The present invention relates to a shoe construction and, more particularly, to a three layered shoe construction with an outsole having a unique exterior face pattern to enhance flexibility, comfort, stability and water displacement, a dual density midsole, and an insole having a Y-shaped aperture pattern for increased breathability, air circulation, and comfort coupled with a raised arch area for providing additional support to the arch of the foot.
Numerous shoes, covering a broad range of different designs and styles have been manufactured and sold in the marketplace. While shoes are worn to provide protection to one's feet, to reduce the impact felt when walking on hard surfaces, to provide support for the feet, and to prevent pronation, shoe designers must still seek to provide optimum levels of stability and comfort. In order to accomplish all of these objectives, shoe designers have used a wide variety of different tools and methods including heel plugs, shanks, contoured soles, deformable pillars or columns, spring-like structures, different traction designs, cushioning members, different shank designs, different ventilation structures, rocker elements, pads, gels and sole constructions having a plurality of different layers. Although these methods can be effective, the large number of components can result in increased manufacturing costs and complexity. It is therefore desirable to improve cushioning, flexibility, support and stability without increasing the number of components to achieve the same level of comfort for the user.
The present invention is directed to a three layer shoe construction which includes an outsole, midsole, and insole. The three layers have a mating relationship which will be later described in detail. The three components of the present shoe are preferably secured together through conventional means such as through cementing and/or adhesives thereby preventing relative movement between the layers during assembly and use of the present shoe. Each of the three layers of the present shoe are generally in the shape of a human foot and can be divided into different sections according to the three different regions of the human foot—the forefoot, the midfoot, and the hind foot. The forefoot is generally adjacent to and includes the toe area; the hind foot is generally adjacent to and includes the heel area; and the midfoot is located adjacent to both the forefoot and the hind foot. The ball of the foot is generally the area of the foot at the juncture between the metatarsal bones and the phalange bones. The two primary regions of the foot for load bearing when walking or standing normally are the ball area and the heel area, and the major bending of the shoe during normal use is typically in the ball area. The arch or instep is positioned between the heel and ball areas and flexes very little when walking normally.
The present outsole is made out of a super lightweight thermoplastic rubber (TPR) and includes an exterior and interior face. The exterior face of the present outsole engages the ground or other walking surfaces, while the interior face is located opposite the exterior face and has a mating relationship with the midsole as will be hereinafter further described in more detail.
The exterior face of the outsole includes a first section, a second section, and a third section located and positioned at approximately the forefoot, midfoot, and hind foot areas respectively. The first section includes the forefoot area and extends partly into the midfoot area. In one embodiment, the first section extends into the midfoot area on the lateral side. The first section further includes a plurality of wave-like channels forming a plurality of wave-like ridges, each wave-like ridge including a plurality of straight grooves to provide a non-slid surface, extra flexibility and comfort in the first section and improved water displacement in inclement weather. The first section is divided from the second section by a wave-like channel. The second section, on the other hand, includes the majority of the midfoot area and is largely smooth. The third section includes the hind foot area and also extends into the midfoot area on the medial side. The third section includes a shoulder portion which extends and curves upwardly in the hind foot area away from the ground or other supporting surface towards the midsole. Like the first section, the third section also includes a plurality of wave-like channels forming a plurality of wave-like ridges, each wave-like ridge also including a plurality of straight grooves to provide a non-slid surface, extra flexibility and comfort, and improved water displacement. The third section of the outsole is divided from the second section by a wave-like channel. The interior face of the outsole is substantially smooth.
The midsole is made of a dual density blown ethylene-vinyl acetate copolymer (EVA) with an intrinsic molded raised arch support area which supports the arch of the foot. The EVA creates a lightweight and resilient midsole, which helps dissipate shock when walking or running. In addition to the material itself, the dual density of the midsole allows for a greater flexibility and cushioning in the forefoot area due to its lighter density, and provides greater support and stability in the hind foot area due to its heavier density. The sidewall of the midsole extends completely around the perimeter of the midsole is preferably smooth. Like the outsole, the hind foot area of the midsole includes an angled portion which curves upwards away from the outsole.
The midsole includes a proximal and a distal face. The distal face of the midsole includes a plurality of grooves located and positioned in the forefoot area which provide additional flexibility at the ball area of the foot, allowing the midsole to flex more easily when the wearer walks. The midsole has a mating relationship with the outsole, where the angled portion of the midsole aligns and mates with the shoulder portion of the outsole. The mating of the angled portion of the midsole with the shoulder portion of the outsole provides shock absorption and reduces the impact felt when walking and further propels the weight of the wearer forward in a rolling motion across the sole of the shoe.
The proximal face of the midsole includes a ledge or flange that extends around the entire circumference of the midsole thereby creating a first cavity substantially in the shape of the midsole. The insole mates with and is received by the cavity created by the ledge on the proximal face. The proximal face of the midsole further includes a ridge located on the upper surface of the ledge, the ridge extending around the entire circumference of the midsole creating a second cavity in the midsole between the perimeter of the insole and the ridge when the insole is inserted into the first cavity of the midsole. The three layers are preferably secured together to prevent movement when worn.
The insole is a lightweight, thermal molded EVA with an antimicrobial shield which provides protection against bacteria, fungus, and controls or eliminates odors, stains, and product deterioration. This can be accomplished by adding a powder or other antimicrobial agents during the manufacturing process. The insole has a top face and a bottom face, the top face engaging with the foot of a wearer and includes a plurality of Y-shaped apertures that provide both greater flexibility and breathability when the overall shoe is worn.
The present three layer shoe construction absorbs shock, enhances comfort, and creates a unique propulsion effect, without requiring a vast number of components.
For a better understanding of the various embodiments of the present invention, reference may be made to the accompanying drawings in which:
While the disclosure is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will hereafter be described in detail. It should be understood, however, that the drawings and detailed description presented herein are not intended to limit the disclosure of the present invention to the particular embodiment disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present disclosure.
The present invention will now be described with reference to the drawing figures in which like reference numerals refer to like parts throughout the disclosure. For purposes of clarity in illustrating the characteristics of the present invention, proportional relationships of the elements have not necessarily been maintained in the drawing figures.
As illustrated in
Each of the three layers of the present shoe are generally in the shape of a human foot and can be divided into different sections according to three distinct regions of the human foot—the forefoot, midfoot, and hind foot. The forefoot area or region of the foot is approximately adjacent to and includes the toe area A, while the hind foot area or region of the foot is approximately adjacent to and includes the heel area B. The midfoot area or region is approximately adjacent to both the forefoot and hind foot regions as illustrated in
The present outsole 4 is made out of a super lightweight thermoplastic rubber (TPR) and includes an exterior face 6 and an interior face 8 as seen in
In one embodiment, the exterior face 6 of the outsole 4 includes a first section 10, a second section 12, and a third section 14, divided approximately into the forefoot, midfoot, and hind foot areas respectively as best illustrated in
The first section 10 and third section 14 include a plurality of wave-like channels 16 which extend from the medial side to the lateral side of the outsole 4, with each channel having at least one wave or curve associated therewith. Each channel 16 may be shaped different from another channel 16. Each channel 16 forms non-linear ridges 22 between an adjacent channel 16 and each channel 16 is defined by a pair opposing sidewalls (not shown) and a bottom surface 20 in a second plane. The bottom surface 20 and the pair of opposing sidewalls create a fluid flow channel 16 to guide liquid off of the outer surface of the ridges 22 to the outer perimeter 24 of the outsole 4, thereby preventing the outer surface 22 from being slippery. The channels 16 also provide extra flexibility and comfort to the wearer when the present shoe is worn.
In addition to the channels 16, the plurality of ridges 22 of the first section 10 and third section 14 further include a plurality of straight grooves 26 that extend longitudinally, located and positioned on either one or both sides of the channels 16, on the ridges 22. Both the number of grooves 26 and spacing between each straight groove 26 may vary as each groove 26 extends substantially in a direction along the longitudinal axis of the outsole in between the perimeter 24 of the outsole and the wave-like channel 16 or in between two wave-like channels 16 as best illustrated in
The midsole 32 is made of a dual density blown ethylene-vinyl acetate copolymer (EVA) with an intrinsic molded raised arch support area 33 which supports the arch area D of the foot, reinforcing the arch in its proper position, which is best shown in
The sidewall 34 of the midsole 32 extends completely around the perimeter of the midsole 32 and is substantially smooth as best illustrated in
Referring to
The insole 56 also has a mating relationship to the midsole 32 wherein the proximal face 36 of the midsole 32 has a ledge or flange 46 extending around its entire circumference creating a cavity 48 substantially in the shape of the insole 56 as shown in
The insole 56 is a lightweight, thermal molded EVA with an antimicrobial shield which provides protection against bacteria, fungus, and controls or eliminates odors, stains, and product deterioration. This can be accomplished by adding a powder or other antimicrobial agents during the manufacturing process. The insole 56 has a top face 58 and a bottom face 60 as best illustrated in
From the foregoing, it will be seen that the various embodiments of the present invention are well adapted to attain all the objectives and advantages hereinabove set forth together with still other advantages which are obvious and which are inherent to the present structures. It will be understood that certain features and sub-combinations of the present embodiments are of utility and may be employed without reference to other features and sub-combinations. Since many possible embodiments of the present invention may be made without departing from the spirit and scope of the present invention, it is also to be understood that all disclosures herein set forth or illustrated in the accompanying drawings are to be interpreted as illustrative only and not limiting. The various constructions described above and illustrated in the drawings are presented by way of example only and are not intended to limit the concepts, principles and scope of the present invention.
Many changes, modifications, variations and other uses and applications of the present invention will, however, become apparent to those skilled in the art after considering the specification and the accompanying drawings. All such changes, modifications, variations and other uses and applications which do not depart from the spirit and scope of the invention are deemed to be covered by the invention which is limited only by the claims which follow.