The present invention relates to a shoe construction and, more particularly, to a three layered shoe construction with an outsole having a unique exterior face pattern to enhance flexibility, comfort and water displacement, a dual density midsole, and an insole having a distinctive bubble type pattern for increased breathability, air circulation, and cushioning coupled with a molded arch area for providing additional support to the arch of the foot.
Numerous shoes covering a broad range of different designs and styles have been manufactured and sold in the marketplace. While shoes are worn to provide protection to one's feet, to reduce the impact felt when walking on hard surfaces, to provide support for the feet, and to prevent pronation, shoe designers must still seek to provide optimum levels of stability and comfort. In order to accomplish all of these objectives, shoe designers have used a wide variety of different tools and methods including heel plugs, shanks, contoured soles, deformable pillars or columns, spring-like structures, different traction designs, cushioning members, different shank designs, different ventilation structures, rocker elements, pads, gels and sole constructions having a plurality of different layers. Although these methods can be effective, the large number of components can result in increased manufacturing costs and complexity. It is therefore desirable to improve cushioning, flexibility, support and stability without increasing the number of components to achieve the same level of comfort for the user.
The present invention is directed to a three layer shoe construction which includes an outsole, midsole, and insole. The three layers have a mating relationship which will be later described in detail. The three components of the present shoe are preferably secured together through conventional means such as through cementing and/or adhesives thereby preventing relative movement between the layers during assembly and use of the present shoe. Each of the three layers of the present shoe are generally in the shape of a human foot and can be divided into different sections according to the three different regions of the human foot—the forefoot, the midfoot, and the hind foot. The forefoot is generally adjacent to and includes the toe area; the hind foot is generally adjacent to and includes the heel area; and the midfoot is located adjacent to both the forefoot and the hind foot. The ball of the foot is generally the area of the foot at the juncture between the metatarsal bones and the phalange bones. The two primary regions of the foot for load bearing when walking or standing normally are the ball area and the heel area, and the major bending of the shoe during normal use is typically in the ball area. The arch or instep is positioned between the heel and ball areas and flexes very little when walking normally.
The present outsole is made out of a super lightweight thermoplastic rubber (TPR) and includes an exterior and interior face. The exterior face of the present outsole engages the ground or other walking surfaces, while the interior face is located opposite the exterior face and has a mating relationship with the midsole as will be hereinafter further described in more detail.
The exterior face of the outsole includes a first, second, and third section. The first section includes portions of the forefoot and midfoot areas. In one embodiment, the first section includes the majority of the forefoot area and extends from the proximal side of the forefoot area to the distal side of the midfoot area. The first section further includes a plurality of curved or non-linear grooves, some of which intersect with a plurality of straight grooves. Circular shaped apertures or cavities are also provided in the first section to provide extra flexibility, traction, and comfort. Some of the curved grooves start out extending substantially along the longitudinal axis before curving towards the proximal side of the outsole and at least one of the curved grooves then continues to curve back towards the distal side of the outsole. Others extend from the proximal side towards the distal side. At least one of the plurality of straight grooves extends largely along the longitudinal axis, while the remainder of the first plurality of straight grooves extend in a direction so as to intersect with a portion of the plurality of curved grooves. The first section is divided from the second section by a first angled groove.
The second section includes portions of the forefoot, midfoot, and hind foot areas. More specifically, the second section includes the majority of the midfoot area and extends from the midfoot area towards and into the proximal side of the forefoot area and also extends in an opposite direction towards and into the distal side of the hind foot area. The second section further includes a first series of diagonal grooves and a second series of diagonal grooves. The first series of diagonal grooves is located approximately throughout the entirety of the second section and extends from the distal side towards the proximal side forming an obtuse angle with the longitudinal axis. The second series of diagonal grooves is located and positioned at the distal side of the second section and are positioned at a different angle as compared to the first series of diagonal grooves. The second section is divided from the third section by a first non-linear groove which extends from the heel area to the proximal side of the midfoot area.
The third section includes portions of the hind foot and midfoot areas and is located approximately in the hind foot area and extends towards and into the midfoot area. Similar to the first section, the third section further includes a plurality of curved grooves which intersect with a second plurality of straight grooves, wherein the plurality of curved grooves extend from the midfoot area into the hind foot area largely following the curve of the first non-linear groove, and the second plurality of straight grooves extend from the proximal side of the heel area towards the distal side. The intersection of the plurality of curved grooves and second plurality of straight grooves create a plurality of raised areas wherein each raised area includes a circular shaped aperture or cavity.
The outsole further includes a sidewall having a raised lip or edge portion which extends around the entirety of its perimeter forming a first cavity on the interior face of the outsole substantially in the same shape as the outsole. The sidewall of the outsole also includes two protrusions which extend upwards towards the midsole such that the two protrusions have a greater height than the remainder of the edge portion of the sidewall thereby increasing stability and support when mated with the midsole. The outsole sidewall further includes a plurality of triangularly shaped raised projections located and positioned in the forefoot and hind foot areas which provide additional support and strength.
The outsole has a mating relationship with the midsole, which will be hereinafter further explained. The interior face of the outsole further includes raised projections corresponding to the first angled groove separating the first section and second section (raised angled projection) and the first non-linear groove separating the second section from the third section on the exterior face of the outsole (raised non-linear projection). The interior face of the outsole also includes a third raised oval shaped projection located and positioned in the midsole area of the outsole between the raised angled projection and raised non-linear projection. The angled raised projection and non-linear raised projection allow for the exterior face of the outsole to have deeper grooves which function in conjunction with the plurality of curved and straight grooves associated with the first, second and third sections of the outsole to help displace water when walking on wet surfaces. The plurality of grooves and cavities create fluid flow channels to help guide water or other liquids off the outer surface of the outsole thereby preventing the outer surface from becoming slippery. The plurality of grooves also increases flexibility in the outsole.
The present midsole is made of a dual density blown ethylene-vinyl acetate copolymer (EVA) with an intrinsic molded arch support which supports the arch of the foot. The EVA creates a lightweight and resilient midsole which helps dissipate shock when walking or running. In addition to the material itself, the dual density of the midsole allows for greater flexibility and cushioning in the forefoot area due to its lighter density, and provides greater support and stability in the hind foot area due to its heavier density. The sidewall of the midsole includes a diamond-shaped scored pattern covering substantially the entire sidewall and a circumferentially extending ridge or edge portion where the midsole meets the outsole such that the raised lip on the outsole mates with the circumferentially extending ridge on the midsole when the outsole and midsole are coupled together. The scored pattern likewise helps to dissipate and absorb shock.
The midsole has a proximal and distal face. The distal face includes a protrusion or raised area substantially in the shape of the outsole and corresponds to the shape of the first cavity in the outsole. The distal face of the midsole further includes channels or grooves that correspond to the raised projections on the interior face of the outsole as well as a plurality of circular apertures or cavities and a plurality of raindrop shaped apertures or cavities for reducing the weight of the midsole and improving cushioning, flexibility, and creating a bounce effect. The midsole has a mating relationship with the outsole wherein the distal face of the midsole mates with and is received by the first cavity created by the sidewall on the interior face of the outsole. The insole also has a mating relationship to the midsole wherein the proximal face of the midsole has a lip or flange extending around its entire circumference creating a second cavity substantially in the shape of the insole. The insole mates with and is received by the second cavity of the midsole. The three layers are preferably secured together to prevent movement when worn.
The insole is a lightweight, thermal molded EVA with an antimicrobial shield which provides protection against bacteria, fungus, and controls or eliminates odors, stains, and product deterioration. This can be accomplished by adding a powder or other antimicrobial agents during the manufacturing process. The insole has a top face and a bottom face wherein the top face engages with the foot of a wearer and has a plurality of raised oval shaped projections that provide for a bubble type effect which enhances cushioning and air circulation when the shoe is worn. In one embodiment, the raised oval shaped projections cover the entire top face of the insole. The bottom face of the insole is smooth.
The present three layer shoe construction absorbs shock, enhances comfort, and creates a unique propulsion effect, without requiring a vast number of components.
For a better understanding of the various embodiments of the present invention, reference may be made to the accompanying drawings in which:
While the disclosure is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description presented herein are not intended to limit the disclosure to the particular embodiment disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present disclosure.
The invention will now be described with reference to the drawing figures in which like reference numerals refer to like parts throughout. For purposes of clarity in illustrating the characteristics of the present invention, proportional relationships of the elements have not necessarily been maintained in the drawing figures.
As illustrated in
Each of the three layers of the present shoe are generally in the shape of a human foot and can be divided into different sections according to three distinct regions of the human foot—the forefoot, midfoot, and hind foot. The forefoot area or region of the foot is approximately adjacent to and includes the toe area A, while the hind foot area or region of the foot is approximately adjacent to and includes the heel area B. The midfoot area or region is approximately adjacent to both the forefoot and hind foot regions as illustrated in
The present outsole 4 is made out of a super lightweight thermoplastic rubber (TPR) and has an exterior face 6 and an interior face 8 as seen in
In one embodiment, the exterior face 6 of the outsole 4 has a first section 10, a second section 12, and a third section 14 as best illustrated in
The first section 10 also includes a plurality of circular shaped apertures or cavities 20 which are located and positioned in the raised spaces or areas 22 in between the plurality of grooves 16, 17 and 18. The first section 10 further includes a plurality of grooves 23 located and positioned at the distal side of the first section 10. The first section 10 is divided from the second section 12 by a first angled groove 24. The first angled groove 24 extends upwardly from the proximal side of the forefoot area towards and into the distal side of the forefoot area.
The second section 12 includes portions of the forefoot, midfoot, and hind foot areas. More specifically, the second section 12 includes the majority of the midfoot area and extends from the midfoot area into and towards the proximal side of the forefoot area and also extends in an opposite direction into and towards the distal side of the hind foot area. The second section 12 further includes a first series of diagonal grooves 26 and a second series of diagonal grooves 28. The first series of diagonal grooves 26 is located and positioned approximately throughout the forefoot, midfoot, and a portion of the hind foot areas and extend downwardly at an angle relative to the longitudinal axis in a direction from the distal side to the proximal side of the outsole. The second series of diagonal grooves 28 is located and positioned at the distal side of the second section and are positioned and located at a different angle as compared to the first series of diagonal grooves 26 as best shown in
The third section 14 includes portions of the midfoot and hind foot areas. More specifically, the third section 14 is located approximately in the hind foot area and extends towards and to the proximal side of the midfoot area. Similar to the first section 10, the third section 14 further includes a first plurality of curved grooves 32 extending from the hind foot area into the midfoot area and a second plurality of straight grooves 34. The second plurality of straight grooves 34 extend primarily across the third section 14 and intersect with the first plurality of curved grooves 32, this intersection of grooves 32 and 34 forming a plurality of raised spaces or areas 36 each of which includes a circular shaped aperture or cavity 38, similar to the plurality of circular shaped apertures/cavities 20 in the first section 10.
The outsole 4 further includes a sidewall 40 which extends around the entirety of the perimeter of the outsole 4 as shown in
Turning to
The present midsole 60 is made of a dual density blown ethylene-vinyl acetate copolymer (EVA) with an intrinsic molded arch support 61 which supports the arch area D of the foot as best illustrated in
Referring to
The midsole 60 has a mating relationship with the outsole 4 wherein the area protrusion 70 on the distal face 68 of the midsole 60 mates with and is received by the first cavity 50 on the interior face 8 of the outsole 4 as best illustrated in
The insole 80 is a lightweight, thermal molded EVA as best illustrated in
The present three layer shoe construction absorbs shock, enhances comfort, creates a unique bounce effect, without requiring a vast number of components, and provides numerous grooves or flow channels on the exterior face 6 of the outsole for water or liquid displacement when walking on a slippery surface.
From the foregoing, it will be seen that the various embodiments of the present invention are well adapted to attain all the objectives and advantages hereinabove set forth together with still other advantages which are obvious and which are inherent to the present structures. It will be understood that certain features and sub-combinations of the present embodiments are of utility and may be employed without reference to other features and sub-combinations. Since many possible embodiments of the present invention may be made without departing from the spirit and scope of the present invention, it is also to be understood that all disclosures herein set forth or illustrated in the accompanying drawings are to be interpreted as illustrative only and not limiting. The various constructions described above and illustrated in the drawings are presented by way of example only and are not intended to limit the concepts, principles and scope of the present invention.
Many changes, modifications, variations and other uses and applications of the present invention will, however, become apparent to those skilled in the art after considering the specification and the accompanying drawings. All such changes, modifications, variations and other uses and applications which do not depart from the spirit and scope of the invention are deemed to be covered by the invention which is limited only by the claims which follow.