Additive manufacturing techniques, such as three-dimensional printing, relate to techniques for generating three-dimensional objects on a layer-by-layer basis. An object may be generated by selectively solidifying successive layers of a build material, for example build material in powder form.
Droplets of a liquid agent may be deposited on each layer of a build material. In some techniques, droplets of a liquid agent may be deposited on a layer of build material according to a predetermined pattern, which may depend on the shape of the 3D body being manufactured.
Some non-limiting examples of the present disclosure will be described in the following with reference to the appended drawings, in which:
When forming an object by three-dimensional printing, a layer of a build material such as powder may be laid out on a working area, for example a build platform, and an agent may be selectively applied on regions of the layer of build material. An agent may be applied for example on regions of the layer of build material where the build material is meant to solidify to form a layer of the object.
For example, droplets of a liquid agent may be deposited on the layer of build material according to a predetermined pattern, which may depend on the shape of the three-dimensional object or body being manufactured, for example on the shape of one layer of the object. The droplets may be deposited from a delivery device, such as for example a printhead, which may be mounted to scan over the build platform or working area.
The regions of the layer of build material on which a liquid agent has been applied may then be caused to solidify and/or bind together, for example by applying heat and/or by the binding properties of the liquid agent.
When a layer is completed, the build platform may be lowered by predetermine height, for example 0.1 mm, and another layer of build material may be laid on top of the previously completed layer, selectively printed with a liquid agent and caused to solidify as described. The process is repeated, layer by layer, until the object to be manufactured in completed.
In some examples, agents are selectively applied on regions of a layer of build material in two or more passes of a delivery device over the layer of build material.
When droplets of a liquid agent are deposited on a build material in power form, the impact of the droplets may cause some of the build material to splash, i.e. to be displaced. Splashing may cause erosion and alterations in the layer of build material, which may reduce the precision of the part being manufactured. Splashing may also project particles of the build material towards the delivery device, for example a printhead, and may affect the operation of the delivery device.
According to an example, as shown in
The distance above the layer from which the droplets of liquid agent are deposited is herein defined as the vertical distance between the lower active part of a delivery device, such as a printhead nozzle, and the upper surface of the layer of build material, e.g. the surface as spread by a recoater device on a build platform or on a previous layer. In 3D printing methods that employ powder build material and printheads, this distance is sometimes referred to as “Printhead to Powder Distance” (PPD) or “Printhead to Powder Space” (PPS).
Splashing depends on several variables, such as the material of the layer or the size of the liquid agent droplets, and also on the distance from which the droplets are deposited, e.g. fired from a nozzle such as a printhead nozzle. With a greater distance, there is more dispersion of the droplets of liquid agent when they reach the build material, and therefore, with a greater distance the drop energy when the droplets impact the layer is smaller, and less splashing is likely to occur. For example, droplets fired from a printhead nozzle at a distance of about 1.3 to 2.3 mm above the build material may undergo a deviation or dispersion of about 10 to 20 μm, while droplets fired at a distance of about 3 mm may undergo a deviation or dispersion of about 150 to 400 μm.
In methods as disclosed herein, splashing may be reduced by depositing the liquid agent from a greater distance on some parts of the layer of build material. This may reduce the overall splashing in the layer of build material, such that the delivery device may receive less amount of splashed build material. This allows for less maintenance and increased accuracy in the operation of the delivery device and therefore in the deposit of droplets.
For example, droplets may be deposited from a first, smaller distance which involves a more precise positioning of the droplets, on parts of the layer corresponding to parts of the 3D object being manufactured in which a higher droplet positioning accuracy is desired or useful, for example because these parts are on or near the outer surfaces of the finished object.
Droplets may be deposited from a second, greater distance on parts of the layer of build material corresponding to other parts of the 3D object being manufactured, such as for example the core of the object, which is not near the visible parts of the finished product, so that the positioning accuracy of the droplets in the core region has no effect on the quality, in particular on the dimensional properties or the surface uniformity, of the finished object.
Since often the core of a 3D object may occupy most of the surface area of most layers of build material, example methods as described herein may allow to significantly reduce splashing and its effects, while maintaining the quality of the finished object, e.g. dimensional accuracy, details in small parts, surface uniformity and/or smoothness, etc. Furthermore, the solution is cost-effective and easy to implement.
In example 3D printing methods, droplets may be deposited on each layer of build material according to a predetermined pattern associated with a corresponding layer of the 3D body or object being manufactured, e.g. wherein the pattern may have the same shape as the layer of the object. Droplets may be deposited from a first, smaller distance in at least a core region of the pattern, and from a second, greater distance in at least an edge region of the pattern.
For example,
In some examples, the core and edge regions of each layer of build material where droplets may be deposited from a first or a second distance may be determined in each case based on a number of parameters such as the build material and the liquid agent being used, the kind of delivery device and the intended printing distance, the size of the droplets, the desired dimensional accuracy of the finished product, and/or others. The dimensions of the core and edge regions, as well as the first and second distances and/or the difference between the first and second distance, may be determined, for instance, through testing, modelling and/or interpolation, so that the combination of the degree of dispersion of the droplets and the dimension of the edge regions maintains continuity in the presence of liquid agent between the core and the edge regions, and at the same time prevents the droplets deposited in the core regions from being dispersed beyond the edge of the pattern or object.
In some implementations, where the first distance may be e.g. of about 1.0 to 2.5 mm, for example 1.3 to 2.3 mm, the second distance may be set to about to 2.5 to 3.5 mm, for example about 3 mm. In such implementations, the width of the edge regions of each layer, i.e. the dimension of the edge regions in a direction substantially perpendicular to the direction of the edge of the pattern or of the object in that layer, may be for example of about 1 to 3 mm.
In implementations of methods disclosed herein, the first part or core region of the layer of build material where liquid agent is deposited from the first distance and the second part or edge region of the layer of build material where liquid agent is deposited from the second distance, may have a degree of overlap. In other words, there may be a transitional or intermediate region where droplets are deposited from both the first distance and the second distance, or where droplets are deposited from a first distance, but a certain amount of liquid agent belonging to droplets deposited from the second distance also reach this intermediate region due to the dispersion of the droplets deposited from the second distance.
Build materials suitable to be employed in method as disclosed herein may be in the form of a powder. The powder may be formed of any suitable material including, but not limited to, metals, polymers, ceramics, or any other that may be employed as build material in three-dimensional printing, as well as combinations of these or other materials.
Some implementations of methods according to the present disclosure may be particularly useful for example with metal powder as build material. Metal particles may be smaller and lighter than those of e.g. plastic materials, and they do not significantly increase in viscosity with the temperatures that are used in 3D printing, and therefore metal powder build material may be more affected by splashing than for example plastic powder. For example, the build material may be stainless steel powder, aluminium powder, or others. Ceramic powders, for example alumina, or build materials comprising combinations of two different materials, may also be employed in some implementations of the method.
The liquid agent may be any agent suitable for the three-dimensional printing process and the build material being used. For example, the liquid agent may be a binding agent, such as latex, for example suitable for binding a metal powder, e.g. to form a green body to be later sintered or cured by any other method. The liquid agent may be any other binder, e.g. a chemical binder. It may also be a fusing agent or a detailing agent, or any other agent used in 3D printing. For example, the liquid agent may have a latex load of about 5 to 20%.
In
In some implementations of a 3D printer as disclosed herein, the 3D printer may manufacture a 3D body or object by selectively solidifying successive layers of build material according to a predetermined pattern, such as described above by way of example in
In some implementations, such as represented in
In some examples of 3D printers according to the present disclosure, such as also shown in
Some examples of implementations of 3D printers and 3D printing methods as disclosed above, e.g. involving two printheads mounted in different positions on a carriage allow decreasing splashing of the build material, while maintaining a high throughput in the manufacturing process.
In some implementations of methods according to
In some implementations of methods according to
Although a number of particular implementations and examples have been disclosed herein, further variants and modifications of the disclosed devices and methods are possible. For example, not all the features disclosed herein are included in all the implementations, and implementations comprising other combinations of the features described are also possible.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/044137 | 7/27/2018 | WO | 00 |