Enclosures may be used to surround equipment located outside of a building in an industrial facility or equipment located inside of a building. Such enclosures may protect the equipment from a variety of environmental conditions, such as extreme temperatures, humidity, and moisture.
In one aspect, a three dimensional structural member is disclosed. The three dimensional structural member includes a frame member that includes a variable cross section three dimensional structure that includes a first end and a second end; a mounting flange at the second end of the variable cross section three dimensional structure that at least partially encloses the second end, where the mounting flange includes through holes for mounting the frame member; and a transverse stiffener positioned within the variable cross section three dimensional structure that includes a rigid support structure rigidly fixed to a first flange, a web, and a second flange of the variable cross section three dimensional structure.
In another aspect, a three dimensional structural frame member is disclosed, where the variable cross section three dimensional structure is a single piece of sheet metal.
In another aspect, a three dimensional structural frame member is disclosed, where the variable cross section three dimensional structure and the mounting flange include a single piece of sheet metal.
In another aspect, a three dimensional structural frame member is disclosed, where the variable cross section three dimensional structure is an open three dimensional structure.
In another aspect, a three dimensional structural frame member is disclose, where the transverse stiffener is welded to the first flange, the web, and the second flange of the variable cross section three dimensional structure.
In another aspect, a three dimensional structural frame is disclosed. The three dimensional structural frame includes two three dimensional structural frame members connected at their first ends.
In another aspect, a three dimensional structural frame is disclosed, further including a connector for a fall protection harness between the firsts ends of the two three dimensional structural frame members.
In another aspect, a three dimensional structural frame member is disclosed. The three dimensional structural frame member includes a frame member that includes a three dimensional structure that includes a first end and a second end, where the first end has a first width, the second end has a second width, and the first and second widths are substantially equal; a mounting flange at the second end of the three dimensional structure that at least partially encloses the second end, where the mounting flange includes through holes for mounting the frame member; and a transverse stiffener positioned within the three dimensional structure that includes a rigid support structure rigidly fixed to a first flange, a web, and a second flange of the three dimensional structure.
In another aspect, a three dimensional structural frame is disclosed, where the three dimensional structure is a single piece of sheet metal.
In another aspect, a three dimensional structural frame is disclosed, where the three dimensional structure and the mounting flange include a single piece of sheet metal.
In another aspect, a three dimensional structural frame is disclosed, where the three dimensional structure is an open three dimensional structure.
In another aspect, a three dimensional structural frame is disclosed, where the transverse stiffener is welded to the first flange, the web, and the second flange of the three dimensional structure.
In another aspect, a three dimensional structural frame is disclosed. The three dimensional structural frame includes two three dimensional structural frames connected at their first ends.
In another aspect, a three dimensional structural frame is disclosed, further including a connector for a fall protection harness between the firsts ends of the two three dimensional structural frame members.
In another aspect, a three dimensional structural frame is disclosed. The three dimensional structural frame includes a frame member that includes an elongated three dimensional structure having a first side, a second side, and a center support portion, where the first side has a variable cross section from a first end to the center support portion, and where the second side has a variable cross section from a second end to the center support portion, the frame member further includes mounting flanges at the first end and the second end that at least partially enclose the first end and the second end, where the mounting flanges include through holes for mounting the frame member; a center support mounted at the center support portion; and transverse stiffeners positioned within the three dimensional structure on the first side and the second side that includes a rigid support structure rigidly fixed to a first flange, a web, and a second flange of the three dimensional structure.
In another aspect, a three dimensional structural frame is disclosed, where the frame member is a single piece of sheet metal.
In another aspect, a three dimensional structural frame is disclosed, where the center support includes a connector for a fall protection harness.
In another aspect, a three dimensional structural frame is disclosed, where the transverse stiffeners are welded to the first flange, the web, and the second flange of the three dimensional structure.
In another aspect, an enclosure is disclosed. The enclosure includes a plurality of three dimensional structural frames; and opposing wall portions interconnected by the plurality of three dimensional structural frames, where the wall portions include a plurality of uniform wall sections, where the wall sections include a wall panel portion, a top wall portion, and sidewall portions, where the sidewall portions of the plurality of wall sections are joined to form the wall portions, where the plurality of three dimensional structural frames are attached to the top wall portions of the wall sections.
In another aspect, an enclosure is disclosed, where the ends of the three dimensional structural frames overlap and are simultaneously attached to two wall sections.
In another aspect, an enclosure is disclosed, where the wall sections include a single piece of formed sheet metal.
In another aspect, an enclosure is disclosed, further including a plurality of support members, where the support members extend between the opposing wall portions.
In another aspect, an enclosure is disclosed, where the wall sections include a bottom wall portion.
In another aspect, an enclosure is disclosed, where the sidewalls of the plurality of wall sections are connected by a plurality of rivets.
In another aspect, an enclosure is disclosed, further including a gasket between the sidewall portions.
In another aspect, an enclosure is disclosed, where the gasket includes a silicone bead, polyurethane, or structural adhesive.
In another aspect, an enclosure is disclosed, further including a roof that includes a plate secured to the three dimensional structural frames.
In another aspect, an enclosure is disclosed, where the plate includes sheet metal.
In another aspect, an enclosure is disclosed, where the plate includes perforated sheet metal.
In another aspect, an enclosure is disclosed, where the roof further includes a weatherproof membrane overlaying the plate and attached to the wall panel portions of the wall sections.
In another aspect, an enclosure is disclosed, further including a first support member connected to a first group of wall sections, and a second support member connected to a second group of wall sections.
In another aspect, an enclosure disclosed, further including a strengthening member connected to the plurality of three dimensional structural frames.
In another aspect, a lift plate for engaging the ends of a plurality of three dimensional structural frames is disclosed. The lift plate includes a planar portion that includes a series of a pattern of mounting holes for receiving hardware for securing the plate to the ends of the plurality of frames; and a connecting portion for engaging a harness that provides upward force to lift the plate and the frames.
In another aspect, a lift plate is disclosed, where the connecting portion includes a reinforcement plate.
In another aspect, a lift plate is disclosed, where the connecting portion includes two reinforcement plates.
In another aspect, a liftable enclosure is disclosed. The liftable enclosure includes a plurality of the three dimensional structural frames; and at least two lift plates that include a planar portion that includes a series of a pattern of mounting holes for receiving hardware for securing the plate to the ends of the plurality of frames and a connecting portion for engaging a harness that provides an upward force to lift the plate and the frames.
In another aspect, a liftable enclosure is disclosed, further including opposing walls interconnected by the plurality of three dimensional structural frames, where the walls include a plurality of uniform wall sections, where the wall sections include a wall panel portion, a top wall portion, and sidewall portions, where the sidewall portions of the plurality of wall sections are connected to form at least a portion of a wall of the enclosure, where the plurality of three dimensional structural frames are attached to the top wall portions of the wall sections.
In another aspect, a liftable enclosure is disclosed, where the lift plates are further connected to the wall panel portions of the wall sections.
In another aspect, a method for building a structure is disclosed. The method includes fabricating opposing walls of the structure by attaching sidewall portions of a plurality of wall sections comprising a wall panel portion, a top wall portion, and sidewall portions, where the sidewall portions of the plurality of wall sections; and attaching a plurality of three dimensional structural frames to the top walls portions of the wall sections of the opposing walls.
In another aspect, a method is disclosed, where the opposing walls are fabricated while the sidewall portions are substantially horizontal.
In another aspect, a method is disclosed, where the opposing walls are uprighted by attaching a lift plate to a top end of a plurality of wall sections and lifting the top end.
In another aspect, a method for lifting an enclosure is disclosed. The method includes attaching a plurality of lift plates to the a plurality of the ends of the three dimensional structural frames and the wall panel sections of the opposing walls; attaching a harness to the plurality of lift plates; and lifting the structure with an upward force to the harness, where the lift plates include a planar portion that includes a series of a pattern of mounting holes for receiving hardware for securing the plate to the ends of the plurality of frames and the wall panel sections, and a connecting portion for attaching the harness.
The accompanying drawings, which are included to provide a further understanding of the disclosure, are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure, and together with the detailed description serve to explain the principles of the invention. No attempt is made to show structural details of the invention in more detail than may be necessary for a fundamental understanding of the invention and various ways in which it may be practiced.
It may be desirable to lift enclosures in a variety of situations. As one example, when an enclosure surrounds equipment (e.g., a generator, related electrical, electronic, and mechanical components, and a fuel tank) it may be desirable to lift the enclosure to access the equipment for repair or replacement. As another example, it may be desirable to lift an enclosure during installation or fabrication of the enclosure.
In its various aspects, the disclosure is directed to three dimensional structural frames and enclosures and related methods. In an example embodiment, an enclosure may include three dimensional structural frames and opposing walls interconnected by the three dimensional structural frames, and lift plates may be connected to the three dimensional structural frames. The lift plates may be used to lift the enclosure upward. With this arrangement, the enclosure may be lifted without partially disassembling the enclosure.
Beneficially, embodiments described herein may reduce labor, equipment, and/or time needed to lift enclosures. In addition, embodiments described herein may reduce damage to the enclosure after or while the enclosure is lifted, such as excessive deformation of portions of the enclosure, plastic deformation of portions of the enclosure, and/or buckling of portions of the enclosure. Accordingly, embodiments described herein may help to reduce costs of lifting enclosures.
A. Three Dimensional Structural Frame Members
The frame member 110 may comprise a variety of materials. For instance, in some embodiments, the frame member 110 may comprise steel. And in some such embodiments, the frame member 110 may comprise sheet metal of variable thickness and post processing treatments. Moreover, in some embodiments, the variable cross section three dimensional structure 112 may comprise a single piece of sheet metal. Further, in some embodiments, the variable cross section three dimensional structure 112 and mounting flange 120 may comprise a single piece of sheet metal. The variable cross section three dimensional structure 112 and mounting flange 120 may comprise the same or similar material as the frame member 110.
As shown in
Further, as shown in
The first flange 140, the web 142, and the second flange 144 may take various different forms in various different embodiments. For instance, in some embodiments, the first flange 140, the web 142, and the second flange 144 may have the same thickness. However, in other embodiments, at least two of the first flange 140, the web 142, and the second flange 144 may have different thicknesses. Moreover, in some embodiments, each of the first flange 140, the web 142, and the second flange 144 may have different thicknesses.
The first flange 140, the web 142, and the second flange 144 may have other parameters that are the same or different as well. For instance, any XYZ dimension of the first flange 140 may be the same as or different than the corresponding XYZ dimension of the web 142 and/or the second flange 144, such as width, depth, and height. Further, the moment of inertia of the first flange 140 may be the same as or different than the moment of inertia of the web 142 and/or the second flange 144.
Moreover, in some embodiments, the first flange 140, the web 142, and/or the second flange 144 may have varying thicknesses, varying XYZ dimensions, and/or varying moments of inertia.
The transverse stiffener 130 may comprise a variety of materials in variable thicknesses. For instance, in some embodiments, the transverse stiffener 130 may comprise the same or similar material as the frame member 110. However, in other embodiments, the transverse stiffener 130 may comprise a different material than the frame member 110.
Further still, as shown in
The second transverse stiffener 132 may comprise any of the materials that the transverse stiffener 130 comprises. In some embodiments, the second transverse stiffener 132 may comprise the same or similar material as the first transverse stiffener 130 and/or the frame member 110. However, in other embodiments, the second transverse stiffener 132 may comprise a different material than the transverse stiffener 130 and/or the frame member 110. The second transverse stiffener 132 may be welded to the first flange 140, the web 142, and the second flange 144 in the same or similar way as the transverse stiffener 130 is welded to the first flange 140, the web 142, and the second flange 144. The transverse stiffener 130 and/or the second transverse stiffener 132 may strengthen the three dimensional structural frame member 100, for example, by improving resistance of the three dimensional structural frame member 100 to deformation, bending, rupturing, breaking, and other modes of failure.
The location of the transverse stiffener 130 in the variable cross section three dimensional structure 112 with respect to the first end 114 and the second end 116 may be selected based on predetermined loading of the three dimensional structural frame member 100 (e.g., bending moments and/or torsional loading). Similarly, the location of the second transverse stiffener 132 in the variable cross section three dimensional structure 112 with respect to the first end 114 and second end 116 and/or the transverse stiffener 130 may be selected based on predetermined loading of the three dimensional structural frame member 100. Other parameters of the three dimensional structural frame member 100 may be selected based on predetermined loading of the three dimensional structural frame member 100 as well, such as the material or thickness of the frame member 110, width of the first end 116, and width of the second end 118.
As shown in
The three dimensional structural frame member 200 may also include through holes, second through holes, and third through holes similar to through holes 122, second through holes 124, and third through holes 118 in the three dimensional structural frame member 100.
Components of the three dimensional structural frame member 200 of
For instance, in some embodiments, the three dimensional structure 212 may comprise a single piece of sheet metal. Moreover, in some embodiments, the three dimensional structure 212 and mounting flange 220 may comprise a single piece of sheet metal. Further, in some embodiments, the three dimensional structure 212 may comprise an open three dimensional structure comprising the first flange 240, the web 242, and the second flange 244. Further still, in some embodiments, the transverse stiffener 230 may be welded to the first flange 240, the web 242, and the second flange 244 of the three dimensional structure 212. The transverse stiffener 230 may be welded to the first flange 240, the web 242, and the second flange 244 of the three dimensional structure 212 in the same or similar way as the transverse stiffener 130 is welded to the first flange 140, the web 142, and the second flange 144 of the three dimensional structure 112. In addition, the second transverse stiffener 232 may be welded to the first flange 240, the web 242, and the second flange 244 of the three dimensional structure 212 in the same or similar way as the transverse stiffener 230 is welded to the first flange 240, the web 242, and the second flange 244 of the three dimensional structure 212.
B. Three Dimensional Structural Frames
In the illustrated example, the first three dimensional structural frame member 300A and second three dimensional structural frame member 300B may take the form of or be similar in form to the three dimensional structural frame member 100. Accordingly, components of the first three dimensional structural frame member 300A of
In some embodiments, a three dimensional structural frame may include a connector for a fall protection harness (which may be referred to as a fall prevention cleat).
As shown in
The connector 470 may comprise a variety of materials. For instance, in some embodiments, the connector 470 may comprise steel. And in some such embodiments, the connector 470 may comprise ½ inch hot rolled steel (HRS).
Further, in some embodiments, the connector 470 may strengthen the three dimensional structural frame 400 in the same or similar way as the transverse stiffener 130 and/or the second transverse stiffener 132 strengthen the three dimensional structural frame member 100.
In the illustrated example, the first three dimensional structural frame member 400A may take the form of or be similar in form to the first three dimensional structural frame member 300A, and second three dimensional structural frame member 400B may take the form of or be similar in form to the second three dimensional structural frame member 300B. Accordingly, the first three dimensional structural frame member 400A may have the same arrangement and function in a similar way as the first three dimensional structural frame member 300A, and the second three dimensional structural frame member 400B may have the same arrangement and function in a similar way as the second three dimensional structural frame member 300B.
Moreover, in some embodiments, three dimensional structural frames may have more than one connector for a fall protection harness.
The connector 570 may be between the first end 514A of the first three dimensional structural frame member 500A and the first end 515B of the second three dimensional structural frame member 500B. In addition, the connector 570 may be joined in the three dimensional structural frame 500 in the same or similar way as the connector 470 may be joined in the three dimensional structural frame 400.
In addition, the second connector 572 may be located between the first end 514A and the second end 516A of the first three dimensional structural frame member 500A. In some embodiments, the second connector 572 may be welded to the three dimensional structure 512A of the first three dimensional structural frame member 500A in the same or similar way as the connector 470 is welded to the three dimensional structure 412A and/or the three dimensional structure 412B. Moreover, the third connector 574 may be located between the first end 514B and the second end 516B of the second three dimensional structural frame member 500B. In some embodiments, the third connector 574 may be welded to the three dimensional structure 512B of the second three dimensional structural frame member 500B in the same or similar way as the connector 470 is welded to the three dimensional structure 412A and/or the three dimensional structure 412B.
Further, in some embodiments, the connector 570, the second connector 572, and the third connector 574 may strengthen the three dimensional structural frame 500 in the same or similar way as the transverse stiffener 130 and/or the second transverse stiffener 132 strengthen the three dimensional structural frame member 100.
In the illustrated example, the first three dimensional structural frame member 500A may take the form of or be similar in form to the first three dimensional structural frame member 300A, and second three dimensional structural frame member 500B may take the form of or be similar in form to the second three dimensional structural frame member 300B. Accordingly, the first three dimensional structural frame member 500A may have the same arrangement and function in a similar way as the first three dimensional structural frame member 300A, and the second three dimensional structural frame member 500B may have the same arrangement and function in a similar way as the second three dimensional structural frame member 300B.
In some embodiments, a three dimensional structural frame may be comprised of a single member.
As shown in
The frame member 610 may comprise the same or similar material as the frame member 110. Moreover, in some embodiments, the elongated three dimensional structure 612 may comprise a single piece of sheet metal. Further, in some embodiments, the elongated three dimensional structure 612 and mounting flanges 620, 630 may comprise a single piece of sheet metal. The elongated three dimensional structure 612 and mounting flanges 620 and 630 may comprise the same or similar material as the frame member 610.
Further, as shown in
Further still, as shown in
The transverse stiffeners 650, 652 may comprise a variety of materials in variable thicknesses. For instance, in some embodiments, the transverse stiffeners 650, 652 may comprise the same or similar material as the frame member 610. However, in other embodiments, the transverse stiffeners 650, 652 may comprise a different material than the elongated three dimensional structure 612.
Further still, as shown in
The second transverse stiffeners 654, 656 may comprise any of the materials that the transverse stiffeners 650, 652 comprise. In some embodiments, the second transverse stiffeners 654, 656 may comprise the same or similar material as the transverse stiffeners 650, 652 and/or the frame member 610. However, in other embodiments, the second transverse stiffeners 654, 656 may comprise a different material than the transverse stiffeners 650, 652 and/or the frame member 610. The second transverse stiffeners 650, 652 may be welded to the first flange 660, the web 662, and the second flange 664 in the same or similar way as the transverse stiffeners 650, 652 are welded to the first flange 660, the web 662, and the second flange 664. The transverse stiffeners 650, 652 and/or the second transverse stiffener 654, 656 may strengthen the three dimensional structural frame 600, for example, by improving resistance of the three dimensional structural frame 600 to deformation, bending, rupturing, breaking and other modes of failure. Similarly, the center support 640 may strengthen the three dimensional structural frame 600, for example, by improving resistance of the three dimensional structural frame 600 to deformation, bending, rupturing, breaking and other modes of failure.
The location of the transverse stiffeners 650, 652 in the elongated three dimensional structure 612 with respect to the first end 615 and the second end 617 may be selected based on predetermined loading of the three dimensional structural frame 600. Similarly, the location of the second transverse stiffeners 654, 656 in the elongated three dimensional structure 612 with respect to the first end 615 and second end 617 and/or the transverse stiffeners 650, 652 may be selected based on predetermined loading of the structural frame 600. Other parameters of the three dimensional structural frame member 600 may be selected on predetermined loading of the three dimensional structural frame member 600 as well, such as the material or thickness of the frame member 610, width of the first end 615, and width of the second end 617.
In some embodiments, a three dimensional structural frame that includes a single three dimensional structure may include a connector for a fall protection harness.
As shown in
In some embodiments, a three dimensional structural frame that includes a single three dimensional structure may have two or more connectors for a fall protection harness. For instance, in some embodiments, a three dimensional structural frame that includes a single three dimensional structure may have three connectors arranged in the same or similar was as connectors 570, 572, and 574 are arranged in the three dimensional structural frame 500.
In addition, in some embodiments, three dimensional structural frames may include a three dimensional structure that has a constant cross section similar to the three dimensional structure 212. For instance, in some embodiments, a structural frame may comprise two three dimensional structural frame members that are joined at their first ends, where each three dimensional structural frame member takes the form of or is similar in form to the three dimensional structural frame member 200. And in some such embodiments, the three dimensional structural frame may include one or more connectors similar to connector 470.
Moreover, in some embodiments, a three dimensional structural frame may comprise a single three dimensional structure with a constant cross section similar to the cross section of three dimensional structure 212. And in some such embodiments, the three dimensional structural frame may include one or more connectors similar to connector 470.
Further, in some embodiments, a three dimensional structural frame may comprise a first three dimensional structural frame member that takes the form of or is similar in form to the three dimensional structural frame member 100 and a second three dimensional structural frame member that takes the form of or is similar in form to the three dimensional structural frame member 200, where the first and second three dimensional structural frame members are joined at their first ends. And in some such embodiments, the three dimensional structural frame may include one or more connectors similar to connector 470.
C. Enclosures
The plurality of three dimensional structural frames 810 may take various different forms in various different embodiments. For purposes of illustration, the plurality of three dimensional structural frames 810 includes four three dimensional structural frames 812, 814, 816, 818. However, in other examples, the plurality of three dimensional structural frames 810 may include more or less than four three dimensional structural frames. The number of three dimensional structural frames in the plurality of three dimensional structural frames 810 may be selected based in part on a predetermined length and/or loading of the enclosure 800.
The three dimensional structural frames 812, 814, 816, and 818 may comprise any of the three dimensional structural frames described herein, including the three dimensional structural frames 300, 400, 500, 600, and 700 and example three dimensional structural frames that include a three dimensional structure that has a constant cross section. In some embodiments, the three dimensional structural frames 812, 814, 816, and 818 may be the same as each other. However, in other embodiments, two or more of the three dimensional structural frames 812, 814, 816, and 818 may be different. With this arrangement, the plurality of three dimensional structural frames 810 may comprise a combination of any of the three dimensional structural frames described herein.
The opposing wall portions 820 include a plurality of uniform wall sections 830. For purposes of illustration, the plurality of wall sections 830 includes four wall sections 832, 834, 836, and 838. However, in other examples, plurality of wall sections 830 may include more or less than four wall sections.
The sidewall portions 930A, 930B may be joined to sidewall portions of other wall sections to form opposing wall portions, such as the opposing wall portions 820.
The bottom wall portion 940 is further shown in
Further, as shown in
As shown in
Three dimensional structural frames 1010 may be attached to wall sections by hardware (e.g., fasteners) installed in through holes, such as through holes 122, 322A and 322B, and 622 and 632. Moreover, wall sections 1010 may be connected by sidewall portions, such as sidewall portions 930A and 930B.
In some embodiments, sidewall portions may be connected by a plurality of rivets (not shown). And in some such embodiments, the plurality of rivets may comprise one rivet per six inch length of the sidewall portion. Further, in some embodiments, a gasket may be located between wall sections, such as a gasket 1040 is located between wall section 1030A and wall section 1030B. As shown in
Further still, in some embodiments, the enclosure may further include a plurality of support members that extend between the opposing wall portions (not shown in
Moreover, in some embodiments, a roof of an enclosure, such as the roof 840, may include a plate (or a plurality of plates) secured to the three dimensional structural frames. And in some such embodiments, the plate may comprise sheet metal and/or perforated sheet metal. Further, in some embodiments, the roof can further include a weatherproof membrane (or a plurality of membranes) overlaying the plate and attached to wall panel portions of wall sections.
As shown in
The support member 1090 may take various different forms in various different embodiments. In some embodiments, the support member 1090 may comprise steel. Moreover, in some embodiments, the support member 1090 may be connected to an end of each wall section of the wall sections 1080, such as a top end of the wall section when the wall section is oriented substantially perpendicular to ground. The term “substantially perpendicular,” as used in this disclosure, refers to exactly perpendicular or one or more deviations from exactly perpendicular that do not significantly impact lifting an enclosure as described herein.
In addition, the support member 1090 may define a wire way for electrical cabling associated with an enclosure. In some embodiments, the wire way may be partitioned to separate electrical cabling for AC circuits associated with the enclosure and electrical cabling for DC circuits associated with the enclosure. Moreover, in some embodiments, after electrical cabling is installed in the support member 1090, a closing plate (not shown) may be connected over the open portion 1092 of the support member 1090. With this arrangement, the closing plate may help to seal and protect the electrical cabling.
An enclosure may include at least two support members that take the form of the support member 1090. A first support member may be connected to a first group of wall sections and a second support member may be connected to a second group of wall sections. The first group of wall sections may be substantially parallel to the second group of wall sections. With this arrangement, the first support member may be substantially parallel to the second support member.
The three dimensional structural frames 1120 and 1122 may take the form of or be similar in form to three dimensional structural frame 300 and/or three dimensional structural frame 600. With this arrangement, the variable cross section three dimensional structure of the three dimensional structural frames 1120 and 1122 may create a slope to the roof 1110 and help to shed water, other fluids, and debris from the roof 1100. In other examples, the three dimensional structural frames 1120 and 1122 may take the form of or be similar in form to three dimensional structural frames having a three dimensional structure with a constant cross section. With this arrangement, the three dimensional structure of the three dimensional structural frames 1120 and 1122 may help to provide structural support for the roof 1100.
In addition, in some embodiments, other components may be attached to three dimensional structural frames 1120 and 1122, including ceiling panels and insulation.
Further, as shown in
Further still, as shown in
As shown in
The strengthening member 1190 may take various different forms in various different embodiments. In some embodiments, the strengthening member 1190 may comprise steel. Moreover, in some embodiments, the strengthening member 1190 may be connected to a center of each three dimensional structural frame of the three dimensional structural frames 1180.
As shown in
The distance between adjacent three dimensional structural frame members of the plurality of structural frame members 1180 connected to the strengthening member 1190 may have various different values. For instance, in some embodiments, the distance between adjacent three dimensional structural frame members of the structural frame members 1180 connected to the strengthening member 1190 may be between 4 inches and 2 feet, such as 4 inches, 6 inches, one foot, and two feet. The distance between adjacent three dimensional structural frame members of the structural frame members 1180 connected to the strengthening member 1190 may be based at least in part on a width of the three dimensional structural frame members 1180. In some such embodiments, the width of at least one three dimensional structural frame member of the three dimensional structural frame members 1180 may be 3 inches. Moreover, in some such embodiments, when a three dimensional structural frame member comprises a support beam (e.g., support beam 360), the width of the three dimensional structural frame member may be 4 inches.
Further, as shown in
Components of the enclosure 1200 of
In some embodiments, the enclosure 1200 may have a length of forty five feet. Moreover, in some embodiments, the enclosure 1200 may be designed to withstand loads caused by wind that has a speed of 150 miles per hour.
Further, in some embodiments, the enclosure 1200 may be secured to a mounting surface 1290 shown in
D. Lift Plates
In some embodiments, the lift plate 1300 may be configured to be secured to two or more three dimensional structural frames, such as twelve three dimensional structural frames. For instance, hardware may engage the first series of a pattern of mounting holes 1314 and through holes of the three dimensional structural frames, such as through holes 1012B and 1012C. Moreover, in some embodiments, the lift plate 1300 may be configured to be secured to two or more wall sections, such as four wall sections. For instance, hardware may engage the second series of a pattern of mounting holes 1316 and through holes of the wall sections, such as through holes 1032A-D. In some embodiments, the hardware may include fasteners, such as bolts and rivet nuts.
The lift plate 1300 may comprise a variety of materials. For instance, in some embodiments, the lift plate 1300 may comprise steel. And in some such embodiments, the lift plate 1300 may comprise 5/16 inch hot rolled steel. Moreover, in other embodiments, the lift plate 1300 may comprise steel having other thicknesses.
In some embodiments, a connecting portion of a lift plate may include a reinforcement plate.
Components of lift plate 1400 of
In some embodiments, the reinforcement plate 1424 may be welded to the connecting portion 1420. And in some such embodiments, the reinforcement plate 1424 may be fillet welded to the connecting portion 1420. Moreover, the reinforcement plate 1424 may comprise a variety of materials. For instance, in some embodiments, the reinforcement plate 1424 may comprise steel. And in some such embodiments, the reinforcement plate 1424 may comprise the same or similar material as the planar portion 1410 and the connecting portion 1420.
The reinforcement plate 1424 may strengthen the lift plate 1400, for example, by improving resistance of the lift plate 1400 to deformation, bending, rupturing, breaking, and other modes of failure.
Further, in some embodiments, the lift plate 1400 may have a second reinforcement plate 1426.
The second reinforcement plate 1426 may strengthen the lift plate 1400 in the same or similar way as the reinforcement plate 1400 strengthens the lift plate 1400.
E. Liftable Enclosures
In the illustrated example, a first three dimensional structural frame 1512A may be located at a first end of the liftable enclosure 1500 and a second three dimensional structural frame 1512B may be located at a second end of the liftable enclosure 1500. Numerous three dimensional structural frames may be located between the first three dimensional structural frame 1512A and the second three dimensional structural frame 1512B. The three dimensional structural frames of the plurality of three dimensional structural frames 1510 may take the form of any of the three dimensional structural frames described herein.
Moreover, in the illustrated example, the at least two lift plates 1520 may include six lift plates 1522A-F. However, in other examples, the at least two lift plates 1520 may include more or less six lift plates, such as two lift plates or eight lift plates. In some embodiments, when the at least two lift plates 1520 include six lift plates, the liftable enclosure 1500 may have a length of forty five feet. Moreover, in some embodiments, when the liftable enclosure 1500 has a length greater than forty five feet, the at least two lift plates 1520 may include more than six lift plates, such as eight lift plates. Lift plates may be equally distributed on two sides of the liftable enclosure 1500. For example, as shown in
As shown in
The planar portion 1523A may take the form of or be similar in form to the planar portion 1410, the connecting portion 1524A may take the form of or be similar in form to the connecting portion 1420, the series of a pattern of mounting holes 1525A may take the form of or be similar in form to the series of a pattern of mounting holes 1412, the first series of a pattern of mounting holes 1526A may take the form of or be similar in form to the first series of a pattern of mounting holes 1414, the second series of a pattern of mounting holes 1527A may take the form of or be similar in form to the second series of a pattern of mounting holes 1416, the reinforcement plate 1528A may take the form of or be similar in form the reinforcement plate 1424, and the hole 1529A may take the form of or be similar in form to the hole 1422.
In some embodiments, the lift plate 1522A may be configured to be secured to two or more three dimensional structural frames, such as twelve three dimensional structural frames. For instance, hardware may engage the first series of a pattern of mounting holes 1526A and through holes of the three dimensional structural frames, such as through holes 1012B and 1012C. In some embodiments, the hardware may include fasteners, such as bolts and rivet nuts. With this arrangement, one four-through-hole pattern of the first series of a pattern of mounting holes 1526A may correspond to through holes of a three dimensional structural frame, such as through holes 1012B and 1012C. Lift plates 1522B-E may be configured to be secured to three dimensional structural frames in the same or similar way that the lift plate 1522A is configured to be secured to three dimensional structural frames.
Further, the liftable enclosure 1500 includes opposing walls 1530 interconnected by the plurality of three dimensional structural frames 1510, wherein the walls 1530 comprise a plurality of uniform wall sections 1540. In the illustrated example, wall section 1540A includes a wall panel portion 1542A, a top wall portion 1544A, and sidewall portions 1546A and 1548A. With this arrangement, the sidewall portions of the plurality of wall sections 1540 are connected to form at least a portion of a wall of the enclosure 1500, where the plurality of three dimensional structural frames 1510 are attached to the top wall portions of the wall sections 1540. In some embodiments, the lift plates 1520 may be connected to the wall panel portions of the wall sections.
The wall panel portion 1542A may take the form of or be similar in form to the wall panel portion 910, the top wall portion 1544A may take the form of or be similar in form to the top wall portion 920, and sidewall portions 1546A and 1548A may take the form of or be similar in form to the sidewall portions 930A and 930B.
In some embodiments, the lift plate 1522A may be configured to be secured to two or more wall sections, such as four wall sections. For instance, hardware may engage the second series of a pattern of mounting holes 1527A and through holes of the wall sections, such as through holes 1032A-D. In some embodiments, the hardware may include fasteners, such as bolts and rivet nuts.
Further, in some embodiments, when the liftable enclosure 1500 includes a roof with a weatherproof membrane, such as the weatherproof membranes 1130A and 1130B, hardware may engage the series of pattern of mounting holes, through holes of the three dimensional structural frame members, and through holes of the wall sections after the weatherproof membrane is secured to the three dimensional structural frame members and walls sections. And in some such embodiments, the weatherproof membrane is secured to the three dimensional structural frame members via the through holes of the three dimensional structural frame members and via the through holes of the wall sections.
Further still, in some embodiments, using the at least two lift plates 1520 to lift the liftable enclosure 1500 may reduce damage to the enclosure after or while the enclosure is lifted. Moreover, in some embodiments, the enclosure 1500 may be designed to withstand loads caused by wind that has a speed of 150 miles per hour.
Method 1600 continues at block 1604 with attaching a plurality of three dimensional structural frames to the top wall portions of the wall sections of the opposing walls. The plurality of three dimensional structural frames may take the form of or be similar in form to the plurality of three dimensional structural frames 810, the plurality of three dimensional structural frames 1210, and/or the plurality of three dimensional structural frames 1510.
In some embodiments, the opposing walls are fabricated while the sidewall portions are substantially horizontal. The term “substantially horizontal,” as used in this disclosure, means exactly horizontal or one or more deviations from exactly horizontal that do not significantly impact lifting enclosures described herein. Moreover, in some embodiments, the opposing walls are uprighted by attaching a lift plate to a top end of a plurality of wall sections and lifting the top end. The lift plate may take the form of or be similar in form to the lift plate 1300 and/or the lift plate 1400.
In some embodiments, the lift plates comprise (i) a planar portion comprising a series of a pattern of mounting holes for receiving hardware for securing the plate to the ends of the plurality of frames and the wall panel sections, and (ii) a connecting portion for attaching the harness. The lift plates may take the form of or be similar in form to the lift plate 1300 and/or the lift plate 1400. Moreover, in some embodiments, the harness may be attached to the plurality of lift plates via a hole in the lift plates, such as the hole 1322 and/or the hole 1422.
Examples given above are merely illustrative and are not meant to be an exhaustive list of all possible embodiments, applications or modifications of the invention. Thus, various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to the skilled artisan.
It is understood that the invention is not limited to the particular methodology, protocols, etc., described herein, as these may vary as the skilled artisan will recognize. It is also to be understood that the terminology used herein is used for the purpose of describing particular embodiments only, and is not intended to limit the scope of the invention. It also is to be noted that, as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include the plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to “a three dimensional structural frame” is a reference to one or more three dimensional structural frames and equivalents thereof known to those skilled in the art.
Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which the invention pertains. The embodiments of the invention and the various features and advantageous details thereof are explained more fully with reference to the non-limiting embodiments and/or illustrated in the accompanying drawings and detailed in the following description. It should be noted that the features illustrated in the drawings are not necessarily drawn to scale, and features of one embodiment may be employed with other embodiments as the skilled artisan would recognize, even if not explicitly stated herein.
Any numerical values recited herein include all values from the lower value to the upper value in increments of one unit provided that there is a separation of at least two units between any lower value and any higher value. As an example, if it is stated that the concentration of a component or value of a process variable such as, for example, size, angle size, pressure, time and the like, is, for example, from 1 to 90, specifically from 20 to 80, more specifically from 30 to 70, it is intended that values such as 15 to 85, 22 to 68, 43 to 51, 30 to 32, etc. are expressly enumerated in this specification. For values which are less than one, one unit is considered to be 0.0001, 0.001, 0.01 or 0.1 as appropriate. These are only examples of what is specifically intended and all possible combinations of numerical values between the lowest value and the highest value enumerated are to be considered to be expressly stated in this application in a similar manner.
Particular methods, devices, and materials are described, although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the invention. The disclosures of all references and publications cited above are expressly incorporated by reference in their entireties to the same extent as if each were incorporated by reference individually.
The present application claims priority to U.S. Provisional Application No. 62/160,556, filed May 12, 2015, entitled “Three Dimensional Structural Frames and Enclosures.” The entire disclosure contents of U.S. Provisional Application No. 62/160,556 are herewith incorporated by reference into the present application.
Number | Name | Date | Kind |
---|---|---|---|
2710584 | Ross | Jun 1955 | A |
2764107 | Niswonger | Sep 1956 | A |
2858916 | Josephs | Nov 1958 | A |
3135069 | Schuller | Jun 1964 | A |
3141531 | Montgomery | Jul 1964 | A |
3474578 | Wippermann | Oct 1969 | A |
3498015 | Green | Mar 1970 | A |
3571993 | Potter | Mar 1971 | A |
4114335 | Carroll | Sep 1978 | A |
4120131 | Carroll | Oct 1978 | A |
5787668 | Carkner | Aug 1998 | A |
6990775 | Koester | Jan 2006 | B2 |
7827738 | Abrams | Nov 2010 | B2 |
D665512 | Yoder | Aug 2012 | S |
D672884 | Yoder | Dec 2012 | S |
D674508 | Yoder | Jan 2013 | S |
8534018 | Walker | Sep 2013 | B2 |
8671642 | Green | Mar 2014 | B2 |
9222250 | Peterson | Dec 2015 | B2 |
20040255535 | Herren | Dec 2004 | A1 |
20090173024 | Ozaki | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
2334140 | Jan 1974 | DE |
WO 8304064 | Nov 1983 | WO |
WO 9729255 | Aug 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20160333582 A1 | Nov 2016 | US |
Number | Date | Country | |
---|---|---|---|
62160556 | May 2015 | US |