The present invention relates generally to mining equipment but more particularly to a three-in-one drilling, resin and rod insertion device.
In mining operations, a wire mesh fence, better described as a metal lattice, is used for preventing the collapse of tunnels. The lattice holds together small fragments which could lead to large sections collapsing. In order to secure that lattice, after the lattice is loosely put in place on the ceiling and walls of the tunnel, a mining drill is used for drilling deep holes into the rock face. Once the hole is drilled, a worker has to push a sequence of tubes of resin and catalyst up the hole by hand and then he has to hold the rod to align it with the hole until the drill has pushed it in the hole a few centimeters. The action of pushing the rod in with a twist (as in a drill), pushes the catalyst into the resin and starts the chemical reaction. The insertion has to be done quickly since reaction time is quick since inserting the rod mixes the resin and the catalyst together so as to cause the resin to harden and thus secure the rod into the hole. The rod has a square head large enough to catch the lattice and secure against the rock face.
This operation requires the coordination of a mining drill machine and a fast worker inserting the tubes a guiding the rod in.
In order to solve the drawbacks associated with manual insertion, a recent development involves the use of a hose that is partially inserted into the hole and which uses air pressure to shoot the tubes into the hole—an air cannon of sort. The drawback with the air cannon is that a worker cannot guarantee if a tube went all the way to the bottom of the hole because if there is a small impediment, such as a loose rock inside the hole, the tube can get stuck and not reach the bottom of the hole. It is very difficult to try to remove or push the tube because once the tube is punctured, the chemical reaction starts and the resin quickly hardens. These tubes are in fact much like sausages inside their skin, very fragile. The resin and catalyst are side by side inside that skin and the two are mixed when the rod is inserted in a rotating fashion as it punctures and twist the resin and catalyst.
The following presents a simplified summary of some embodiments of the invention in order to provide a basic understanding of the invention. This summary is not an extensive overview of the invention. It is not intended to identify key/critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some embodiments of the invention in a simplified form as a prelude to the more detailed description that is presented later.
In order to do so, a device enabling sequential operations of hole drilling, resin and catalyst insertion, and rod insertion is provided, the device comprising a drilling machine configured to drill a hole; a pipe configured to be inserted into the hole, wherein the pipe is a co-joined double pipe configured to inject a resin and a catalyst via each pipe of the co-joined double pipe such that the resin and the catalyst emerges unmixed at an end of the co-joined double pipe; a rod configured to be screwed via a twisting motion into the hole, wherein the twisting motion is configured to mix the resin the catalyst causing a chemical reaction to harden the resin such that the rod is secured in the hole.
In one embodiment, the drilling machine comprises a hydraulic drill motor and a drill bit. In one embodiment, the hydraulic drill motor is mounted to a first pivoting frame, which is configured to pivot around a pivot point. In one embodiment, the pivoting action of the first pivoting frame enables room for a second pivoting frame to line up with the drilled hole such that the co-joined double pipe may be inserted into the hole. In another embodiment, the co-joined pipe double pipe includes a smaller diameter pipe inside a larger diameter pipe, wherein the smaller diameter pipe is configured to hold the catalyst and the larger diameter pipe is configured to hold the resin. In another embodiment, the co-joined double pipe is configured to be extracted leaving the resin and the catalyst in the hole. In yet another embodiment, a compressor configured to eject the resin and the catalyst from the co-joined double pipe is provided. In one embodiment, the rod is spun and pushed up by the hydraulic drill rod motor (52).
The foregoing has outlined rather broadly the more pertinent and important features of the present disclosure so that the detailed description of the invention that follows may be better understood and so that the present contribution to the art can be more fully appreciated. Additional features of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and the disclosed specific methods and structures may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. It should be realized by those skilled in the art that such equivalent structures do not depart from the spirit and scope of the invention as set forth in the appended claims.
Other features and advantages of the present invention will become apparent when the following detailed description is read in conjunction with the accompanying drawings, in which:
The following description is provided to enable any person skilled in the art to make and use the invention and sets forth the best modes contemplated by the inventor of carrying out his invention. Various modifications, however, will remain readily apparent to those skilled in the art, since the general principles of the present invention have been defined herein to specifically provide a three-in-one drilling, resin and rod insertion device.
The provided three-in-one drilling, resin and rod insertion device is configured for sequential operations of hole drilling by way of a drill bit 11 driven by a hydraulic drill motor 14 which is mounted on a first pivoting frame 12. Once a hole has been drilled, the pivoting frame 12 pivots around a pivot point 16. The pivoting action leaves room for a second pivoting frame 18 to line up with the drilled hole so that a co-joined double pipe 20 may be inserted into the hole. In some embodiments, the co-joined double pipe 20 is comprised of a small diameter pipe 22 located inside a large diameter pipe 24,wherein the small diameter pipe 22 holds a catalyst and the large diameter pipe 24 holds a resin.
After full insertion of the co-joined double pipe 20, it is extracted while leaving the resin and the catalyst in the hole. Both substances have the consistency of toothpaste and similar to multicolored toothpaste, the two substances do not readily mix. A compressor (not shown) is configured to push the substances into the co-joined double pipe 20 while also applying pressure so that the substances are ejected from the co-joined double pipe 20 as the co-joined double pipe 20 is retracted out of the hole.
When using a single pipe (not shown) to which a hose is connected (the hose is an existing and well known machine in the mining industry such as the ones made by the Sandvick® company and need not be further discussed herein and the pipe is a standard pipe comparable to plumbing pipes), the operations are similar except that the resin and catalyst come in tubes resembling sausages, as described herein above. These tubes are currently used in the industry on machines such as those made by Sandvik®, for example, but are pushed by way of an air cannon. As mentioned earlier, the problem with the air cannon is that if there is the smallest impediment, the tube can get stuck and not reach the bottom of the hole. This problem can be eliminated by connecting the flexible hose of the air cannon to the single pipe of Applicant's invention. The inventiveness aspect is in the use of a standard pipe along with this invention so that the single pipe is pushed to the bottom of the hole, just as with the co-joined double pipe 20 and is retracted the equivalent of one tube length (typically 16 inches) and a first tube is shot out of the pipe, which is then retracted by another tube length to allow for the second tube, and so on.
Then the co-joined double pipe 20 or the single pipe is fully retracted, and the second pivoting frame 18 pivots out of the way so as to leave room for a third pivoting frame 26. At this point, the resin and catalyst are not mixed, simply positioned side by side inside the hole, or inside the tubes. The next step consists of screwing-in a rod 28 into the hole. The twisting motion mixes resin and catalyst and in a matter of seconds, the rod 28 is fully inserted and the chemical reaction has started.
The three-in-one drilling, resin and rod insertion device is moved about and positioned by way of a boom crane vehicle, as is known in the art (Sandvik® DX800 for example). In the first pivoting frame 12, essentially incorporates a mining drill apparatus 14. In some embodiments, a hydraulic motor (not shown) generally located behind the hydraulic drill motor 14 is configured to rotate a sprocket (not shown) that is connected to a chain 50 so as to move the chain 50 in two directions, which acts as a means for moving the hydraulic drill motor 14 and the drill bit 11 up and down. Similarly, the rod 28 is moved via a second hydraulic motor (not shown) which is configured to move a second chain 50′ configured to move a rod hydraulic motor 52 up and down. A set of grapplers 27 via the rod hydraulic motor 52 is configured to take a rod 28 from a carousel 36. As best seen in
A worm screw 34 which is spun via a worm screw motor 32, typically a hydraulic motor, is used to push the co-joined double pipe 20 or the single pipe. The worm screw 34 is contained inside the second pivoting frame 18.
As best seen in
Although the invention has been described in considerable detail in language specific to structural features, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific features described. Rather, the specific features are disclosed as exemplary preferred forms of implementing the claimed invention. Stated otherwise, it is to be understood that the phraseology and terminology employed herein, as well as the abstract, are for the purpose of description and should not be regarded as limiting. Therefore, while exemplary illustrative embodiments of the invention have been described, numerous variations and alternative embodiments will occur to those skilled in the art. Such variations and alternate embodiments are contemplated, and can be made without departing from the spirit and scope of the invention.
It should further be noted that throughout the entire disclosure, the labels such as left, right, front, back, top, bottom, forward, reverse, clockwise, counter clockwise, up, down, or other similar terms such as upper, lower, aft, fore, vertical, horizontal, oblique, proximal, distal, parallel, perpendicular, transverse, longitudinal, etc. have been used for convenience purposes only and are not intended to imply any particular fixed direction or orientation. Instead, they are used to reflect relative locations and/or directions/orientations between various portions of an object.
In addition, reference to “first,” “second,” “third,” and etc. members throughout the disclosure (and in particular, claims) are not used to show a serial or numerical limitation but instead are used to distinguish or identify the various members of the group.
The present application claims priority to U.S. Patent Application Ser. No. 62/917,610, filed on Dec. 18, 2018 entitled “Resin Insert”, the disclosure of which is hereby incorporated in its entirety at least by reference.
Number | Date | Country | |
---|---|---|---|
62917610 | Dec 2018 | US |