Three-dimensional woven fabric implant devices

Information

  • Patent Grant
  • 11759317
  • Patent Number
    11,759,317
  • Date Filed
    Thursday, October 15, 2020
    3 years ago
  • Date Issued
    Tuesday, September 19, 2023
    7 months ago
Abstract
A docking device includes a hollow cylindrical body portion having an internal surface and an outer surface. The hollow cylindrical body portion is formed of a three-dimensional (3D) woven fabric comprising a plurality of different types of fibers.
Description
FIELD OF THE INVENTION

This invention relates generally to docking devices for bioprostheses, including implantable bioprosthetic heart valves.


BACKGROUND

The unique geometry and sometimes irregular size of a patient's native heart valve anatomy present challenges to providing an implantable bioprosthetic heart valve that fits within and is provided in intimate contact or seal with the surrounding tissue.


SUMMARY

The present disclosure generally relates to docking devices for bioprostheses, such as bioprosthetic heart valves, and, more particularly, to docking devices that include a three-dimensional (3D) woven fabric, and methods of making such docking devices.


In some implementations, the present disclosure relates to a docking device for a bioprosthesis comprising a 3D woven fabric forming a shaped element having an internal surface, an outer surface, and a thickness therebetween, and a filler structure coupled to the outer surface of the shaped element. The bioprosthesis can be a heart valve.


In certain embodiments, the 3D woven fabric comprises first, second, and third different types of fibers or yarns. For example, the first type of fiber or yarn can comprise a shape memory material, the second type of fiber or yarn can comprise a low-melt thermoplastic polymer or resin, and the third type of fiber or yarn can comprise a high-tenacity biocompatible material. In certain embodiments, the shape memory material comprises Nitinol. In certain embodiments, the low-melt thermoplastic polymer or resin has a melting point between 85 degrees Celsius and 200 degrees Celsius. For example, the low-melt thermoplastic polymer or resin can comprise Nylon. In certain embodiments, the high-tenacity biocompatible material comprises polyethylene terephthalate (PET).


The filler structure can be covered with a material having low porosity and reduced permeability. In certain embodiments, the filler structure comprises polymer foam. For example, the polymer foam can be at least partially covered with a tubular woven fabric. In certain embodiments, the tubular woven fabric comprises PET.


In some implementations, the present disclosure relates to a 3D woven fabric for a bioprosthesis docking device comprising a shape memory material, a low-melt thermoplastic polymer or resin, and a high-tenacity biocompatible material. The shape memory material can comprise Nitinol. In certain embodiments, the low-melt thermoplastic polymer or resin has a melting point of 85 degrees Celsius to 200 degrees Celsius. The low-melt thermoplastic polymer or resin can comprise Nylon. The high-tenacity biocompatible material can comprise PET.


In some implementations, the present disclosure relates to a method for making a docking device for a bioprosthesis. The method comprises weaving a 3D woven fabric by interlacing a shape memory material, a low-melt thermoplastic polymer or resin, and a high-tenacity biocompatible material, and pressing and heating the 3D woven fabric over a shape-setting mold at temperatures greater than a melting point of the low-melt thermoplastic polymer or resin. In certain embodiments, the shape memory material comprises Nitinol, the low-melt thermoplastic polymer or resin comprises Nylon having a melting point of 85 degrees Celsius to 200 degrees Celsius, and the high-tenacity biocompatible material comprises polyethylene terephthalate (PET).


The method can further comprise attaching a filler structure to a surface of the 3D woven fabric. For example, attaching the filler structure can comprise sewing the filler structure to the surface of the 3D woven fabric. The method can further comprise covering the filler structure with a tubular woven fabric comprising PET, wherein the filler comprises polymer foam.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments are depicted in the accompanying drawings for illustrative purposes, and should in no way be interpreted as limiting the scope of the inventions. In addition, various features of different disclosed embodiments can be combined to form additional embodiments, which are part of this disclosure. Throughout the drawings, reference numbers may be reused to indicate correspondence between reference elements.



FIG. 1 is a perspective view of a docking device having three-dimensional (3D) woven fabric in accordance with one or more embodiments.



FIG. 2 is a perspective view of the frame of an exemplary transcatheter heart valve deployed inside the docking device of FIG. 1 in accordance with one or more embodiments.



FIGS. 3A and 3B are perspective views of the docking device of FIG. 1, with a polymer foam coupled to an outer surface of the docking device and a tubular woven fabric covering the polymer foam in accordance with one or more embodiments.



FIG. 4 is a cutaway perspective view of a tubular woven fabric covering a polymeric foam in accordance with one or more embodiments.



FIG. 5A is a cross-sectional schematic view of a 3D orthogonal woven unit cell in accordance with one or more embodiments.



FIG. 5B is a cross-sectional schematic view of a 3D multilayer woven unit cell in accordance with one or more embodiments.



FIG. 5C is a cross-sectional schematic view of a 3D angle-interlock woven unit cell in accordance with one or more embodiments.



FIG. 6 is a perspective view of the docking device of FIG. 1 in a shape setting mandrel in accordance with one or more embodiments.





DETAILED DESCRIPTION

The headings provided herein are for convenience only and do not necessarily affect the scope or meaning of the claimed invention.


Although certain preferred embodiments and examples are disclosed below, inventive subject matter extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses and to modifications and equivalents thereof. Thus, the scope of the claims that may arise herefrom is not limited by any of the particular embodiments described below. For example, in any method or process disclosed herein, the acts or operations of the method or process may be performed in any suitable sequence and are not necessarily limited to any particular disclosed sequence. Various operations may be described as multiple discrete operations in turn, in a manner that may be helpful in understanding some embodiments; however, the order of description should not be construed to imply that these operations are order dependent. Additionally, the structures, systems, and/or devices described herein may be embodied as integrated components or as separate components. For purposes of comparing various embodiments, certain aspects and advantages of these embodiments are described. Not necessarily all such aspects or advantages are achieved by any particular embodiment. Thus, for example, various embodiments may be carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other aspects or advantages as may also be taught or suggested herein.


Overview


Certain docking devices and methods utilize a woven or knitted fabric skirt material. In some implementations, textile skirts are made by using polyethylene terephthalate (PET) in both warp and weft directions. However, generally, the PET material used may not have a shape memory effect that can change shape in connection with a trigger or stimulus, and may not be sufficiently elastic to provide for recovery after the deforming stress is removed. Therefore, it may be desirable to implement docking devices comprising fabrics and/or features that allow for improved flexibility with respect to shape or form. Some embodiments of docking devices disclosed herein are configured to adjust shape and/or form at least partially to the surrounding conditions/anatomy, and can take complex shapes to accommodate various different anatomies. In some implementations, the use of foam, polymer and/or biocompatible alloy with controlled diameter, size, and stiffness enables docking devices in accordance with the present disclosure to adjust and/or accommodate its shape or form to relatively complex anatomic geometries (e.g. different annulus sizes and/or shapes). That is, certain docking devices disclosed herein may be considered “universal” docking devices that provide desirable fit for a variety of sizes and/or shapes of patient anatomies.


Universal docking devices may be desired for use with certain implantable medical devices. For example, a universal docking device in accordance with the present disclosure may better conform to the complex anatomy associated with an implant site in some configurations. Furthermore, particularly with respect to bioprosthetic heart valves, universal docking devices in accordance with one or more embodiments of the present disclosure may help prevent paravalvular leakage and/or eliminate the need to carefully size the existing heart valves. With respect to these benefits, docking devices in accordance with one or more embodiments of the present disclosure can be configured to change shape and/or provide shape recovery after a deforming stress is removed, and can adjust to surrounding conditions to accommodate different complex anatomic geometries. Such attributes and/or characteristics can serve to at least partially mitigates paravalvular leakage.


Some embodiments disclosed herein provide a device that is configured and/or designed to improve the fit of an implantable bioprosthetic heart valve within a native valve annulus, which can advantageously at least partially mitigate issues associated with valve sizing and/or paravalvular leakage. For example, generally, the unique and/or irregular size and/or surface characteristics of native valve annuli can present challenges to providing an implantable bioprosthetic heart valve that fits within, and is provided in intimate contact or seal with, the valve annulus. To address such challenges, some embodiments disclosed herein advantageously provide a tubular or cylindrically-shaped device that is radially compressible for delivery and implantation in the native valve annulus before implantation of a bioprosthetic valve.


The structure of tubular or cylindrically-shaped devices in accordance with the present disclosure can comprise both an inner three-dimensional (3D) woven fabric and an outer covering of polymeric foam. For example, the 3D woven fabric can comprise three different fibers and/or yarns having different material properties. Different types of fibers and/or yarns that may be used can include shape memory material, such as Nitinol, low-melt thermoplastic polymer or resin having a melting point in the range of about 166-175° C., such as Nylon, and high-tenacity biocompatible material, such as PET. Furthermore, the polymeric foam can be attached to the outer surface of the 3D woven fabric and can provide a compressible seal with the native annulus.


In some implementations, docking devices in accordance with the present disclosure can be manufactured to the desired shape at least in part by pressing and/or heating the 3D woven fabric over a shape-setting mold at temperatures above the melting point of the low-melt thermoplastic polymer or resin. The melting of low-melt material can function as an adhesive to set the shape of the fabric. After the desired shape of the 3D woven fabric is set, a foam material can be attached or sewed onto the 3-D woven fabric.


In some implementations, the present disclosure provides a method for fabricating a universal docking device, wherein a main body of the docking device is made of shape memory material (e.g., Ni—Ti alloy, Nitinol) and thermoplastic fibers by utilizing 3D weaving techniques. Such 3D weaving techniques may be implemented on a specialized 3D weaving machine. For example, in some 3D weaving implementations in accordance with embodiments of the present disclosure, three sets of yarns are used to interlace with each other, as compared to two sets of yarn in flat-woven structures. The weave can be orthogonal or multilayer, and multiple layers can be woven together to form a 3D fabric. In the width-wise (i.e., “filling” or “weft”) direction, memory metal (e.g., Ni—Ti) round wire and low-melt Nylon can be used apart from high tenacity polyethylene terephthalate (PET). The melting temperature of the low-melt nylon resin can be designed to be in range of 166-175° C.


After weaving the fabric, methods of fabricating a docking device in accordance with one or more embodiments of the present disclosure can involve pressing the fabric over a shape-setting mold (e.g., having a specific custom shape) and heated for a period of time (e.g., 30-60 min) at temperatures higher than the melting point of the low-melt Nylon resin, thereby causing the low-melt nylon to melt. The melted Nylon can act as an adhesive, and can at least partially set the shape of the fabric. The method may further involve leaving the shape-set fabric on the mold to cool-off for a period of time (e.g., 1 hour), and then removing the shape-set fabric and covering the same with a tubular woven fabric filled with foam or other at least partially compressible material (e.g., polymer, biocompatible alloy, etc.). The use of foam, polymer or biocompatible alloy outside the device can advantageously help reduce paravalvular leakage as such material can be compressed during delivery to the annulus, and once deployment is complete, the material can at least partially decompress and form an improved seal. The use of tubular textile around the form or other compressible material can help control the porosity of such materials, as foam or polymeric materials can be undesirably porous; the outside textile (e.g., PET) covering can reduce permeability.


Universal Docking Device


With reference now to FIG. 1 of the illustrative drawings, there is shown a universal docking device 100 in accordance with one or more embodiments. The docking device 100 includes a three-dimensional (3D) woven fabric 10 forming an internal surface 5, an outer surface 35, and having a thickness therebetween provided by the 3D nature of the fabric 10. In one embodiment, the 3D woven fabric can form a substantially hollow cylinder 30 having an outer surface 35 and inner surface 5. In some embodiments, the 3D woven fabric can form a ring, or ring-type form or structure. Other shapes are also possible, depending on the bioprosthetic device being docked within, or on, the docking device 100. In accordance with some implementations, the docking device 100 can be interposed between an implantable heart valve and a native valve annulus to provide an improved conforming fit and/or to reduce the likelihood and/or degree of a paravalvular leakage.


The 3D woven fabric 10 can be a hybrid fabric comprising polyethylene terephthalate (PET), memory metal (e.g., Ni—Ti alloy, Nitinol), and low-melt Nylon alloy, and can be made using any suitable or desirable weaving technique or configuration/arrangement. For example, in the width-wise (i.e., “weft,” “filling”) direction, memory metal (e.g., Ni—Ti) round wire and low-melt Nylon can be used apart from high-tenacity PET, or the memory metal wire can be used entirely the weft/filling direction in order to increase the shape memory effect of the fabric. The woven fabric structure 10 can be woven in 2D, 3D, and can be configured to fit any anatomical structure, by using the shape memory effect, or super elastic effect, of the memory metal wire or other material of the fabric. The woven fabric 10 can be configured to fit any desirable human anatomical part(s) through the use of shape memory alloy to change the shape of the mold. The fabric 10 can also be used in sheet form as a scaffold for tissue engineering with shape memory effect customized to any human anatomical shape.


In use, the docking device 100 can be compressed and delivered, such as through a catheter, to the implantation site. At the implantation site, the docking device 100 can be expanded to fit, and be held at, the local anatomy (e.g., the native heart valve annulus) associated with the implantation site. The docking device 100 can then act as a landing site for a bioprosthesis 200, such as a transcatheter heart valve.



FIG. 2 illustrates a perspective view of a frame 200 of an exemplary transcatheter heart valve deployed inside the docking device of FIG. 1 in accordance with one or more embodiments. With reference to FIG. 2, the docking device 100 can be interposed between a bioprosthesis 200, such as a transcatheter heart valve (THV), and native tissue, such as a native valve annulus (not shown). Although FIG. 2 only shows the frame of an exemplary transcatheter heart valve 200 within the docking device 100, it should be understood that, in some implementations, other devices besides a THV can benefit from implantation within the docking device 200 and/or other docking devices in accordance with embodiments of the present disclosure.


The docking device 100 can be configured or designed to be implanted at any suitable or desirable implantation site. However, implantation sites of different patients can present relative irregularity of shapes across patients. By using shape memory effect for the fabric 10, the docking device 100 can be used to fit into irregular shapes. The device 100 can be configured to be compressed and delivered through a catheter to the implant site. At the delivery site, depending on whether using super-elastic shape memory metal or polymer is used, the device 100 can expand by itself or through temperature stimulus to fit the size of the implantation site anatomy (e.g., heart valve annulus). Foam or other compressible material (not shown in FIGS. 1 and 2) disposed on the outside of the device 110 can also advantageously fill the open space between the implantation site anatomy (e.g., annulus) and the device 100 to create an effective sealing. The docking device 100 can act as a landing site for the prosthetic heart valve.



FIGS. 3A and 3B are perspective views of the docking device 100 of FIG. 1, wherein the docking device 100 has a polymer foam 40 coupled to an outer surface 35 of the docking device 100 and a tubular woven fabric 45 covering the polymer foam 40 in accordance with one or more embodiments. As shown in FIGS. 3A and 3B, the docking device 100 can further include a filler 40 (also referred to herein as a “filler structure”) coupled to the outer surface 35 of the hollow cylinder 30. The filler 40 can comprise a polymeric foam. The polymeric foam can be an open-celled foam or a closed-cell foam. In some embodiments, the filler 40 form or structure can be provided to partially or completely surround a circumference of the outer surface 35 of the hollow cylinder 30. In some embodiments, the filler 40 can include a compressible or expandable material that can fill a desired space. In some embodiments, the filler 40 can be or comprise a polymer foam. In some embodiments, the filler 40 can comprise medical-grade silicone and/or a biocompatible alloy. In some embodiments, the filler can comprise one or more of polymeric foam, polyurethane foam, polyvinyl chloride foam, Styrofoam, polyimide foam, silicone foam, and/or microcellular foam.


In use, the filler structure 40 can be configured to be compressed during delivery of the docking device 100 to the implantation site (e.g., valve annulus). Once deployed, the filler 40 can be configured to decompress to provide a compressible seal against the surrounding native tissue. This compressible seal can be optimized by varying the shape, size, and stiffness of the filler 40. For example, the filler 40 can be configured, as shown in FIG. 3A, to cover a portion of the outer surface 35 of the hollow cylinder 30. Alternatively, the filler can be configured, as shown in FIG. 3B, to cover substantially all, or at least a majority, of the outer surface 35. In this way, the configuration of the filler 40 can be optimized to enable the docking device 100 to accommodate itself to complex anatomic geometries and/or, in the case of a prosthetic heart valve, to reduce paravalvular leakage.


In some embodiments, the filler 40 can be dimensioned to cover at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or 100% of the outer surface 35 of the hollow cylinder 30. In some embodiments, the filler can also be dimensioned to cover a percentage of the outer surface that includes and is between any two of the foregoing values.



FIG. 4 is a cutaway perspective view of a tubular woven fabric 45 covering a polymeric foam 40 in accordance with one or more embodiments. In some embodiments, the filler component/structure of a docking device in accordance with aspects of the present disclosure comprises a material that is, by itself, too porous to fully prevent or mitigate paravalvular leakage. Accordingly, with reference to FIG. 4, in some embodiments, the filler 40 can be covered with a tubular woven fabric 45, such as PET. In some embodiments, the filler 40 can be secured to a docking device, such as the docking device 100 shown in FIGS. 3A and 3B, by attaching the tubular woven fabric 45 to the outer surface 35 of the docking device's hollow cylinder 30. For example, the tubular woven fabric 45 may be attached to the outer surface 35 by adhering or suturing the tubular woven fabric 45 directly to the outer surface 35. So configured, the tubular woven fabric 45, with its low porosity and reduced permeability, can further mitigate paravalvular leakage. The tubular woven fabric 45 can also be provided to protect or ensure against the release of any undesired particulate matter from the filler 40, particularly with respect to embodiments in which the filler 40 is made of a porous and/or a foam material. Such particulate matter can be released due to the frictional forces imposed on the filler 40 during the delivery and/or implantation process(es). Release of such particulate matter can be undesirable as presenting a higher risk of embolization.


3D Woven Fabric


In some implementations, the present disclosure is related to relatively complex textile structures generated by utilizing weaving, braiding, knitting and/or a combination thereof. Such textiles structures can be generated using shape memory fibers or alloys (e.g., Nitinol) in combination with one or more thermoplastic textile fibers, such as Nylon, polyethylene terephthalate (PET), polypropylene (PP), and/or polybutylene terephthalate (PBT). Hybrid textile structures in accordance with the present disclosure can be created using a base substrate fabric, and using electro-spinning to lay shape memory fibers on top of the substrate fabric, or by wrapping a low-melt Nylon in a core-sheath structure. As described above, the textile structure can be formed into a hollow cylinder form, wherein the outside of the cylinder form is at least partially enveloped by foam, polymer (e.g. medical-grade silicone), and/or a biocompatible alloy.


Devices in accordance with some implementations can include a three-dimensional (3D) woven fabric that is formed into a hollow cylinder, as well as a polymer foam attached to the hollow cylinder. The 3D woven fabric can advantageously comprise three different types of yarns or fibers, as described in detail herein. For example, the 3D woven fabric can comprise one or more of the following types of yarns and/or fibers: shape memory material, low-melt thermoplastic polymer or resin, and high-tenacity biocompatible material.


Example embodiments of 3D woven fabrics for use with docking devices are described below. As described above, 3D woven fabrics in accordance with embodiments of the present disclosure can comprise three different types of fibers or yarns. In some embodiments, the three different types of fibers or yarns can comprise a combination of a shape memory material, a low-melt thermoplastic polymer or resin, and a high-tenacity biocompatible material. In some embodiments, the shape memory material can be or comprise a metal alloy. The metal alloy can comprise nickel and/or titanium, such as Nitinol. In one embodiment, the shape memory material can provide the desired shape and geometry of the device.


With respect to the low-melt thermoplastic polymer or resin material, in some embodiments, such material can act as a binder or glue to fuse woven layers of the 3D fabric 10 together and conform the 3D woven fabric 10 to a desired shape. In some embodiments, the low-melt thermoplastic polymer or resin can be or comprise Nylon, for example.


The low-melt thermoplastic polymer or resin can have a relatively low-melting point. In accordance with an optional aspect, the low-melting point of the low-melt thermoplastic polymer or resin can be 200° C. or less, 195° C. or less, 190° C. or less, 185° C. or less, 180° C. or less, 175° C. or less, 170° C. or less, 165° C. or less, 160° C. or less, 155° C. or less, 150° C. or less, 145° C. or less, 140° C. or less, 135° C. or less, 130° C. or less, 125° C. or less, 120° C. or less, 115° C. or less, 110° C. or less, 105° C. or less, and 100° C. or less. The low-melting point can be within a range that includes and is between any two of the foregoing values.


With respect to the high-tenacity biocompatible material, such material can improve the durability of the 3D woven fabric 10 and promote tissue growth. In some embodiments, the high-tenacity biocompatible material can have a tenacity, or breaking load, of about 5 grams per Denier or more, about 6 grams per Denier or more, about 7 grams per Denier or more, about 8 grams per Denier or more, about 9 grams per Denier or more, about 10 grams per Denier or more, about 11 grams per Denier or more, about 12 grams per Denier or more, about 13 grams per Denier or more, about 14 grams per Denier or more, or about 15 grams per Denier. The breaking load can also be within a range that includes and/or is between any two of the foregoing values. In some embodiments, the high-tenacity biocompatible material can be PET.


In another embodiment, methods for making a docking device 100 for a bioprosthesis 200 are described. One such method comprises weaving a 3D woven fabric 10 by interlacing a shape memory material, a low-melt thermoplastic polymer or resin, and a high-tenacity biocompatible material. The shape memory material can be a metal alloy. The metal alloy can comprise nickel and titanium, such as Nitinol. The low-melt thermoplastic polymer or resin can be a polymer having a low-melting point. The polymer can be nylon. The high-tenacity biocompatible material can be PET.


3D woven fabrics can generally be woven by manipulating yarns in the length (“warp,” or “ends”), width (“weft,” “filling,” or “picks”), and through-the-thickness directions. In some embodiments, the combination of the low-melt thermoplastic polymer and the 3D weave pattern can allow the thickness of the 3D woven fabric to be varied based on the number of layers of the weft and warp yarns. Thus, in one aspect, the thickness of the 3D woven fabric can be increased by increasing the number of layers of the weft and warp yarns with the low-melt thermoplastic polymer and the through-the-thickness yarns binding the plurality of layers together.


The through-the-thickness yarn can be incorporated at varying levels and angles within orthogonal (FIG. 5A), multilayer (FIG. 5B), and angle-interlock (FIG. 5C) woven structures to obtain desired mechanical properties. The weaving step can be performed on conventional weaving machines or specially-made weaving machines. In some embodiments, braiding or knitting techniques can be employed to manufacture the 3D fabric. However, in some implementations, such methods may not produce sufficient thickness.


With reference to FIG. 5A, in one embodiment, the 3D woven fabric 10 can comprise an orthogonal weave structure. Orthogonal weave structures can include a set of warp yarns 15, a set of filling yarns 20, and a set of through-the-thickness yarns 25. Warp yarns 15 can be placed in the fabric length direction and filling yarns 20 can be inserted between the length layers to form double picks. Through-the-thickness yarns 25 can interconnect the other two yarn sets and provide structural integrity. The thickness of the orthogonal structure can be formed by the number of layers of the warp or weft yarn. In some embodiments, yarns are substantially straight in the warp, weft, and through-the-thickness directions. The through-the-thickness yarns can generally travel vertically between the top and bottom weft yarn layers, and can also interlink with weft yarn layers at other levels in some embodiments.


In some embodiments, the 3D woven fabric 10 can comprise an orthogonal weave structure, wherein the set of warp yarns 15 can comprise a shape memory material, the set of filling yarns 20 can comprise a low-melt thermoplastic polymer or resin, and the set of through-the-thickness yarns 25 can comprise a high-tenacity biocompatible material.


In some embodiments, the 3D woven fabric 10 can comprise an orthogonal weave structure, wherein the set of warp yarns 15 can comprise a high-tenacity biocompatible material, the set of filling yarns 20 can comprise a shape memory material, and the set of through-the-thickness yarns 25 can comprise a low-melt thermoplastic polymer or resin.


With reference to FIG. 5B, in some embodiments, the 3D woven fabric 10 can comprise a multilayer weave structure. Multilayer weave structures can include a set of warp yarns 15, a set of weft yarns 20, and a set of through-the-thickness binding yarns 25. Warp yarns 15 can be interlaced with weft yarns 20 at each layer according to the weave pattern in in-plane principal directions, whereas binding yarns 25 can be interlaced with warp yarns 15 at each layer according to the weave pattern in out-of-plane principal directions. The multilayer weave structure can be fully interlaced or semi-interlaced.


In some embodiments, the 3D woven fabric 10 can comprise a multilayer weave structure, wherein the set of warp yarns 15 can comprise a shape memory material, the set of weft yarns 20 can comprise a low-melt thermoplastic polymer or resin, and the set of binding yarns 25 can comprise a high-tenacity biocompatible material.


In some embodiments, the 3D woven fabric 10 can comprise a multilayer weave structure, wherein the set of warp yarns 15 can comprise a high-tenacity biocompatible material, the set of weft yarns 20 can comprise a shape memory material, and the set of binding yarns 25 can comprise a low-melt thermoplastic polymer or resin.


With reference to FIG. 5C, in some embodiments, the 3D woven fabric 10 comprises an angle-interlock weave structure. Angle-interlock weave structures in accordance with the present disclosure can include a set of warp yarns 15, a set of straight weft yarns 20 (wadding), and a set of bias weft yarns 25 that weave with the warp yarns 15 in a diagonal direction in the thickness. In layer-to-layer angle-interlock weaves (not shown), bias weft yarns 25 can travel between two or more successive layers making interlacements with several wadding yarns 20 according to the weave pattern. In through-thickness angle-interlock weaves (FIG. 5C), bias weft yarns 25 can bind diagonally from the top layer to the bottom layer.


In some embodiments, the 3D woven fabric 10 can comprise an angle-interlock structure, wherein the set of warp yarns 15 can comprise a shape memory material, the set of straight weft yarns 20 can comprise a low-melt thermoplastic polymer or resin, and the set of bias weft yarns 25 can comprise a high-tenacity biocompatible material.


In some embodiments, the 3D woven fabric 10 can comprise an angle-interlock structure, wherein the set of warp yarns 15 can comprise a high-tenacity biocompatible material, the set of straight weft yarns 20 can comprise a shape memory material, and the set of bias weft yarns 25 can comprise a low-melt thermoplastic polymer or resin.


It should be understood that other varieties of 3D weave structures, including different varieties of orthogonal, multilayer, and angle-interlock weave structures, may be used in connection with embodiments of the present disclosure. To optimize the physical characteristics of the docking device 100 for use with a particular bioprosthesis 200 or installation site, the 3D woven fabric 10 can be manufactured using any of the different varieties of 3D weave structures.


For example, in use with a bioprosthetic heart valve, the docking device 100 may be subjected to compressive forces between the bioprosthesis 200 and the surrounding native valve tissue. The compressibility of the docking device 100 can be, in part, a function of the compressibility of the 3D woven fabric, which can, in turn, be a function of the fabric's weave structure, fabric density, and/or other characteristics of the constituent fibers/yarns. Accordingly, the 3D woven fabric's 10 weave structure and fabric density can be selected to optimize the compressibility of docking device 100.


Fabric density can be quantified by ends-per-inch (EPI) and/or picks-per-inch (PPI). In some embodiments, the 3D woven fabric 10 can have about 115 EPI, about 120 EPI, about 125 EPI, about 130 EPI, about 135 EPI, about 140 EPI, about 145 EPI, about 150 EPI, about 155 EPI, about 160 EPI, about 165 EPI, about 170 EPI, about 175 EPI, about 180 EPI, about 185 EPI, about 190 EPI, about 195 EPI, about 200 EPI, about 205 EPI, about 210 EPI, about 215 EPI, about 220 EPI, about 225 EPI, about 230 EPI, about 235 EPI, about 240 EPI, about 245 EPI, about 250 EPI, about 255 EPI, about 260 EPI, about 265 EPI, about 270 EPI, about 275 EPI, about 280 EPI, about 285 EPI, about 290 EPI, about 295 EPI, about 300 EPI, about 305 EPI, about 310 EPI, about 315 EPI, about 320 EPI, about 325 EPI, about 330 EPI, about 335 EPI, about 340 EPI, about 345 EPI, or about 350 EPI. In some embodiments, the 3D woven fabric 10 can have ends-per-inch between and including any two of the foregoing values.


In one embodiment, the 3D woven fabric 10 can have about 115 PPI, about 120 PPI, about 125 PPI, about 130 PPI, about 135 PPI, about 140 PPI, about 145 PPI, about 150 PPI, about 155 PPI, about 160 PPI, about 165 PPI, about 170 PPI, about 175 PPI, about 180 PPI, about 185 PPI, about 190 PPI, about 195 PPI, about 200 PPI, about 205 PPI, about 210 PPI, about 215 PPI, about 220 PPI, about 225 PPI, about 230 PPI, about 235 PPI, about 240 PPI, about 245 PPI, about 250 PPI, about 255 PPI, about 260 PPI, about 265 PPI, about 270 PPI, about 275 PPI, about 280 PPI, about 285 PPI, about 290 PPI, about 295 PPI, about 300 PPI, about 305 PPI, about 310 PPI, or about 315 PPI, about 320 PPI, about 325 PPI, about 330 PPI, about 335 PPI, about 340 PPI, about 345 PPI, or about 350 PPI. In some embodiments, the 3D woven fabric 10 can have picks-per-inch between and including any two of the foregoing values.


In some embodiments, the docking device 100 exhibits a compressibility of no more than 5%, no more than 10%, no more than 15%, no more than 20%, no more than 25%, no more than 30%, no more than 35%, no more than 40%, no more than 45%, no more than 50%, no more than 55%, no more than 60%, no more than 65%, or no more than 70% across its thickness. In some embodiments, the docking device can exhibit a compressibility of between and including any two of the foregoing values.


With reference to FIG. 6, a method for making a docking device 100 for a bioprosthesis can comprise the step of pressing and heating the 3D woven fabric 10 over a shape-setting mold 50 at temperatures greater than the melting point of the low-melt thermoplastic polymer or resin. This step can melt the low-melt thermoplastic polymer or resin yarn, which can function as an adhesive to set the shape of the 3D woven fabric 10 as desired. In some embodiments, the 3D woven fabric 10 can be heated on the shape-setting mold 50 from about 30 minutes to about 60 minutes. In some embodiments, the bioprosthesis can be a transcatheter heart valve, and the 3D woven fabric 10 can be molded accordingly. It should be understood, however, that the 3D woven fabric 10 can be molded to accommodate other bioprostheses, or as a scaffold for tissue engineering.


In some embodiments, the method can further comprise the step of attaching a filler 40 to a surface 35 of the 3D woven fabric 10, for example by sewing the filler 40 to the surface 35 of the 3D woven fabric 10. In a further embodiment, the method can include the step of covering the filler 40 with a tubular woven fabric 45 comprising, for example, polyethylene terephthalate (PET). In some embodiments, the filler 40 can be a polymer foam.


It should be appreciated from the foregoing description that the present invention provides a universal docking device that can be radially compressible, for delivery and implantation, and that changes shape and recovers after a deforming stress is removed. The docking device adjusts to surrounding conditions to accommodate different complex anatomic geometries, and provides conforming support while minimizing or eliminating leakage around the implanted device.


The invention has been described in detail with reference only to the presently preferred embodiments. Persons skilled in the art will appreciate that various modifications can be made without departing from the invention. Accordingly, the invention is defined only by the following claims.


ADDITIONAL EMBODIMENTS

Depending on the embodiment, certain acts, events, or functions of any of the processes described herein can be performed in a different sequence, may be added, merged, or left out altogether. Thus, in some embodiments, not all described acts or events are necessary for the practice of the processes. Moreover, in some embodiments, acts or events may be performed concurrently.


Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is intended in its ordinary sense and is generally intended to convey that some embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment. The terms “comprising,” “including,” “having,” and the like are synonymous, are used in their ordinary sense, and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list. Conjunctive language such as the phrase “at least one of X, Y and Z,” unless specifically stated otherwise, is understood with the context as used in general to convey that an item, term, element, etc. may be either X, Y or Z. Thus, such conjunctive language is not generally intended to imply that some embodiments require at least one of X, at least one of Y and at least one of Z to each be present.


It should be appreciated that in the above description of embodiments, various features are sometimes grouped together in a single embodiment, Figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of one or more of the various inventive aspects. This method of disclosure, however, is not to be interpreted as reflecting an intention that any claim require more features than are expressly recited in that claim. Moreover, any components, features, or steps illustrated and/or described in a particular embodiment herein can be applied to or used with any other embodiment(s). Further, no component, feature, step, or group of components, features, or steps are necessary or indispensable for each embodiment. Thus, it is intended that the scope of the inventions herein disclosed and claimed below should not be limited by the particular embodiments described above, but should be determined only by a fair reading of the claims that follow.

Claims
  • 1. A docking device comprising: a hollow cylindrical body portion having an internal surface and an outer surface;wherein: the hollow cylindrical body portion is formed of a three-dimensional (3D) woven fabric comprising a multilayer weave structure including a set of warp yarns of a first type of fiber, a set of weft yarns of a second type of fiber, and a set of through-the-thickness binding yarns of a third type of fiber;the first type of fiber comprises a first one of a group of different fibers consisting of shape memory metal, low-melt thermoplastic polymer or resin, and high-tenacity biocompatible material;the second type of fiber comprises a second different one of the group; andthe third type of fiber comprises a third different one of the group.
  • 2. The docking device of claim 1, wherein the 3D woven fabric has an orthogonal weave structure.
  • 3. The docking device of claim 2, wherein: the warp yarns are arranged in a fabric length direction;the weft yarns are filing fibers inserted between length layers of the warp yarns; andthe through-the-thickness binding yarns interconnect layers of the weft yarns.
  • 4. The docking device of claim 3, wherein: the first type of fiber is the high-tenacity biocompatible material;the second type of fiber is the shape memory metal; andthe third type of fiber is the low-melt thermoplastic polymer or resin.
  • 5. The docking device of claim 4, wherein: the high-tenacity biocompatible material comprises polyethylene terephthalate (PET) and is configured to provide durability and promote tissue growth for the 3D woven fabric;the shape memory metal comprises nickel titanium alloy; andthe low-melt thermoplastic polymer or resin comprises nylon and is configured to fuse woven layers of the 3D woven fabric together.
  • 6. The docking device of claim 1, wherein: the warp yarns are interlaced with layers of the weft yarns in in-plane principal directions; andthe through-the-thickness binding yarns are interlaced with layers of the warp yarns in out-of-plane principal directions.
  • 7. The docking device of claim 6, wherein: the first type of fiber is the shape memory metal;the second type of fiber is the low-melt thermoplastic polymer or resin; andthe third type of fiber is the high-tenacity biocompatible material.
  • 8. The docking device of claim 6, wherein: the first type of fiber is the high-tenacity biocompatible material;the second type of fiber is the shape memory metal; andthe third type of fiber is the low-melt thermoplastic polymer or resin.
  • 9. The docking device of claim 1, wherein the 3D woven fabric has an angle-interlock weave structure.
  • 10. The docking device of claim 9, wherein: the weft yarns comprise straight weft wadding yarns; andthe through-the-thickness binding yarns comprise bias weft yarns that weave with the warp yarns in a diagonal direction in a thickness of the 3D woven fabric.
  • 11. The docking device of claim 10, wherein: the first type of fiber is the shape memory metal;the second type of fiber is the low-melt thermoplastic polymer or resin type of fiber; andthe third type of fiber is the high-tenacity biocompatible material.
  • 12. The docking device of claim 10, wherein: the first type of fiber is the high-tenacity biocompatible material;the second type of fiber is the shape memory metal; andthe third type of fiber is the low-melt thermoplastic polymer or resin.
  • 13. The docking device of claim 1, further comprising: an elongate filler structure wrapped at least partially around a circumference of the outer surface of the hollow cylindrical body portion; anda tubular woven fabric disposed around the elongate filler structure over a length of the elongate filler structure.
  • 14. The docking device of claim 13, wherein: the elongate filler structure comprises foam; andthe tubular woven fabric is less porous than the elongate filler structure.
  • 15. The docking device of claim 13, wherein the tubular woven fabric is attached to the outer surface of the hollow cylindrical body portion.
  • 16. The docking device of claim 13, further comprising a ring formed of the 3D woven fabric at an axial end of the hollow cylindrical body portion, wherein the tubular woven fabric is attached to the hollow cylindrical body portion adjacent to the ring.
  • 17. The docking device of claim 14, wherein the foam is one of the group consisting of polymeric foam, polyurethane foam, polyvinyl chloride foam, polyimide foam, and microcellular foam.
  • 18. The docking device of claim 13, wherein the elongate filler structure comprises silicone.
  • 19. The docking device of claim 13, wherein ends of the elongate filler structure are exposed past ends of the tubular woven fabric.
  • 20. The docking device of claim 1, wherein the high-tenacity biocompatible material comprises polyethylene terephthalate (PET).
  • 21. The docking device of claim 1, wherein the shape memory metal comprises nickel titanium alloy.
  • 22. The docking device of claim 1, wherein the low-melt thermoplastic polymer or resin comprises nylon.
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application is a continuation of U.S. patent application Ser. No. 15/841,046, filed on Dec. 13, 2017 and entitled DOCKING DEVICE MADE WITH 3D WOVEN FABRIC, now U.S. Pat. No. 10,813,749, which claims priority to U.S. Provisional Application No. 62/436,866, filed on Dec. 20, 2016 and entitled DOCKING DEVICE MADE WITH 3D WOVEN FABRIC, the disclosures of which are hereby incorporated by reference in their entirety.

US Referenced Citations (179)
Number Name Date Kind
1392535 Stevenson Oct 1921 A
3365728 Edwards et al. Jan 1968 A
3725961 Magovern et al. Apr 1973 A
3983581 Angell et al. Oct 1976 A
4035849 Angell et al. Jul 1977 A
4182618 Tschudy Jan 1980 A
4187618 Diehl Feb 1980 A
5059177 Towne et al. Oct 1991 A
5258023 Reger Nov 1993 A
5399418 Hartmanns Mar 1995 A
5411552 Andersen et al. May 1995 A
5476506 Lunn Dec 1995 A
5554185 Block et al. Sep 1996 A
5628786 Banas et al. May 1997 A
5693088 Lazarus Dec 1997 A
5711960 Shikinami Jan 1998 A
5755783 Stobie et al. May 1998 A
5769882 Fogarty et al. Jun 1998 A
5776188 Shepherd et al. Jul 1998 A
5840081 Andersen et al. Nov 1998 A
5843161 Solovay Dec 1998 A
5843179 Vanney et al. Dec 1998 A
5855601 Bessler et al. Jan 1999 A
5957949 Leonhardt et al. Sep 1999 A
6015431 Thornton et al. Jan 2000 A
6110198 Fogarty et al. Aug 2000 A
6168614 Andersen et al. Jan 2001 B1
6206911 Milo Mar 2001 B1
6306164 Kujawski Oct 2001 B1
6352554 De Paulis Mar 2002 B2
6419696 Ortiz et al. Jul 2002 B1
6432134 Anson et al. Aug 2002 B1
6458153 Bailey et al. Oct 2002 B1
6482228 Norred Nov 2002 B1
6527979 Constantz et al. Mar 2003 B2
6540782 Snyders Apr 2003 B1
6582462 Andersen et al. Jun 2003 B1
6652578 Bailey et al. Nov 2003 B2
6663667 Dehdashtian et al. Dec 2003 B2
6689162 Thompson Feb 2004 B1
6729356 Baker et al. May 2004 B1
6730121 Ortiz et al. May 2004 B2
6773456 Gordon et al. Aug 2004 B1
6797002 Spence et al. Sep 2004 B2
6814754 Greenhalgh Nov 2004 B2
6846325 Liddicoat Jan 2005 B2
6904909 Andreas et al. Jun 2005 B2
6908481 Cribier Jun 2005 B2
6911040 Johnson et al. Jun 2005 B2
7018406 Seguin et al. Mar 2006 B2
7018408 Bailey et al. Mar 2006 B2
7037334 Hlavka et al. May 2006 B1
7077861 Spence Jul 2006 B2
7101395 Tremulis et al. Sep 2006 B2
7101396 Artof et al. Sep 2006 B2
7125421 Tremulis et al. Oct 2006 B2
7147663 Berg et al. Dec 2006 B1
7175652 Cook et al. Feb 2007 B2
7192441 Sherry Mar 2007 B2
7264632 Wright et al. Sep 2007 B2
7585321 Cribier Sep 2009 B2
7618446 Andersen et al. Nov 2009 B2
7731742 Schlick et al. Jun 2010 B2
7737060 Strickler et al. Jun 2010 B2
7780725 Haug et al. Aug 2010 B2
7785366 Maurer et al. Aug 2010 B2
7951195 Antonsson et al. May 2011 B2
8105377 Liddicoat Jan 2012 B2
8128681 Shoemaker et al. Mar 2012 B2
8323335 Rowe et al. Dec 2012 B2
8377115 Thompson Feb 2013 B2
8398708 Meiri et al. Mar 2013 B2
8425593 Braido et al. Apr 2013 B2
8430925 Forster et al. Apr 2013 B2
8449605 Lichtenstein et al. May 2013 B2
8449606 Eliasen et al. May 2013 B2
8657872 Seguin Feb 2014 B2
8663322 Keranen Mar 2014 B2
8672998 Lichtenstein et al. Mar 2014 B2
8721717 Shoemaker et al. May 2014 B2
8734507 Keranen May 2014 B2
8795357 Yohanan et al. Aug 2014 B2
8808356 Braido et al. Aug 2014 B2
8845721 Braido et al. Sep 2014 B2
8940041 Carlson et al. Jan 2015 B2
8979922 Jayasinghe et al. Mar 2015 B2
8992608 Haug et al. Mar 2015 B2
9078747 Conklin Jul 2015 B2
9095434 Rowe Aug 2015 B2
9119718 Keranen Sep 2015 B2
9220594 Braido et al. Dec 2015 B2
9237886 Seguin et al. Jan 2016 B2
9241794 Braido et al. Jan 2016 B2
9289296 Braido et al. Mar 2016 B2
9326856 Schraut et al. May 2016 B2
9345571 Braido et al. May 2016 B1
9351828 Braido et al. May 2016 B2
9351831 Braido et al. May 2016 B2
9351832 Braido et al. May 2016 B2
9364326 Yaron Jun 2016 B2
9414911 Braido et al. Aug 2016 B2
9463268 Spence Oct 2016 B2
9474599 Keranen Oct 2016 B2
9545307 Braido et al. Jan 2017 B2
9549815 Braido et al. Jan 2017 B2
9622863 Karapetian et al. Apr 2017 B2
20010021872 Bailey et al. Sep 2001 A1
20010027338 Greenberg Oct 2001 A1
20010039450 Pavcnik et al. Nov 2001 A1
20030074058 Sherry Apr 2003 A1
20030225420 Wardle Dec 2003 A1
20030236567 Elliot Dec 2003 A1
20040033364 Spiridigliozzi et al. Feb 2004 A1
20040082989 Cook et al. Apr 2004 A1
20040098096 Eton May 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040215320 Machek Oct 2004 A1
20040260389 Case et al. Dec 2004 A1
20050043790 Seguin Feb 2005 A1
20050096736 Osse et al. May 2005 A1
20050119735 Spence et al. Jun 2005 A1
20050137687 Salahieh et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050203614 Forster et al. Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20060025857 Bergheim et al. Feb 2006 A1
20060089672 Martinek Apr 2006 A1
20070073387 Forster et al. Mar 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070265700 Eliasen et al. Nov 2007 A1
20070293927 Frank et al. Dec 2007 A1
20080033542 Antonsson et al. Feb 2008 A1
20080125853 Bailey et al. May 2008 A1
20080208330 Keranen Aug 2008 A1
20090099653 Suri et al. Apr 2009 A1
20090132035 Roth et al. May 2009 A1
20100145440 Keranen Jun 2010 A1
20100168839 Braido et al. Jul 2010 A1
20100312333 Navia et al. Dec 2010 A1
20100318184 Spence Dec 2010 A1
20120035719 Forster et al. Feb 2012 A1
20120059458 Buchbinder et al. Mar 2012 A1
20120116492 Seibold et al. May 2012 A1
20120215303 Quadri et al. Aug 2012 A1
20130006279 Mortarino Jan 2013 A1
20130273795 Richter Oct 2013 A1
20130331929 Mitra et al. Dec 2013 A1
20130338765 Braido et al. Dec 2013 A1
20140074299 Endou et al. Mar 2014 A1
20140172070 Seguin Jun 2014 A1
20140243966 Garde et al. Aug 2014 A1
20140277424 Oslund Sep 2014 A1
20140303719 Cox et al. Oct 2014 A1
20140350663 Braido et al. Nov 2014 A1
20140379074 Spence et al. Dec 2014 A1
20150073541 Salahieh et al. Mar 2015 A1
20150073546 Braido Mar 2015 A1
20150127088 Carlson et al. May 2015 A1
20150157455 Hoang et al. Jun 2015 A1
20150190552 Richter Jul 2015 A1
20150230921 Chau et al. Aug 2015 A1
20150230953 Bar et al. Aug 2015 A1
20150282931 Brunnett et al. Oct 2015 A1
20150282932 Neuman et al. Oct 2015 A1
20150327999 Board et al. Nov 2015 A1
20150335428 Keranen Nov 2015 A1
20150374493 Yaron et al. Dec 2015 A1
20160074165 Spence et al. Mar 2016 A1
20160095705 Keranen et al. Apr 2016 A1
20160184095 Spence et al. Jun 2016 A1
20160199177 Spence et al. Jul 2016 A1
20160213466 Braido et al. Jul 2016 A1
20160213468 Braido et al. Jul 2016 A1
20160242904 Braido et al. Aug 2016 A1
20160256276 Yaron Sep 2016 A1
20170007399 Keranen Jan 2017 A1
20170007402 Zerkowski et al. Jan 2017 A1
20170172736 Chadha Jun 2017 A1
20190226126 Hozumi Jul 2019 A1
Foreign Referenced Citations (61)
Number Date Country
2002212418 Mar 2006 AU
1182813 May 1998 CN
104786564 Jul 2015 CN
19532846 Mar 1997 DE
19907646 Aug 2000 DE
0592410 Oct 1995 EP
0850607 Jul 1998 EP
1432369 Jun 2004 EP
1521550 Apr 2005 EP
2155114 Feb 2010 EP
1827314 Dec 2010 EP
2299938 Mar 2011 EP
2620125 Jul 2013 EP
2572676 Aug 2013 EP
2572675 Sep 2013 EP
2698129 Feb 2014 EP
2726018 May 2014 EP
2745805 Jun 2014 EP
2749254 Jul 2014 EP
2806829 Dec 2014 EP
2815723 Dec 2014 EP
2815725 Dec 2014 EP
2967851 Jan 2016 EP
2926766 Feb 2016 EP
2815724 Jun 2016 EP
3028670 Jun 2016 EP
3028671 Jun 2016 EP
3025680 Feb 2017 EP
3025681 Feb 2017 EP
9117720 Nov 1991 WO
9829057 Jul 1998 WO
9748350 Jun 1999 WO
0044313 Aug 2000 WO
0106959 Feb 2001 WO
0149213 Jul 2001 WO
0154625 Aug 2001 WO
0219951 Mar 2002 WO
0236048 May 2002 WO
0247575 Jun 2002 WO
03047468 Jun 2003 WO
03037222 Oct 2003 WO
03088873 Oct 2003 WO
03096932 Nov 2003 WO
03003949 Jan 2004 WO
2005084595 Sep 2005 WO
2006005015 Jan 2006 WO
2006011127 Feb 2006 WO
2005102015 Apr 2007 WO
2007067942 Jun 2007 WO
2009042196 Apr 2009 WO
2010121076 Oct 2010 WO
2013033791 Mar 2013 WO
2013110722 Aug 2013 WO
2013114214 Aug 2013 WO
2015023579 Feb 2015 WO
2015023862 Feb 2015 WO
2015127264 Aug 2015 WO
2015198125 Dec 2015 WO
2016038017 Mar 2016 WO
2016040881 Mar 2016 WO
2016130820 Aug 2016 WO
Related Publications (1)
Number Date Country
20210022852 A1 Jan 2021 US
Provisional Applications (1)
Number Date Country
62436866 Dec 2016 US
Continuations (1)
Number Date Country
Parent 15841046 Dec 2017 US
Child 17071641 US