Three-dimensional (3D) printing may be an additive printing process used to make three-dimensional solid parts from a digital model. 3D printing is often used in rapid product prototyping, mold generation, mold master generation, and short run manufacturing. Some 3D printing techniques are considered additive processes because they involve the application of successive layers of build material. This is unlike other machining processes, which often rely upon the removal of material to create the final part. Some 3D printing methods use chemical binders or adhesives to bind build materials together. Other 3D printing methods involve at least partial sintering, melting, etc., of the build material. For some 3D printing methods, at least partial melting of build material may be accomplished using heat-assisted extrusion, and for some other materials (e.g., polymerizable materials), curing may be accomplished using, for example, ultra-violet light or infrared light.
Features of examples of the present disclosure will become apparent by reference to the following detailed description and drawings, in which like reference numerals correspond to similar, though perhaps not identical, components. For the sake of brevity, reference numerals or features having a previously described function may or may not be described in connection with other drawings in which they appear.
An example 3-dimensional (3D) printing process can be an additive process that can involve the application of successive layers of build material with chemical binders or adhesives printed thereon to bind the successive layers of build materials together. In some processes, thermal processing, melting, sintering, or the like can be utilized to form a green body object and then a fused metal three-dimensional physical object. More specifically, a binder fluid can be selectively applied to a layer of particulate build material on a build platform to pattern a selected region of the layer and then another layer of the particulate build material is applied thereon. The binder fluid can be applied to another layer of the particulate build material and these processes can be repeated to form a green part (also known as a green body) of the 3D printed object that is ultimately formed. The binder fluid can be capable of penetrating the layer of the particulate build material onto which it is applied, and/or spreading around an exterior surface of the particulate build material and filling void spaces between particles of the particulate build material. The binder fluid can include a binder particle, such as latex, that can hold the particulate build material of the green body or part together. The green body can then be exposed to heat to fuse, e.g., sinter, anneal, melt, or the like, the particulate build material of the green part together and form a fused 3D printed object.
In some 3D printing methods, once the green body is formed and solidified sufficiently, it can often be moved to a separate device for heating at higher temperatures, such as an oven suitable for fusing, e.g., sintering, annealing, melting, etc., the metal particles together, thereby turning the 3D green body into a fused 3D solid part that is much more rigid. However, to move the green body to the oven, though the green body does not need to be highly stable or rigid, it would be useful for the green body to be stable or rigid enough to make the journey from the protection and support the green body may enjoy within the particulate build material where it was formed to the oven where it will ultimately be fused, e.g., sintered, annealed, melted, etc. Thus, tensile strength of the green body part can play a role in the robustness of the green body prior to fusing.
In accordance with this, in one example, a three-dimensional printing kit can include a particulate build material including from about 80 wt % to 100 wt % metal particles based on the total weight of the particulate build material, and a binder fluid including water, latex particles in an amount of from about 1 wt % to about 40 wt % based on the total weight of the binder fluid, and a multihydrazide adhesion promoter in an amount of from about 0.05 wt % to about 3 wt % based on the total weight of the binder fluid. In one example, the metal particles can be aluminum, titanium, copper, cobalt, chromium, nickel, vanadium, tungsten, tungsten carbide, tantalum, molybdenum, magnesium, gold, silver, ferrous ally, stainless steel, steel, an alloy thereof, or an admixture thereof. In another example, the latex particles can include a copolymer with copolymerized methyl methacrylate or copolymerized styrene being present at about 50 wt % or greater. In further detail, the multihydrazide adhesion promoter can have the general formula:
where R is null, from C1 to C8 unbranched alkyl, C3 to C8 branched alkyl, C2 to C8 unbranched alkylene, C4 to C8 branched alkylene, aromatic, alicyclic, or a combination thereof; A is C═O, O═S=O, or P═O; and n is 2 or 3; wherein when R is null, n is 2 and two hydrazides share a common A moiety or two hydrazides are linked together at their respective A moieties without an intervening R group. For example, the multihydrazide adhesion promoter can be selected from adipic dihydrazide, carbodihydrazide, oxalyl dihydrazide, succinic dihydrazide, isophthalic dihydrazide, azelaic dihydrazide, dodecanedioic dihydrazide, sebacic dihydrazide, terephthalic dihydrazide, oxbisbenzene sulfonylhydrazide, or a combination thereof.
In another example, a three-dimensional printing kit can include a particulate build material having from about 80 wt % to 100 wt % metal particles based on the total weight of the particulate build material; a binder fluid including water, and latex particles in an amount of from about 1 wt % to about 40 wt % based on the total weight of the binder fluid; and an adhesion promoter fluid including water, and a multihydrazide adhesion promoter in an amount of from about 0.1 wt % to about 5 wt % based on the total weight of the adhesion promoter fluid. The metal particles can have a D50 particle size distribution value of from about 4 μm to about 150 μm, for example. The latex particles can be a styrene (meth)acrylate copolymer. In one example, the binder fluid and the adhesion promoter fluid can be formulated to be ejected onto a layer of the particulate build material at a weight ratio of about 5:1 to about 1:5, e.g., where the weight ratio provides enhanced tensile strength to the green body. In another example, the multihydrazide adhesion promoter can be a dicarbonohydrazide. In further detail, the multihydrazide adhesion promoter can be selected from adipic dihydrazide, carbodihydrazide, oxalyl dihydrazide, succinic dihydrazide, isophthalic dihydrazide, azelaic dihydrazide, dodecanedioic dihydrazide, sebacic dihydrazide, terephthalic dihydrazide, oxbisbenzene sulfonylhydrazide, or a combination thereof.
In another example, a method of three-dimensional printing can include iteratively applying individual build material layers of a particulate build material which includes from about 80 wt % to 100 wt % metal particles based on the total weight of the particulate build material. Based on a 3D object model, the method can also include selectively applying water, latex particles, and a multihydrazide adhesion promoter to individual build material layers to define individually patterned layers of a 3D green body object. The method can also include heating the individually patterned layers to drive off water and further solidify the 3D green body object. In one example, the latex particles can be selectively applied by ejecting a binder fluid including water and the latex particles in an amount of from about 1 wt % to about 40 wt % based on the total weight of the binder fluid. Likewise, the multihydrazide adhesion promoter can be selectively applied by ejecting an adhesion promoter fluid as a separate fluid relative to the binder fluid, where the adhesion promoter fluid includes water and the multihydrazide adhesion promoter in an amount of about 0.05 wt % to about 5 wt % based on the total weight of the adhesion promoter fluid. In another example, the latex particles and the multihydrazide adhesion promoter can be selectively applied by ejecting a binder fluid including water, the latex particles in an amount of from about 10 wt % to about 25 wt % based on the total weight of the binder fluid, and the multihydrazide adhesion promoter in an amount of about 0.1 wt % to about 5 wt % based on the total weight of the binder fluid. Heating can occur at from about 100° C. to about 250° C. For clarity, this heating is not the level of heating used for fusing the object, but rather, the heating that is used to drive off solvent(s), cure, and/or strengthen the green body in preparation for fusing, e.g., which may include moving the green body to an oven for fusing, e.g., sintering, annealing, melting, etc. In still another example, the method can include separating the 3D green body object from the particulate build material and fusing the metal particles of the 3D green body object in an annealing oven.
It is noted that when discussing the three-dimensional printing kits and method of three-dimensional printing herein, each of these discussions can be considered applicable to one another whether or not they are explicitly discussed in the context of that example. Thus, for example, when discussing a binder fluid related to a three-dimensional printing kit, such disclosure is also relevant to and directly supported in the context of other three-dimensional printing kits, methods of three-dimensional printing, vice versa, etc.
It is also understood that terms used herein will take on their ordinary meaning in the relevant technical field unless specified otherwise. In some instances, there are terms defined more specifically throughout the specification or included at the end of the present specification, and thus, these terms have a meaning as described herein.
Particulate Build Materials
In examples of the 3D printing kits and methods disclosed herein, the build material can include any particulate build material that includes from about 80 wt % to 100 wt % metal particles based on the total weight of the particulate build material. In other examples, the metal particles can be present in the particulate build material at from about 90 wt % to 100 wt %, from about 95 wt % to 100 wt %, or at about 100 wt %. In an example, the build material particles are a single phase metallic material composed of one element. In this example, the fusing temperature may be below the melting point of the single element. In another example, the build material particles are composed of two or more elements, which may be in the form of a single phase metallic alloy or a multiple phase metallic alloy. In these other examples, fusing generally occurs over a range of temperatures. With respect to alloys, materials with a metal alloyed to a non-metal (such as a metal-metalloid alloy) can be used as well.
In some examples, the particulate build material can include particles of aluminum, titanium, copper, cobalt, chromium, nickel, vanadium, tungsten, tungsten carbide, tantalum, molybdenum, magnesium, gold, silver, ferrous alloy, stainless steel, steel, alloys thereof, or admixtures thereof. Specific alloy examples can include AlSi 10 Mg, 2xxx series aluminum, 4xxx series aluminum, CoCr MP1, CoCr SP2, maraging steel MS1, hastelloy C, hastelloy X, nickel alloy HX, inconel IN625, inconel IN718, stainless steel GP1, stainless steel 17-4PH, stainless steel 316L, stainless steel 430L titanium 6Al4V, and titanium 6Al-4V ELI7.
The temperature(s) at which the metallic particles of the particulate build material fuse together is/are above the temperature of the environment in which the patterning portion of the 3D printing method is performed, e.g., patterning at from about 18° C. to about 300° C. and fusing at from about 500° C. to about 3,500° C. In some examples, the metallic build material particles may have a melting point ranging from about 500° C. to about 3,500° C. In other examples, the metallic build material particles may be an alloy having a range of melting points.
The particle size of the particulate build material can be similarly sized or differently sized. In one example, the D50 particle size of the particulate build material can range from 0.5 μm to 200 μm. In some examples, the particles can have a D50 particle size distribution value that can range from about 2 μm to about 150 μm, from about 1 μm to about 100 μm, from about 1 μm to about 50 μm, etc. Individual particle sizes can be outside of these ranges, as the “D50 particle size” is defined as the particle size at which about half of the particles are larger than the D50 particle size and about half of the other particles are smaller than the D50 particle size (by weight based on the metal particle content of the particulate build material). As used herein, particle size refers to the value of the diameter of spherical particles or in particles that are not spherical can refer to the longest dimension of that particle. The particle size can be presented as a Gaussian distribution or a Gaussian-like distribution (or normal or normal-like distribution). Gaussian-like distributions are distribution curves that may appear essentially Gaussian in their distribution curve shape, but which can be slightly skewed in one direction or the other (toward the smaller end or toward the larger end of the particle size distribution range).
That being stated, an example Gaussian-like distribution of the metal particles can be characterized generally using “D10,” “D50,” and “D90” particle size distribution values, where D10 refers to the particle size at the 10th percentile, D50 refers to the particle size at the 50th percentile, and D90 refers to the particle size at the 90th percentile. For example, a D50 value of 25 μm means that 50% of the particles (by number) have a particle size greater than 25 μm and 50% of the particles have a particle size less than 25 μm. Particle size distribution values are not necessarily related to Gaussian distribution curves, but in one example of the present disclosure, the metal particles can have a Gaussian distribution, or more typically a Gaussian-like distribution with offset peaks at about D50. In practice, true Gaussian distributions are not typically present, as some skewing can be present, but still, the Gaussian-like distribution can be considered to be essentially referred to as “Gaussian” as used conventionally. In yet other examples, the particles can have a D50 particle size distribution value of from about 2 μm to about 100 μm, from about 5 μm to about 75 μm, from about 25 μm to about 50 μm, from about 5 μm to about 15 μm, or from about 3 μm to about 10 μm. The shape of the particles of the particulate build material can be spherical, non-spherical, random shapes, or a combination thereof.
Multihydrazide Adhesion Promoter
To bind the particulate build material on a layer by layer basis and form a 3D green body object, binder fluid with latex particles can be used. In some examples herein, the tensile strength of the green body formed using the particulate build material and the latex particles can be enhanced using a multihydrazide adhesion promoter.
In particular, multihydrazide compounds have been found to be effective in interacting or otherwise providing adhesion promotion between the latex particles and particulate build material. Thus, in many instances, the inclusion of a multihydrazide compound applied to layers of particulate build material along with latex particles can enhance the tensile strength of a 3D green body object. This is particularly useful when the green body, once formed through an additive layer by layer printing process, is to be moved after preparation into an oven for fusing, e.g., sintering, annealing, melting, etc. Without sufficient tensile strength, 3D green body objects can become damaged during the move from the (non-solidified) particulate build material to the fusing oven, particularly if the part is large or complex.
Hydrazides generally are characterized in organic chemistry as including a nitrogen to nitrogen covalent bond (N—N), and thus, a multihydrazide includes multiple moieties where an N—N covalent bond is present. Carbohydrazides include at least one acyl group (NH2—NH—C═O—R) and typically multiple acyl groups (though that is not always the case, as sometimes there is one acyl group, e.g., carbodihyrazide which shares a single carbonyl moiety). In accordance with examples herein, the carbohydrazides used can be carbo(multi)hydrazides. In other examples, some hydrazides may not include an acyl group and may be, for example, sulfonohydrazides or phosphonic hydrazides, which in accordance with examples of the present disclosure, can be described as sulfono(multi)hydrazides or phosphonic(multi)hydrazides. The term “multi” can be used as a generalization for more specific nomenclature such as “di,” “tri,” etc., to the extent chemically feasible.
In accordance with this, suitable multihydrazide adhesion promoters, for example, can have the general formula:
where R is null, from C1 to C8 unbranched alkyl, C3 to C8 branched alkyl, C2 to C8 unbranched alkylene, C4 to C8 branched alkylene, aromatic, alicyclic, or a combination thereof; A is C═O, O═S=O, or P═O; and n is 2 or 3; wherein when R is null, n is 2 and two hydrazides share a common A moiety or two hydrazides are linked together at their respective A moieties without an intervening R group.
More specifically, a multihydrazide adhesion promoter can be any of a number of dihydrazides, trihydrazides, or other multihydrazides, including a dicarbonohydrazide selected from adipic dihydrazide, carbodihydrazide, oxalyl dihydrazide, succinic dihydrazide, isophthalic dihydrazide, azelaic dihydrazide, dodecanedioic dihydrazide, sebacic dihydrazide, terephthalic dihydrazide, or a combination thereof. An example of a sulfono(multi)hydrazide is oxbisbenzene sulfonylhydrazide. These example multihydrazide structures are shown in Table 1, as follows:
Latex Particles
To bind the particulate build material together during the build process to form a 3D green body object, binder fluid can be applied to the particulate build material on a layer by layer basis. Heat (below metal sintering temperatures) can be applied on a layer by layer basis, upon formation of a plurality of layers of the green body, or in some cases, after the green body is fully formed. The binder fluid can include latex particles as a binding agent and an aqueous liquid vehicle. In some examples, the binder fluid can also include a multihydrazide adhesion promoter. If the multihydrazide adhesion promoter is not present in the binder fluid, then there can be a separate adhesion promoter fluid present that contains the multihydrazide adhesion promoter. Thus, description related to the multihydrazide adhesion promoter is relevant to the binder fluid when the multihydrazide adhesion promoter is included in a common aqueous liquid vehicle with the latex particles.
Referring now specifically to the latex particles that can be used in a binder fluid to pattern build material to form a 3D green body object, and ultimately a fused 3D object, the latex particles can be present based on a total weight of the binder fluid at from about 1 wt % to about 40 wt %. In other more detailed examples, the latex particles can be present at from about 5 wt % to about 30 wt %, from about 12 wt % to about 22 wt %, from about 15 wt % to about 20 wt %, from about 10 wt % to about 20 wt %, or from about 6 wt % to about 18 wt %.
The latex particles can be a polymer that can have different morphologies. In one example, the latex particles can include two different copolymer compositions, which may be fully separated core-shell polymers, partially occluded mixtures, or intimately comingled as a polymer solution. In another example, the latex particles can be individual spherical particles containing polymer compositions of hydrophilic (hard) component(s) and/or hydrophobic (soft) component(s) that can be interdispersed. In one example, the interdispersion can be according to IPN (interpenetrating networks). In yet another example, the latex particles can be composed of a hydrophobic core surrounded by a continuous or discontinuous hydrophilic shell. For example, the particle morphology can resemble a raspberry, in which a hydrophobic core can be surrounded by several smaller hydrophilic particles that can be attached to the core. In yet another example, the latex particles can include 2, 3, or 4 or more relatively large polymer particles that can be attached to one another or can surround a smaller polymer core. In a further example, the latex particles can have a single phase morphology that can be partially occluded, can be multiple-lobed, or can include any combination of any of the morphologies disclosed herein.
In some examples, the latex particles can be heteropolymers or copolymers. As used herein, a heteropolymer can include a hydrophobic component and a hydrophilic component. A heteropolymer can include a hydrophobic component that can include from about 65% to about 99.9% (by weight of the heteropolymer), and a hydrophilic component that can include from about 0.1% to about 35% (by weight of the heteropolymer). In one example, the hydrophobic component can have a lower glass transition temperature than the hydrophilic component.
In some examples, the latex particles can be composed of a polymerization or co-polymerization of acrylic monomers, styrene monomers, or a combination thereof. Example monomers can include, C1-C20 linear or branched alkyl (meth)acrylate, alicyclic (meth)acrylate, alkyl acrylate, styrene, methyl styrene, polyol (meth)acrylate, hydroxyethyl (meth)acrylate, (meth)acrylic acid, or a combination thereof. In one specific class of examples, the latex particles can be a styrene (meth)acrylate copolymer. The term “(meth)acrylate” or “(meth)acrylic acid” or the like refers to monomers, copolymerized monomers, etc., that can either be acrylate or methacrylate (or a combination of both), or acrylic acid or methacrylic acid (or a combination of both). In some examples, the terms “(meth)acrylate” and “(meth)acrylic acid” can be used interchangeably, as acrylates and methacrylates are salts and esters of acrylic acid and methacrylic acid, respectively. Furthermore, mention of one compound over another can be a function of pH. Furthermore, even if the monomer used to form the polymer was in the form of a (meth)acrylic acid during preparation, pH modifications during preparation or subsequently when added to an ejectable fluid, such as a binder fluid, can impact the nature of the moiety as well (acid form vs. salt or ester form). Thus, a monomer or a moiety of a polymer described as (meth)acrylic acid or as (meth)acrylate should not be read so rigidly as to not consider relative pH levels, ester chemistry, and other general organic chemistry concepts. In still another example, the latex particles can include a copolymer with copolymerized methyl methacrylate being present at about 50 wt % or greater, or copolymerized styrene being present at about 50 wt % or greater. Both can be present, with one or the other at about 50 wt % or greater in a more specific example.
In other examples, the latex particles in the binder fluid include polymerized monomers of vinyl, vinyl chloride, vinylidene chloride, vinyl ester, acrylate, methacrylate, styrene, ethylene, maleate esters, fumarate esters, itaconate esters, α-methyl styrene, p-methyl styrene, methyl methacrylate, hexyl acrylate, hexyl methacrylate, butyl acrylate, butyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, octadecyl acrylate, octadecyl methacrylate, stearyl methacrylate, vinylbenzyl chloride, isobornyl acrylate, tetrahydrofurfuryl acrylate, 2-phenoxyethyl methacrylate, benzyl methacrylate, benzyl acrylate, ethoxylated nonyl phenol methacrylate, isobornyl methacrylate, cyclohexyl methacrylate, trimethyl cyclohexyl methacrylate, t-butyl methacrylate, n-octyl methacrylate, lauryl methacrylate, trydecyl methacrylate, alkoxylated tetrahydrofurfuryl acrylate, isodecyl acrylate, isobornylmethacrylate, isobornyl acrylate, dimethyl maleate, dioctyl maleate, acetoacetoxyethyl methacrylate, diacetone acrylamide, N-vinyl imidazole, N-vinylcarbazole, N-Vinyl-caprolactam, combinations thereof, derivatives thereof, or mixtures thereof. These monomers include low glass transition temperature (Tg) monomers that can be used to form the hydrophobic component of a heteropolymer.
In other examples, a composition of the latex particles can include acidic monomers. In some examples, the acidic monomer content can range from 0.1 wt % to 15 wt %, from 0.5 wt % to 12 wt %, or from 1 wt % to 10 wt % of the latex particles with the remainder of the latex particle being composed of non-acidic monomers. Example acidic monomers can include acrylic acid, methacrylic acid, ethacrylic acid, dimethylacrylic acid, maleic anhydride, maleic acid, vinylsulfonate, cyanoacrylic acid, vinylacetic acid, allylacetic acid, ethylidineacetic acid, propylidineacetic acid, crotonoic acid, fumaric acid, itaconic acid, sorbic acid, angelic acid, cinnamic acid, styrylacrylic acid, citraconic acid, glutaconic acid, aconitic acid, phenylacrylic acid, acryloxypropionic acid, aconitic acid, phenylacrylic acid, acryloxypropionic acid, vinylbenzoic acid, N-vinylsuccinamidic acid, mesaconic acid, methacroylalanine, acryloylhydroxyglycine, sulfoethyl methacrylic acid, sulfopropyl acrylic acid, styrene sulfonic acid, sulfoethylacrylic acid, 2-methacryloyloxymethane-1-sulfonic acid, 3-methacryoyloxypropane-1-sulfonic acid, 3-(vinyloxy)propane-1-sulfonic acid, ethylenesulfonic acid, vinyl sulfuric acid, 4-vinylphenyl sulfuric acid, ethylene phosphonic acid, vinyl phosphoric acid, vinyl benzoic acid, 2-acrylamido-2-methyl-1-propanesulfonic acid, combinations thereof, derivatives thereof, or mixtures thereof. These acidic monomers are higher Tg hydrophilic monomers, than the low Tg monomers above, and can be used to form the hydrophilic component of a heteropolymer. Other examples of high Tg hydrophilic monomers can include acrylamide, methacrylamide, monohydroxylated monomers, monoethoxylated monomers, polyhydroxylated monomers, or polyethoxylated monomers.
In an example, the selected monomer(s) can be polymerized to form a polymer, heteropolymer, or copolymer with a co-polymerizable dispersing agent. The co-polymerizable dispersing agent can be a polyoxyethylene compound, such as a HITENOL® compound (Montello Inc.) e.g., polyoxyethylene alkylphenyl ether ammonium sulfate, sodium polyoxyethylene alkylether sulfuric ester, polyoxyethylene styrenated phenyl ether ammonium sulfate, or mixtures thereof. Any suitable polymerization process can be used. In some examples, an aqueous dispersion of latex particles can be produced by emulsion polymerization or co-polymerization of any of the above monomers.
In one example, the latex particles can be prepared by polymerizing high Tg hydrophilic monomers to form the high Tg hydrophilic component and attaching the high Tg hydrophilic component onto the surface of the low Tg hydrophobic component. In another example, the latex particles can be prepared by polymerizing the low Tg hydrophobic monomers and the high Tg hydrophilic monomers at a ratio of the low Tg hydrophobic monomers to the high Tg hydrophilic monomers that ranges from 5:95 to 30:70. In this example, the low Tg hydrophobic monomers can dissolve in the high Tg hydrophilic monomers. In yet another example, the latex particles can be prepared by polymerizing the low Tg hydrophobic monomers, then adding the high Tg hydrophilic monomers. In this example, the polymerization process can cause a higher concentration of the high Tg hydrophilic monomers to polymerize at or near the surface of the low Tg hydrophobic component. In still another example, the latex particles can be prepared by copolymerizing the low Tg hydrophobic monomers and the high Tg hydrophilic monomers, then adding additional high Tg hydrophilic monomers. In this example, the copolymerization process can cause a higher concentration of the high Tg hydrophilic monomers to copolymerize at or near the surface of the low Tg hydrophobic component.
Other suitable techniques, specifically for generating a core-shell structure, can include grafting a hydrophilic shell onto the surface of a hydrophobic core, copolymerizing hydrophobic and hydrophilic monomers using ratios that lead to a more hydrophilic shell, adding hydrophilic monomer (or excess hydrophilic monomer) toward the end of the copolymerization process so there is a higher concentration of hydrophilic monomer copolymerized at or near the surface, or any other method can be used to generate a more hydrophilic shell relative to the core.
In one specific example, the low Tg hydrophobic monomers can be selected from the group consisting of C4 to C8 alkyl acrylate monomers, C4 to C8 alkyl methacrylate monomers, styrene monomers, substituted methyl styrene monomers, vinyl monomers, vinyl ester monomers, and combinations thereof; and the high Tg hydrophilic monomers can be selected from acidic monomers, unsubstituted amide monomers, alcoholic acrylate monomers, alcoholic methacrylate monomers, C1 to C2 alkyl acrylate monomers, C1 to C2 alkyl methacrylate monomers, and combinations thereof. The resulting polymer latex particles can exhibit a core-shell structure, a mixed or intermingled polymeric structure, or some other morphology.
In some examples, the latex polymer can have a weight average molecular weight (Mw) that can range from about 5,000 Mw to about 2,000,000 Mw. In yet other examples, the weight average molecular weight can range from about 100,000 Mw to about 1,000,000 Mw, from about 100,000 Mw to about 500,000 Mw, from about 150,000 Mw to about 300,000 Mw, or from about 50,000 Mw to about 250,000 Mw. Weight average molecular weight (Mw) can be measured by Gel Permeation Chromatography with polystyrene standard.
In some examples, the latex polymer particles can be latent and can be activated by heat (applied iteratively or after green body formation). In these instances, the activation temperature can correspond to the minimum film formation temperature (MFFT) or a glass transition temperature (Tg) which can be greater than ambient temperature. As mentioned herein, “ambient temperature” may refer to room temperature (e.g., ranging about 18° C. to about 22° C.). In one example, the latex polymer particles can have a MFFT or Tg that can be at least about 15° C. greater than ambient temperature. In another example, the MFFT or the Tg of the bulk material (e.g., the more hydrophobic portion) of the latex polymer particles can range from about 25° C. to about 200° C. In another example, the latex particles can have a MFFT or Tg ranging from about 40° C. to about 120° C. In yet another example, the latex polymer particles can have a MFFT or Tg ranging from about 50° C. to about 150° C. In a further example, the latex polymer particles can have a Tg that can range from about −20° C. to about 130° C., or in another example from about 60° C. to about 105° C. At a temperature above the MFFT or the Tg of a latent latex polymer particle, the polymer particles can coalesce and can bind materials.
The latex particles can have a particle size that can be jetted via thermal ejection or printing, piezoelectric ejection or printing, drop-on-demand ejection or printing, continuous ejection or printing, etc. In an example, the particle size of the latex particles can range from about 10 nm to about 400 nm. In yet other examples, a particle size of the latex particles can range from about 10 nm to about 300 nm, from about 50 nm to about 250 nm, from about 100 nm to about 300 nm, or from about 25 nm to about 250 nm.
In the various binder fluids described herein, these fluids can be aqueous fluids, and can include liquid vehicle ingredients, such as water, organic co-solvents, biocides, viscosity modifiers, pH adjusters, sequestering agents, preservatives, latex polymer, etc. More detail regarding the liquid vehicles that can be used is provided hereinafter.
Binder Fluids and Adhesion Promoter Fluids
Turning now to the fluids that can be prepared in accordance with the present disclosure, in addition to the particulate build material, the kits and methods described herein can include a binder fluid including latex particles, and in some instances a separate adhesion promoter fluid. If the binder fluid also includes the multihydrazide adhesion promoter described herein, then there may or may not be a separate adhesion promoter fluid. If, however, there is no multihydrazide adhesion promoter in the binder fluid, then the 3D printing kits and methods of 3D printing described herein will include an adhesion promoter fluid that contains the multihydrazide adhesion promoter. In other words, the multihydrazide adhesion promoter and the latex particles are included in the system either together in a common binder fluid, or in separate fluids as a binder fluid and an adhesion promoter fluid, or the multihydrazide adhesion promoter can be included in the binder fluid and there may still further be a separate adhesion promoter fluid.
Regardless of whether the binder fluid delivers both the latex particles and the multihydrazide adhesion promoter to the particulate build material, or whether the binder fluid delivers the latex particles and a separate adhesion promoter fluid delivers the multihydrazide adhesion promoter, there are weight ratios of latex particles to multihydrazide adhesion promoter within a layer of the particulate build material that can be effective for enhancing tensile strength of the 3D green body object prior to fusing. For example, the weight ratio of latex particles to multihydrazide adhesion promoter when applied to the particulate build material can be from about 10:1 to about 100:1, from about 15:1 to about 80:1, or from about 20:1 to about 70:1. If there are two fluids used, namely a binder fluid and an adhesion promoter fluid, these fluids can be formulated to deliver the latex particles from the binder fluid and the multihydrazide adhesion promoter from the adhesion promoter fluid at a binder fluid to adhesion promoter weight ratio of about 5:1 to about 1:5, from about 2:1 to about 1:2, or at about 1:1. The respective fluids can be formulated to deliver volumes of fluid sufficient so that some mixing can occur when applied to the particulate build material.
Regardless of where the latex particles reside relative to the multihydrazide adhesion promoter, these fluids can be aqueous fluids in the form of aqueous dispersions or solutions carried by an aqueous liquid vehicle. The aqueous liquid vehicles can make up about 60 wt % to about 90 wt % of the binder fluid (with or without the multihydrazide adhesion promoter), and if there is a separate adhesion promoter fluid, the aqueous liquid vehicle can make up about 80 wt % to about 99.9 wt % of the adhesion promoter fluid. In other examples, the aqueous liquid vehicle can be included in the binder fluid at from about 60 wt % to about 85 wt %, from about 60 wt % to about 80 wt %, from about 75 wt % to about 90 wt %, or from about 70 wt % to about 80 wt %, based on a total weight of the binder fluid. In further detail, if there is a separate adhesion promoter fluid, the aqueous liquid vehicle can be included in this fluid at from about 80 wt % to about 99 wt %, from about 80 wt % to about 95 wt %, from about 90 wt % to about 98 wt %, or from about 85 wt % to about 95 wt %, based on a total weight of the adhesion promoter fluid.
In some examples, the aqueous liquid vehicle(s) can include water, co-solvents, dispersing agents, biocides, viscosity modifiers, pH adjusters, sequestering agents, preservatives, and the like. In one example, water can be present at from about 30 wt % to 100 wt % of the liquid vehicle component—excluding latex binder and multihydrazide adhesion promoter—based on a total weight of the aqueous liquid vehicle. In other examples, the water can be present at from about 60 wt % to about 95 wt %, from about 75 wt % to 100 wt %, or from about 80 wt % to about 99 wt %, based on a total weight of the aqueous liquid vehicle.
The co-solvent can be present at from about 0.5 wt % to about 50 wt % in the aqueous liquid vehicle, based on a total weight of the binder fluid or the total weight of the adhesion promoter fluid. In some examples, the co-solvent can be a high boiling point solvent, which can have a boiling point of at least about 110° C. Example co-solvents can include aliphatic alcohols, aromatic alcohols, alkyl diols, glycol ethers, polyglycol ethers, 2-pyrrolidinones, caprolactams, formamides, acetamides, long chain alcohols, and combinations thereof. For example, the co-solvent can include aliphatic alcohols with a —CH2OH group, secondary aliphatic alcohols, 1,2-alcohols, 1,3-alcohols, 1,5-alcohols, ethylene glycol alkyl ethers, propylene glycol alkyl ethers, C6 to C12 homologs of polyethylene glycol alkyl ethers, N-alkyl caprolactams, unsubstituted caprolactams, both substituted and unsubstituted formamides, both substituted and unsubstituted acetamides, combinations thereof, and the like. Other example organic co-solvents can include propyleneglycol ether, dipropyleneglycol monomethyl ether, dipropyleneglycol monopropyl ether, dipropyleneglycol monobutyl ether, tripropyleneglycol monomethyl ether, tripropyleneglycol monobutyl ether, dipropyleneglycol monophenyl ether, 2-pyrrolidinone, 2-methyl-1,3-propanediol, and combinations thereof.
If a surfactant is included, examples can include SURFYNOL® SEF, SURFYNOL® 104, or SURFYNOL® 440 (Evonik Industries AG, Germany); CRODAFOS™ N3 Acid or BRIJ® 010 (Croda International Plc., Great Britain); TERGITOL® TMN6, TERGITOL® 15S5, TERGITOL® 15S7, DOWFAX® 2A1, or DOWFAX® 8390 (Dow, USA); or a combination thereof. The surfactant or combinations of surfactants can be present in the binder fluid and/or the adhesion promoter fluid at from about 0.1 wt % to about 5 wt % in its respective fluid based on the total fluid content weight, and in some examples, can be present at from about 0.5 wt % to about 2 wt %. With respect to antimicrobials, any compound suitable to inhibit the growth of harmful microorganisms can be included. These additives may be biocides, fungicides, and other microbial agents. Examples of suitable microbial agents can include, but are not limited to, NUOSEPT® (Troy, Corp.), UCARCIDE™, KORDEK™, ROCIMA™, KATHON™ (all available from The Dow Chemical Co.), VANCIDE® (R.T. Vanderbilt Co.), PROXEL® (Arch Chemicals), ACTICIDE® B20 and ACTICIDE® M20 and ACTICIDE® MBL (blends of 2-methyl-4-isothiazolin-3-one (MIT), 1,2-benzisothiazolin-3-one (BIT), and Bronopol (Thor Chemicals); AXIDE™ (Planet Chemical); NIPACIDE™ (Clariant), etc. Sequestering agents such as EDTA (ethylene diamine tetra acetic acid) may be included to eliminate the deleterious effects of heavy metal impurities, and buffer solutions may be used to control the pH of the ink. Viscosity modifiers and buffers may also be present, as well as other additives to modify properties of the respective fluids.
In some examples, the aqueous liquid vehicle(s) can include from about 0.1 wt % to about 1 wt % of an anti-kogation agent, based on a total weight percentage of the binder fluid, the total weight of the multihydrazide adhesion promoter, or both if both are present in a common aqueous liquid vehicle. Kogation refers to the deposit of dried solids on a printhead. An anti-kogation agent can be included to prevent the buildup of dried solids on the printhead. Examples of suitable anti-kogation agents can include oleth-3-phosphate (commercially available as CRODAFOS™ O3A or CRODAFOS™ N-3 acid), dextran 500k, CRODAFOS™ HCE (phosphate-ester from Croda Int.), CRODAFOS® N10 (oleth-10-phosphate from Croda Int.), or DISPERSOGEN® LFH (polymeric dispersing agent with aromatic anchoring groups, acid form, anionic, from Clariant), etc.
Three-dimensional Printing Kits and Methods of Three-dimensional Printing
In further detail, as shown in
In
In
The ejector(s) can deposit fluid(s) in a layer that corresponds to the layers of the 3D object, and can be used to form a green body 3D object in any orientation. For example, the 3D object can be printed from bottom to top, top to bottom, on its side, at an angle, or any other orientation. The orientation of the 3D object can also be formed in any orientation relative to the layering of the particulate build material. For example, the 3D object can be formed in an inverted orientation or on its side relative to the build layering within the particulate build material. The orientation of build or the orientation of the 3D object to be built within the particulate build material can be selected in advance or even by the user at the time of printing, for example.
In another example, as shown in
The selectively applying of the water, latex particles, and the multihydrazide adhesion promoter can be carried out using a single binder fluid (with the water, latex particles, and multihydrazide adhesion promoter), or can be carried out using multiple fluids, with water and latex particles in the binder fluid and water and multihydrazide adhesion promoter in a separate adhesion promoter fluid. More specifically, in the former example, the latex particles and the multihydrazide adhesion promoter can be selectively applied by ejecting a binder fluid including water. The latex particles can be present at an amount of from about 1 wt % to about 40 wt % based on the total weight of the binder fluid and the multihydrazide adhesion promoter can be present in an amount of about 0.05 wt % to about 3 wt % based on the total weight of the binder fluid. In the latter example, the latex particles can be selectively applied by ejecting a binder fluid including water and the latex particles in an amount of from about 1 wt % to about 40 wt % based on the total weight of the binder fluid, and the multihydrazide adhesion promoter can be selectively applied by ejecting an adhesion promoter fluid as a separate fluid relative to the binder fluid. The adhesion promoter fluid can likewise include water, but further, the multihydrazide adhesion promoter can be present in an amount of about 0.1 wt % to about 5 wt % based on the total weight of the adhesion promoter fluid.
Following application of the binder fluid (with multihydrazide adhesion promoter included) or the binder fluid and the adhesion promotor fluid, the particulate build material and fluid(s) applied thereto can be heated to an elevated temperature to assist with solidifying the 3D green body object in preparation for moving to a fusing oven. In one example, heating can be carried out at from about 100° C. to about 250° C., about 120° C. to about 220° C., or about 150° C. to about 200° C. for time sufficient to solidify or stabilize the green body for movement to a fusing oven. Time frames for heating individual layers may be short, e.g., from about 0.5 second to about 120 seconds, for example. If heating the green body after it is fully formed, time frames can vary as well, depending on size of the green body, e.g., large objects with a smaller surface to volume ratio may take longer to drive off enough fluid to stabilize the green body than a smaller object with a larger surface to volume ratio. That stated, time frames for heating the green body after formation can be from about 10 minutes to about 8 hours, or from about 30 minutes to about 3 hours. In many cases, individual layers can be heated during the build, and furthermore, additional heating can occur after the green body is fully formed. In other words, one goal may be to generate a green body object that is stable enough to move after formation to a fusing oven. With the use of the multihydrazide adhesion promoter with the latex particles, stability may be easier to achieve than with systems that do not use both components. In one specific example, it may be efficient to not fully cure every individual layer prior to applying the next green body layer, but rather coalesce the latex particles during printing (with perhaps some curing), and after building the green body as a whole or after building a large portion of the green body, e.g., at least 25% of the green body part, heating the green body further while still supported within the particulate build material. Depending on the size of the green body part or large portion thereof, heating after building can occur for 10 minutes to 8 hours, or from 30 minutes to 3 hours, for example, as mentioned previously.
Upon coalescing or otherwise binding of the particulate build material by the latex particles and the multihydrazide adhesion promoter, the 3D object with enhanced tensile strength can be moved to a heating device, such as a fusing oven. In one example, the heating can be a temperature ranging from about 500° C. to about 3,500° C., including at a temperature within the range where the metal particles are fused together. In another example, the temperature can range from about 600° C. to about 1,500° C., or from about 800° C. to about 1200° C. In further detail, the fusing temperature range can vary, depending on the material, but in one example, the fusing temperature can range from about 10° C. below the melting temperature of the metal particles of the particulate build material to about 50° C. below the melting temperature of the metal particles of the particulate build material. In another example, the fusing temperature can range from about 100° C. below the melting temperature of the metal particles of the particulate build material to about 200° C. below the melting temperature of the metal particles of the particulate build material. The fusing temperature can depend upon the particle size and period of time that heating occurs, e.g., at a high temperature for a sufficient time to cause particle surfaces to become physically merged or composited together. For example, a fusing temperature for stainless steel can be about 1400° C. and an example of a fusing temperature for aluminum or aluminum alloys can range from about 550° C. to about 620° C. Temperatures outside of these ranges can be used as determined on a case by case basis.
During heating in the oven, the heating device can include an inert atmosphere to avoid oxidation of the metal particles. In one example, the inert atmosphere can be oxygen-free and can include a noble gas, an inert gas, or combination thereof. For example, the inert atmosphere can include a noble gas or an inert gas selected from argon, nitrogen, helium, neon, krypton, xenon, radon, hydrogen, or a combination thereof. Upon removal of the fused 3D object from the oven and cooling (or annealing by controlling the cool down rate in the oven), the fused 3D object can be treated or polished, such as by sand blasting, bead blasting, air jetting, tumble finishing such as barrel finishing, vibratory finishing, or a combination thereof. Tumble or vibratory finishing techniques can be performed wet (involving liquid lubricants, cleaners, or abrasives) or dry.
It is noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise.
The term “about” as used herein, when referring to a numerical value or range, allows for a degree of variability in the value or range, for example, within 10%, or, in one aspect within 5%, of a stated value or of a stated limit of a range. The term “about” when modifying a numerical range is also understood to include as one numerical subrange a range defined by the exact numerical value indicated, e.g., the range of about 1 wt % to about 5 wt % includes 1 wt % to 5 wt % as an explicitly supported sub-range.
As used herein, “devoid” refers to a numerical quantity that can be zero or can be substantially zero, e.g., a quantity may be permissible in trace amounts, such as up to 0.1 wt % of a formulation or composition.
As used herein, the term “green” when referring to a green part, green body, 3D green body object, green body layer, etc. refers to any intermediate structure that has been solidified and/or cured (prior to heat fusing), furthermore, a green body object can include particulate build material, latex particles, and multihydrazide adhesion promoter. The latex particles can be used to bind the particulate build material together, and the multihydrazide adhesion promoter can be present at locations where the latex particles are deposited or at a plurality of locations where the latex particles are applied. The term “green body” generally is used to refer to a multi-layered object that is (weakly) bound together, but upon some water removal, can exhibit sufficient tensile strength to be moved to a fusing oven, for example. It is to be understood that any build material that is not patterned with at least binder fluid is not considered to be part of the green body, even if it is adjacent to or surrounds the green body. For example, unprinted particulate build material acts to support the green body while contained therein, but the particulate build material is not part of the green body unless it is printed with binder fluid (or binder fluid along with an adhesion promoter fluid) to generate a solidified part prior to fusing.
As used herein, the terms “3D part,” “3D object,” or the like, refers to the target 3D object that is being built, and can be a green body 3D object or a fused 3D object, depending on the context. However, in some instances, for clarity, the 3D object can be referred to as a “fused” 3D object, indicating it has been fused, e.g., sintered, annealed, melted, etc., or a “green body,” “3D green body object,” or “green” 3D object, indicating it has been solidified or in the process of solidification sufficient for movement, but not yet heat fused.
“Binder fluid” refers to a fluid that includes water and latex particles that are effective for binding layers of particulate build material when forming a green body. The binder fluid is typically applied to form a 3D green body object, and in some cases, can include a multihydrazide adhesion promoter, particularly if there is not a separate adhesion promoter fluid present.
“Adhesion promoter fluid” refers to a fluid that includes water and multihydrazide adhesion promoter. The adhesion promoter fluid may or may not be present in a 3D printing kit or related methods of 3D printing, as the multihydrazide adhesion promoter may already be present in the binder fluid.
The term “fluid” does not infer that the composition is free of particulate solids, but rather, can include solids dispersed therein, including carbon black pigment, latex particles, or other solids that are dispersed in the liquid vehicle of the fluid.
As used herein, “material set” or “kit” can be synonymous with and understood to include a plurality of compositions comprising one or more components where the different compositions can be separately contained in one or more containers prior to and/or during use, e.g., building a green 3D object for subsequent fusing. These compositions of the “kit” can be combined together during a 3D build process. The containers can be any type of a vessel, box, or receptacle made of any material.
The term “fuse,” “fusing,” “fusion,” or the like refers to the joining of the material of adjacent particles of a particulate build material, such as by sintering, annealing, melting, or the like, and can include a complete fusing of adjacent particles into a common structure, e.g., melting together, or can include surface fusing where particles are not fully melted to a point of liquefaction, but which allow for individual particles of the particulate build material to become bound to one another, e.g., forming material bridges between particles at or near a point of contact.
As used herein, a plurality of items, structural elements, compositional elements, and/or materials may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a de facto equivalent of any other member of the same list based on their presentation in a common group without indications to the contrary.
Concentrations, dimensions, amounts, and other numerical data may be presented herein in a range format. It is to be understood that such range format is used merely for convenience and brevity and should be interpreted flexibly to include the numerical values explicitly recited as the limits of the range, as well as to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. For example, a weight ratio range of about 1 wt % to about 20 wt % should be interpreted to include the explicitly recited limits of 1 wt % and 20 wt % and to include individual weights such as about 2 wt %, about 11 wt %, about 14 wt %, and sub-ranges such as about 10 wt % to about 20 wt %, about 5 wt % to about 15 wt %, etc.
The following illustrates an example of the present disclosure. However, it is to be understood that the following is illustrative of the application of the principles of the present disclosure. Numerous modifications and alternative compositions, methods, and systems may be devised without departing from the spirit and scope of the present disclosure. The appended claims are intended to cover such modifications and arrangements.
To evaluate the tensile strength of various binder fluids with various multihydrazides and without any multihydrazide (as a control), the following binder fluid formulations were prepared, according to Table 2:
A tensile strength test was conducted as shown in
As can be seen from Table 3 and
The Control Binder Fluid (B0) of Table 3 in Example 2 above can be used as a binder fluid for preparing 3D green body objects for subsequent sintering in high temperature ovens. However, in accordance with examples of the present disclosure, without the presence of a multihydrazide adhesion promoter therein, a separate adhesion promoter fluid can be formulated to print separately onto various layers of particulate build material, such as the 22 μm stainless steel particles, e.g., powder, described above. Example binder fluids and adhesion promoter fluids are provided by way of example in Table 4 below that can be printed at about a 1:1 weight ratio with the Control Binder Fluid (B0) of Table 3. Other formulations can also be prepared for printing at other weight ratios, and thus, the following formulations are provided by way of example.
This application is a continuation application of co-pending U.S. application Ser. No. 16/604,399, filed Oct. 10, 2019, which itself is a national stage entry under 35 U.S.C. § 371 of International Patent Application No. PCT/US2018/042850, filed Jul. 19, 2018, each of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 16604399 | Oct 2019 | US |
Child | 18122670 | US |