al. Feb 1994 A
5287435 Cohen et al. Feb 1994 A
5289214 Zur et al. Feb 1994 A
5296062 Bourell et al. Mar 1994 A
5296335 Thomas et al. Mar 1994 A
5301415 Prinz et al. Apr 1994 A
5303141 Batchelder et al. Apr 1994 A
5306446 Howe Apr 1994 A
5306447 Marcus et al. Apr 1994 A
5316580 Deckard May 1994 A
5328539 Sato Jul 1994 A
5338611 Lause et al. Aug 1994 A
5340433 Crump Aug 1994 A
5340656 Sachs et al. Aug 1994 A
5342566 Schafer et al. Aug 1994 A
5342919 Dickens, Jr. et al. Aug 1994 A
5344298 Hull Sep 1994 A
5345391 Hull et al. Sep 1994 A
5345414 Nakamura et al. Sep 1994 A
5348693 Taylor et al. Sep 1994 A
5352310 Natter Oct 1994 A
5352405 Beaman et al. Oct 1994 A
5355318 Dionnet et al. Oct 1994 A
5358673 Heller et al. Oct 1994 A
5364889 Quinn et al. Nov 1994 A
5365996 Crook Nov 1994 A
5370692 Fink et al. Dec 1994 A
5376320 Tiefenbacher et al. Dec 1994 A
5382289 Bambauer et al. Jan 1995 A
5382308 Bourell et al. Jan 1995 A
5385772 Slovinsky et al. Jan 1995 A
5386500 Pomerantz et al. Jan 1995 A
5387380 Cima et al. Feb 1995 A
5391072 Lawton et al. Feb 1995 A
5391460 Dougherty et al. Feb 1995 A
5393613 MacKay Feb 1995 A
5402351 Batchelder et al. Mar 1995 A
5415820 Furuta et al. May 1995 A
5418112 Mirle et al. May 1995 A
5426722 Batchelder Jun 1995 A
5429788 Ribble et al. Jul 1995 A
5429908 Hokuf et al. Jul 1995 A
5430666 DeAngelis et al. Jul 1995 A
5432045 Narukawa et al. Jul 1995 A
5433280 Smith Jul 1995 A
5435902 Andre, Sr. Jul 1995 A
5437964 Lapin et al. Aug 1995 A
5439622 Pennisi et al. Aug 1995 A
5447822 Hull et al. Sep 1995 A
5450205 Sawin et al. Sep 1995 A
5458825 Grolman et al. Oct 1995 A
5460758 Langer et al. Oct 1995 A
5461088 Wolf et al. Oct 1995 A
5468886 Steinmann et al. Nov 1995 A
5470689 Wolf et al. Nov 1995 A
5474719 Fan et al. Dec 1995 A
5482659 Sauerhoefer Jan 1996 A
5490882 Sachs et al. Feb 1996 A
5490962 Cima et al. Feb 1996 A
5491643 Batchelder Feb 1996 A
5494618 Sitzmann et al. Feb 1996 A
5495029 Steinmann et al. Feb 1996 A
5495328 Spence et al. Feb 1996 A
5498782 Rex Mar 1996 A
5500069 Ogue et al. Mar 1996 A
5501824 Almquist et al. Mar 1996 A
5503785 Crump et al. Apr 1996 A
5503793 Uchinono et al. Apr 1996 A
5506046 Andersen et al. Apr 1996 A
5506087 Lapin et al. Apr 1996 A
5506607 Sanders, Jr. et al. Apr 1996 A
5507336 Tobin Apr 1996 A
5510226 Lapin et al. Apr 1996 A
5512162 Sachs et al. Apr 1996 A
5514232 Burns May 1996 A
5514378 Mikos et al. May 1996 A
5518680 Cima et al. May 1996 A
5519816 Pomerantz et al. May 1996 A
5525051 Takano et al. Jun 1996 A
5527877 Dickens, Jr. et al. Jun 1996 A
5534059 Immordino, Jr. Jul 1996 A
5534104 Langer et al. Jul 1996 A
5536467 Reichle et al. Jul 1996 A
5545367 Bae et al. Aug 1996 A
5554336 Hull Sep 1996 A
5555176 Menhennett et al. Sep 1996 A
5555481 Rock et al. Sep 1996 A
5556590 Hull Sep 1996 A
5569349 Almquist et al. Oct 1996 A
5569431 Hull Oct 1996 A
5571471 Hull Nov 1996 A
5572431 Brown et al. Nov 1996 A
5573721 Gillette Nov 1996 A
5573722 Hull Nov 1996 A
5573889 Hofmann et al. Nov 1996 A
5582876 Langer et al. Dec 1996 A
5587913 Abrams et al. Dec 1996 A
5591563 Suzuki et al. Jan 1997 A
5593531 Penn Jan 1997 A
5594652 Penn et al. Jan 1997 A
5595597 Fogel et al. Jan 1997 A
5595703 Swaelens et al. Jan 1997 A
5596504 Tata et al. Jan 1997 A
5597520 Smalley et al. Jan 1997 A
5597589 Deckard Jan 1997 A
5598340 Medard et al. Jan 1997 A
5599651 Steinmann et al. Feb 1997 A
5603797 Thomas et al. Feb 1997 A
5605941 Steinmann et al. Feb 1997 A
5608814 Gilmore et al. Mar 1997 A
5609812 Childers et al. Mar 1997 A
5609813 Allison et al. Mar 1997 A
5610824 Vinson et al. Mar 1997 A
5611883 Tompkins et al. Mar 1997 A
5614075 Andre, Sr. Mar 1997 A
5616293 Ashtiani-Zarandi et al. Apr 1997 A
5616294 Deckard Apr 1997 A
5622577 O'Connor Apr 1997 A
5622811 Ogue et al. Apr 1997 A
5626919 Chapman et al. May 1997 A
5630981 Hull May 1997 A
5632848 Richards et al. May 1997 A
5633021 Brown et al. May 1997 A
5637169 Hull et al. Jun 1997 A
5637175 Feygin et al. Jun 1997 A
5639070 Deckard Jun 1997 A
5639402 Barlow et al. Jun 1997 A
5639413 Crivello Jun 1997 A
5640667 Freitag et al. Jun 1997 A
5641448 Yeung et al. Jun 1997 A
5645973 Hofmann et al. Jul 1997 A
5648450 Dickens, Jr. et al. Jul 1997 A
5649277 Greul et al. Jul 1997 A
5650260 Onishi et al. Jul 1997 A
5651934 Almquist et al. Jul 1997 A
5653925 Batchelder Aug 1997 A
5656230 Khoshevis Aug 1997 A
5658412 Retallick et al. Aug 1997 A
5658712 Steinmann et al. Aug 1997 A
5659478 Pennisi et al. Aug 1997 A
5660621 Bredt Aug 1997 A
5660900 Andersen et al. Aug 1997 A
5663883 Thomas et al. Sep 1997 A
5665401 Serbin et al. Sep 1997 A
5667820 Heller et al. Sep 1997 A
5672312 Almquist et al. Sep 1997 A
5674921 Regula et al. Oct 1997 A
5676904 Almquist et al. Oct 1997 A
5677107 Neckers Oct 1997 A
5684713 Asada et al. Nov 1997 A
5688464 Jacobs et al. Nov 1997 A
5693144 Jacobs et al. Dec 1997 A
5695707 Almquist et al. Dec 1997 A
5697043 Baskaran et al. Dec 1997 A
5698485 Bruck et al. Dec 1997 A
5700406 Menhennett et al. Dec 1997 A
5703138 Cantor et al. Dec 1997 A
5705116 Sitzmann et al. Jan 1998 A
5705117 O'Connor et al. Jan 1998 A
5705316 Steinmann et al. Jan 1998 A
5707578 Johnson et al. Jan 1998 A
5707780 Lawton et al. Jan 1998 A
5711911 Hull Jan 1998 A
5713410 LaSalle et al. Feb 1998 A
5717599 Menhennett et al. Feb 1998 A
5718279 Satoh et al. Feb 1998 A
5718757 Guillou et al. Feb 1998 A
5727138 Harada et al. Mar 1998 A
5728345 Hlavaty et al. Mar 1998 A
5730817 Feygin et al. Mar 1998 A
5730925 Mattes et al. Mar 1998 A
5731388 Suzuki et al. Mar 1998 A
5733497 McAlea et al. Mar 1998 A
5738817 Danforth et al. Apr 1998 A
5738921 Andersen et al. Apr 1998 A
5740051 Sanders, Jr. et al. Apr 1998 A
5746844 Sterett et al. May 1998 A
5746967 Hoy et al. May 1998 A
5749041 Lakshminarayan et al. May 1998 A
5753171 Serbin et al. May 1998 A
5753274 Wilkening et al. May 1998 A
5772947 Hull et al. Jun 1998 A
5783358 Schulthess et al. Jul 1998 A
5800756 Andersen et al. Sep 1998 A
5805971 Akedo et al. Sep 1998 A
5851465 Bredt Dec 1998 A
5870307 Hull et al. Feb 1999 A
5902441 Bredt et al. May 1999 A
5902537 Almquist et al. May 1999 A
5940674 Sachs et al. Aug 1999 A
5943235 Earl et al. Aug 1999 A
5948874 Pike et al. Sep 1999 A
5965776 Leppard et al. Oct 1999 A
5976339 Andre, Sr. Nov 1999 A
6007318 Russell et al. Dec 1999 A
6071675 Teng Jun 2000 A
6077887 Thuresson et al. Jun 2000 A
6112109 D'Urso et al. Aug 2000 A
6136088 Farrington Oct 2000 A
6136948 Dickens, Jr. et al. Oct 2000 A
6147138 Hochsmann et al. Nov 2000 A
6193922 Ederer et al. Feb 2001 B1
6299677 Johnson et al. Oct 2001 B1
6348679 Ryan et al. Feb 2002 B1
6363606 Johnson et al. Apr 2002 B1
6375874 Russell et al. Apr 2002 B1
6378974 Oelbrandt et al. Apr 2002 B1
6397922 Sachs et al. Jun 2002 B1
6401001 Jang et al. Jun 2002 B1
6403002 van der Geest et al. Jun 2002 B1
6416850 Bredt et al. Jul 2002 B1
6423255 Hoechsmann et al. Jul 2002 B1
6433038 Tanabe et al. Aug 2002 B1
6531086 Larsson et al. Mar 2003 B1
6540784 Barlow et al. Apr 2003 B2
6600142 Ryan et al. Jul 2003 B2
6610429 Bredt et al. Aug 2003 B2
6713125 Sherwood et al. Mar 2004 B1
6740423 Murase May 2004 B2
6742456 Kasperchik et al. Jun 2004 B1
6780368 Liu et al. Aug 2004 B2
6799959 Tochimoto et al. Oct 2004 B1
6884311 Dalvey et al. Apr 2005 B1
6930144 Oriakhi Aug 2005 B2
6989115 Russell et al. Jan 2006 B2
7037382 Davidson et al. May 2006 B2
7049363 Shen et al. May 2006 B2
7087109 Bredt et al. Aug 2006 B2
7120512 Kramer et al. Oct 2006 B2
7285234 Pfeifer et al. Oct 2007 B2
7300613 Sano et al. Nov 2007 B2
7332537 Bredt et al. Feb 2008 B2
20010014402 Murase Aug 2001 A1
20010050031 Bredt et al. Dec 2001 A1
20020016387 Shen Feb 2002 A1
20020026982 Bredt et al. Mar 2002 A1
20020106412 Rowe et al. Aug 2002 A1
20030054218 Hampden-Smith et al. Mar 2003 A1
20030090034 Mulhaupt et al. May 2003 A1
20030143268 Pryce Lewis et al. Jul 2003 A1
20030173695 Monkhouse et al. Sep 2003 A1
20040038009 Leyden et al. Feb 2004 A1
20040056378 Bredt et al. Mar 2004 A1
20040062814 Rowe et al. Apr 2004 A1
20040166187 Fong Aug 2004 A1
20040173946 Pfeifer et al. Sep 2004 A1
20040232583 Monsheimer et al. Nov 2004 A1
20050001356 Tochimoto et al. Jan 2005 A1
20050003189 Bredt et al. Jan 2005 A1
20050017394 Hochsmann et al. Jan 2005 A1
20050059757 Bredt et al. Mar 2005 A1
20050080191 Kramer et al. Apr 2005 A1
20050093194 Oriakhi et al. May 2005 A1
20050104241 Kritchman et al. May 2005 A1
20050110177 Schulman et al. May 2005 A1
20050179167 Hachikian Aug 2005 A1
20050197431 Bredt et al. Sep 2005 A1
20050212163 Bausinger et al. Sep 2005 A1
20050230870 Oriakhi Oct 2005 A1
20060071367 Hunter et al. Apr 2006 A1
20060141145 Davidson et al. Jun 2006 A1
20060208388 Bredt et al. Sep 2006 A1
20060230984 Bredt et al. Oct 2006 A1
20070007698 Sano Jan 2007 A1
20070029698 Rynerson et al. Feb 2007 A1
20070135531 Norcini et al. Jun 2007 A1
20070241482 Giller et al. Oct 2007 A1
20080187711 Alam et al. Aug 2008 A1
20080281019 Giller et al. Nov 2008 A1
Foreign Referenced Citations (52)
Number Date Country
1810492 Aug 2006 CN
1857930 Nov 2006 CN
4012044 Oct 1991 DE
19727677 Jan 1999 DE
19853834 May 2000 DE
10158233 Mar 2003 DE
0431924 Jun 1991 EP
0540203 May 1993 EP
1226019 Jul 2002 EP
1 475 221 Nov 2004 EP
1 491 517 Dec 2004 EP
1 498 277 Jan 2005 EP
1 512 519 Mar 2005 EP
1 623 816 Feb 2006 EP
2048235 Dec 1980 GB
2155944 Oct 1985 GB
62260754 Nov 1987 JP
3287683 Dec 1991 JP
5025898 Feb 1993 JP
06289612 Oct 1994 JP
9241311 Sep 1997 JP
11116875 Apr 1999 JP
2001-015613 Jan 2001 JP
2001162351 Jun 2001 JP
WO-9319019 Sep 1993 WO
WO-9320112 Oct 1993 WO
WO-9325336 Dec 1993 WO
WO-9412328 Jun 1994 WO
WO-9420274 Sep 1994 WO
WO-9530503 Nov 1995 WO
WO-9606881 Mar 1996 WO
WO-9711835 Apr 1997 WO
WO-9726302 Jul 1997 WO
WO-9732671 Sep 1997 WO
WO-9809798 Mar 1998 WO
WO-9809798 Mar 1998 WO
WO-9828124 Jul 1998 WO
WO-0134371 May 2001 WO
WO-0178969 Oct 2001 WO
WO-0238677 May 2002 WO
WO-02-064354 Aug 2002 WO
WO-03-016030 Feb 2003 WO
WO-2004048463 Jun 2004 WO
WO-2004-062927 Jul 2004 WO
WO-2004-096514 Nov 2004 WO
WO-2005011959 Feb 2005 WO
WO-2005-023524 Mar 2005 WO
WO-2005-025074 Mar 2005 WO
WO-2005090055 Sep 2005 WO
WO-2005105412 Nov 2005 WO
WO-2007-039450 Apr 2007 WO
WO-2007147625 Dec 2007 WO
Related Publications (1)
Number Date Country
20080138515 A1 Jun 2008 US
Provisional Applications (1)
Number Date Country
60873730 Dec 2006 US