This application claims priority to European Patent Application No. 17160256.8, which was filed in the European Patent Office on Mar. 10, 2017, and which is herein incorporated by reference in its entirety.
The present invention relates to a three-part door hinge, also called a bolt hinge or hinge in short, as is known for producing a pivoting capability of doors, windows, or the like in relation to a frame.
Three-part door hinges are used more for heavy doors and the like because of the force absorption and distribution, in contrast to two-part door hinges, also called pin hinges, which are used more for lighter elements.
Since most three-part door hinges are installed vertically, the terms “upper”, “lower”, etc. are used hereafter to be able to refer to components so they are unambiguously identifiable. However, it is apparent that such door hinges can also be installed horizontally or diagonally in space.
A three-part door hinge comprises a leaf hinge part for fastening on the door leaf or window sash, respectively (referred to hereafter as the leaf element) and a frame hinge part for fastening on the respective frame. The leaf hinge part has a hollow-cylindrical receptacle housing (referred to as the middle housing hereafter) and a fastening flange for fastening on the leaf element (for example, door leaf, window sash, etc.). The frame hinge part is provided with a first hollow-cylindrical housing (referred to as the upper housing hereafter) and a second hollow-cylindrical housing (referred to as the lower housing hereafter), and also with a fastening web, which protrudes more or less radially or tangentially from the upper and the lower housings and connects the housings to one another—axially spaced apart from one another. In this case, the distance between the housings is dimensioned so that the middle housing of the leaf sash part fits axially between the upper and the lower housings of the frame hinge part. During the installation, a pin is pushed from one side through the housing of the three-part hinge and axially fixed therein such that in the installed state, it holds together all housings in an aligned manner and a door leaf or window sash is pivotable in relation to the frame about a pivot axis of the door hinge extending through the housings and the pin.
Three-part door hinges, like the one described above, are known from the prior art. Such door hinges which have an adjustment mechanism for adjusting the leaf element in at least one axial dimension are also known. In this case, different mechanisms are implemented for the adjustability. However, the following disadvantages frequently result in the adjustable three-part door hinges known from the prior art:
The object of the invention is to provide an improved door hinge, which remedies these disadvantages.
This object is achieved by the implementation of the features of the independent claims. Features which refine the invention in an advantageous manner can be inferred from the dependent patent claims.
The invention relates to a three-part door hinge according to claim 1 and a method for adjusting this door hinge according to the independent method claim.
The subject matter of the invention is a three-dimensionally adjustable door hinge, in which the adjustability of a leaf hinge part of the door hinge in two dimensions is provided on the basis of two serial eccentricities. An adjustability in a third dimension is provided by at least one adjusting screw, which axially displaces a pin of the door hinge.
The three-part door hinge is provided with a pin, with a frame hinge part for fixing on a frame, and with a leaf hinge part for fastening on a leaf element. The door hinge is used for pivoting the leaf element in relation to the frame about a pivot axis of the door hinge. The frame hinge part has an upper housing and a lower housing, wherein the housings are fixed at a defined distance and concentrically in relation to one another by means of a fastening web. In the assembled state, a middle housing of the leaf hinge part is arranged between the upper and the lower housings of the frame hinge part and the pin extends through all housings of the frame hinge part and the leaf hinge part. The pin is mounted so it is adjustable in relation to the frame hinge part in its axial position by means of an adjusting screw located in the lower housing, which results in an adjustability of the door hinge (1) in a first dimension. In the region of the middle housing of the leaf hinge part, two eccentricities are provided, which interact such that a middle longitudinal axis of the middle housing is adjustable parallel to the pivot axis to any arbitrary point within a virtual circular plane, which is defined by the two eccentricities and is aligned orthogonally to the pivot axis, so that an adjustability results in two further dimensions orthogonal to the pivot axis (S). The three-part door hinge presented here is therefore three-dimensionally adjustable.
Adjustments in the two dimensions perpendicular to the pivot axis, i.e., along a plane parallel to the leaf element and orthogonal to this plane, are achieved in principle similarly as with an articulated arm. Two serial, i.e., more or less “superimposed” eccentricities each cause a circular adjustability of the door suspension taken per se. If these two additive eccentric adjustments are adapted to one another, lateral adjustments are achieved in two dimensions perpendicular to the pivot axis. The two eccentric adjustments are achieved, on the one hand, by the pin of the door hinge, which is formed eccentrically in its middle section, and, on the other hand, by an eccentric bushing, which encloses the eccentric section of the pin.
The pin has a lower pin section, a middle pin section, and an upper pin section, wherein the middle pin section is formed eccentrically with respect to the upper and the lower pin sections, and the pin sections are separated from one another by shoulders. The middle pin section therefore forms one of the above-described eccentricities. An eccentric bushing, which is provided in the middle housing of the leaf hinge part in the assembled state and is enclosed thereby, forms the second of the above-described eccentricities. The middle pin section is enclosed by the eccentric bushing in the assembled state. The middle pin section, the eccentric bushing, and the middle housing of the leaf hinge part are connectable to one another in a rotationally-fixed manner, while the pin is mounted with its upper pin section in the upper housing and with its lower pin section in the lower housing so it is rotatable about the pivot axis.
Bearing bushings are preferably pressed in a rotationally-fixed manner into the upper and the lower housings, so that the pin slides off at the bearing bushings during its rotation in these housings. This reduces the wear, in particular if the bearing bushings are manufactured from a self-lubricating bearing alloy, for example, a self-lubricating bronze.
The rotationally-fixed connection between middle pin section, the eccentric bushing, and the middle housing of the leaf hinge part is achievable in various ways: for example, it is possible to provide radially extending threaded holes in the middle housing for accommodating grub screws and to provide the eccentric bushing with corresponding oblong holes extending in the circumferential direction, which are also provided to engage with the grub screws at the boundaries thereof extending in the circumferential direction. By means of the associated grub screws, which are screwed into the radial threaded holes and which engage through the oblong holes to the eccentric middle pin section, clamping of the middle housing with the middle pin section and the eccentric bushing is then possible. The oblong holes enable in this case an adjustment of the eccentric bushing by pivoting thereof, before it is clamped with the other elements by means of the grub screws. Another conceivable option would be to design the eccentric bushing such that it protrudes beyond the middle housing at least on one side. By means of clamps which can be plugged on externally, and which grip, on the one hand, the middle housing, and, on the other hand, the section of the eccentric bushing protruding out of the housing and a section of the pin accessible between the housings of the frame hinge part and the middle housing and clamps them with one another. A particularly preferred manner of connecting the middle pin section, the eccentric bushing, and the middle housing to one another in a rotationally-fixed manner is described on the basis of the figures and claimed in the dependent claims. The first two described options result in a somewhat less elegant door hinge than the last-mentioned option for clamping described in greater detail on the basis of the figures, because in the last-mentioned option, the clamping takes place more or less “invisibly” inside the door hinge.
The door hinge and/or its individual components are preferably designed such that in the assembled state, the eccentric bushing rests with its lower end face on the lower shoulder of the pin and the middle housing has a collar in the region of its upper end, which rests at least partially on the upper end face of the eccentric bushing. This design results in a favorable force introduction from the leaf element via the leaf hinge part to the pin and the frame hinge part.
In one preferred embodiment, the upper pin section is enclosed in the assembled state in the upper housing by a driver bushing, wherein the driver bushing and the eccentric bushing are connected to one another by means of a tongue-and-groove connection such that a rotational adjustment of one bushing is transferred to the other bushing. For this purpose, eccentric bushing and driver bushing have at least one groove or indentation—on the end faces thereof facing toward one another in the assembled state—and at least one driver in the form of a driver lug or a driver cam or driver pin, which are adapted to one another in the geometrical design thereof so that during a pivot of one bushing, the other bushing is also moved by means of this at least one tongue-and-groove connection and is pivoted by the same amount and in the same direction.
It is particularly advantageous if the pin has a thread on its upper end to accommodate a lock element, wherein the thread is preferably an external thread and the lock element is preferably a lock nut. However, it is also possible to design the lock element as a lock screw and to provide an internal thread instead of the external thread. It is even better if the upper housing is designed so that the lock element is arranged inside the upper housing and can be screwed onto the upper end of the pin, because in this way a particularly visually appealing shape of the three-part door hinge results.
In a loosened state, the lock element provides an adjustability of the eccentric middle pin section and the eccentric bushing, while in a tightened state, it provides a fixation of an adjustment of the eccentric middle pin section and the eccentric bushing.
In particular, this functionality is implemented in that in the assembled state, the pin can be fixedly clamped in a rotationally-fixed manner by means of the lock element screwed onto its upper end with the driver bushing, the middle housing, and with the eccentric bushing, wherein the lock element presses against an offset of the driver bushing upon tightening.
If the pin tapers from bottom to top in steps at the lower shoulder from the lower pin section toward the middle pin section and at the upper shoulder from the middle pin section toward the upper pin section, it is possible to keep the housing slender in its external diameter and also to form the housings having approximately equal internal diameters, in spite of the fact that different numbers of bushings have to be accommodated in the housings. This simplifies the production and reduces the production costs.
It is particularly advantageous, because it is particularly elegant in appearance and comfortable to handle, if the pin has, on its lower end face, a drive profile, in particular a hex socket, for the rotational adjustment of the eccentrically formed middle pin section and the adjusting screw for axially adjusting the pin is formed as a hollow screw having a drive profile. The drive profile is formed in this case as a through-hole opening and is at least sufficiently larger than the drive profile of the pin that a wrench matching with the drive profile of the pin is insertable through the drive profile of the adjusting screw and into the drive profile of the pin and the pin is pivotable with the aid of the wrench.
Thrust washers having through-hole openings and/or washers having through-hole openings are advantageously arranged between the pin and the adjusting screw to absorb the axial forces. The middle openings are dimensioned in this case such that the wrench matching with the drive profile of the pin is insertable through them and into the drive profile of the pin (4).
For secure fixing of the selected setting, the adjusting screw can optionally be able to be secured using a lock screw, which preferably can also be screwed into the internal thread of the lower housing of the frame hinge part. The lock screw is then also formed as a hollow screw having a drive profile, wherein the drive profile is again formed as a pervasive middle opening, which is at least sufficiently larger than the drive profile of the adjusting screw that a wrench matching with the drive profile of the adjusting screw is guidable through the drive profile (90) of the lock screw and insertable into the drive profile of the adjusting screw (8).
It is also very elegant in appearance and comfortable to handle if the driver bushing arranged in the upper housing of the frame hinge part protrudes with its upper end region beyond the upper end of the pin located therein, but the upper housing protrudes beyond the driver bushing. It is then advantageously provided in its upper end region with a drive profile—in particular a hex socket—which is used for the rotational adjustment of the driver bushing and, via the at least one tongue-and-groove connection, also for the rotational adjustment of the eccentric bushing. An internal diameter of the driver bushing in this upper end region is selected such that the lock element for the upper securing of the pin is insertable through the end region of the driver bushing and can be screwed together with the upper end of the pin.
If a leaf element is fastened on a frame by means of a door hinge which is designed according to the above statements, for the three-dimensional adjustment of the leaf element in relation to the frame, the leaf hinge part thus has to be adjusted in relation to the frame hinge part according to the following method: The leaf hinge part is adjusted in a first dimension in the direction of the pivot axis of the door hinge by pivoting the adjusting screw, which is screwed into the lower housing of the frame hinge part. The lock element possibly has to be loosened first for this purpose. If a lock element is provided, it thus is tightened again after the pivoting of the adjusting screw, to fix the selected setting in the axial direction. An adjustment of the leaf hinge part in relation to the frame hinge part in two further dimensions, namely orthogonally to the direction of the pivot axis, is achievable by pivoting two eccentricities arranged in the region of the leaf hinge part.
The latter is possible in particular by loosening a lock element, which provides the adjustability of an eccentric middle pin section arranged in the leaf hinge part and an eccentric bushing also located therein when it is loosened. By pivoting the driver bushing mounted in the upper housing, by means of the tongue-and-groove connection, the eccentric bushing mounted in the middle housing of the leaf hinge part is pivoted. Moreover, by pivoting the pin, the eccentric middle pin section can be pivoted in relation to the eccentric bushing. By tightening the lock element, an adjustment of the door hinge obtained by pivoting the eccentric middle pin section and the eccentric bushing is fixed.
In particular, by tightening the lock element, the pin is fixedly clamped in a rotationally fixed manner at least with the middle housing of the leaf hinge part and the eccentric bushing located therein.
This method is particularly advantageous and comfortable, since all adjustments and the subsequent fixing of these adjustments take place without removing a leaf element fixedly connected to the leaf hinge part from the hinge.
The method can also be carried out without the door hinge having to be completely or partially disassembled or removed for this purpose. To protect the door hinge from soiling and so that lubricants cannot escape, cover screws are optionally provided in the upper and lower housings of the frame hinge part. To carry out the method for adjusting the door hinge, only the cover screws have to be unscrewed. All other elements which have to be actuated for the adjustment are directly accessible using the matching wrenches after the unscrewing of the cover screws or if the cover screws are not present.
The door hinge according to the invention is designed in particular for heavy doors in vertical use, since lesser lever forces thus act. In particular in the case of such a use, the arrangement of thrust washers between the pin and the adjusting screw prevents the hinge from being damaged by the pivoting of a heavy door.
Since the weight is absorbed in the lower frame hinge part, various attachment types and therefore hinge types result for doors opening to the left or right, respectively.
The door hinge can be screwed on (leaf hinge part with the leaf element/frame hinge part with the frame) or, for example, also welded on. The individual components of the door hinge are preassembled for the installation such that on location, essentially only leaf hinge part, frame hinge part, pin, lower adjusting screw, possibly thrust washers and/or washers, and also lock elements and—if provided—two cover screws have to be installed. During the installation on location, the frame hinge part is fastened on the frame and the leaf hinge part is fastened on the leaf element. The leaf element with the leaf hinge part fastened thereon is then moved toward the frame such that the middle housing associated with the leaf hinge part is inserted between the upper housing and the lower housing of the frame hinge part. The pin is inserted through the lower housing, middle housing, and upper housing, so that they are aligned via the pin. The pin is secured in the housings by means of the upper lock element. The adjusting screw and if necessary previously also thrust washers and/or washers are introduced from below into the lower housing and secured if necessary by means of the lower lock element.
A circumferential groove can optionally be provided in the pin for a break-in safeguard, into which a snap ring is pressed before the pin is pressed into the housing. The circumferential groove is preferably located in the region of the upper or lower pin section. The circumferential groove is particularly advantageously arranged as a thread recess in the upper pin section, so that the snap ring can be inserted into the groove from above over the pin before the installation. A recess in the upper region of the pin and the driver bushing is also conceivable, which is also provided with a snap ring before installation for securing against break-in. In all of these variants, the snap ring prevents the pin from being able to be removed from the door hinge again after the installation and the door hinge from being able to come apart.
The device according to the invention will be described in greater detail solely by way of example hereafter on the basis of specific exemplary embodiments schematically illustrated in the drawings, wherein further advantages of the invention will also be discussed. In the specific figures
The structure and the functionality of the door hinge 1 according to the invention will be explained hereafter on the basis of
The pin 4 has two shoulders 30, 32, which divide it into a lower pin section 13, a middle pin section 11, and an upper pin section 12. The pin 4 tapers at each of the shoulders 30, 32 in steps from the lower section 13 at the lower shoulder 32 toward the middle section 11 and from the middle section 11 at the upper shoulder 30 toward the upper section 12. In this case, the upper and the lower sections 12, 13 are concentric with respect to one another, but the middle section 11 is formed eccentrically with respect to the upper section 12 and with respect to the lower section 13.
The frame hinge part 2 has two housings 5, 6 formed as hollow cylinders, which are referred to hereafter as the upper housing 5 and the lower housing 6. The housings 5, 6 are fixedly connected to one another by means of a web 28, wherein the web 28 fixes the housings 5, 6 at a defined distance and concentrically in relation to one another. The web 28 is additionally used for fixing the frame hinge part 2 on a door or window frame. The housings 5, 6 are each openly accessible axially from both sides.
The two housings 5, 6 are optionally provided on the sides facing away from one another, in the respective end regions thereof, with internal threads, into which cover screws 23 can be screwed. The cover screws 23 close the upper and lower housings 5, 6 of the door hinge 1 and thus protect the assembled door hinge 1 from environmental influences, such as moisture, dust, and dirt, and prevent an escape of possible lubricant.
The housings 5, 6 of the frame hinge part 2 are used to accommodate bearing bushings 18, 19, which are pressed in a rotationally-fixed manner into the housings 5, 6 in preassembly. The bearing bushings 18, 19 are dimensioned in this case so that the internal threads in the housings 5, 6 remain freely accessible for the cover screws 23 and possible further screws (see below). In the installed state, a driver bushing 15 is moreover mounted in the first bearing bushing 18 of the upper housing 5, which has at least one indentation or driver groove 16, which extends along a small circumferential segment of the driver bushing 15, on its lower end face, which is oriented toward the lower housing 6 in the installed state.
The leaf hinge part 3 has a hollow-cylindrical housing 7, which is also accessible from both sides, and from which a flange 29 protrudes, which is used for fastening the leaf hinge part 3 on a door leaf or window sash, etc. The housing 7 is also referred to hereafter as the middle housing 7, because it is insertable between the upper housing 5 and the lower housing 6 of the frame hinge part 2 and therefore represents the middle housing 7 with respect to the entire door hinge 1 (see
In
The middle housing 7 is used to accommodate an eccentric bushing 14. It has a collar 27, which is used as the stop for the eccentric bushing 14, on its upper side, wherein the collar 27 only radially overlaps an outer edge of the upper end face of the eccentric bushing 14. The eccentric bushing 14 has at least one driver 17 extending axially beyond the end face on its upper end face, which can be formed as a pin, cam, or driver lug 17 (also referred to as lug 17 in short), which in the installed state engages, radially past the collar 27 of the middle housing 7 on the inside, in the corresponding at least one indentation/driver groove 16 (groove 16 in short) of the driver bushing 15 located above it—in the installed state—in the upper housing 5 (see
Alternatively, the formation of the at least one lug 17 on the eccentric bushing 14 can also be formed as a pin incorporated into the eccentric bushing 14, wherein the pin is insertable on one side without play into a corresponding recess of the eccentric bushing 14. The pin is either plugged or screwed precisely fitted and detachably into the recess and can then be placed either preassembled in the recess or can be placed in the recess during the installation on location. In another variant, the pin is pressed, adhesively bonded, or welded into the recess. The pin can also be integrally formed with the eccentric bushing. With its opposite side, the at least one pin engages with play in the corresponding at least one indentation/driver groove 16 of the driver bushing 15 in the upper housing 5 located above it.
In another alternative, the at least one tongue-and-groove connection is implemented structurally inverted, i.e., the eccentric bushing 14 has the at least one indentation/groove, while the driver bushing 15 has at least one lug or a cam or pin. The at least one driver 17 (lug/cam/pin) advantageously engages with some play in the at least one indentation/groove 16. The play is dependent in this case on the shape and size of the driver 17 and on the shape of the indentation/groove 16 and the geometrical dimensions of eccentric sleeve 14 and pin or eccentric middle pin section 11; or in other words on the eccentricity dimensions.
In the example shown in
To facilitate the installation of the door hinge 1, various elements of the door hinge are preassembled: In particular, the upper bearing bushing 18 is pressed into the upper housing 5 of the frame hinge part 2, while the driver bushing 15 is pivotably inserted into the upper bearing bushing 18 and secured against falling out—for example, by means of an O-ring. In addition, the eccentric bushing 14 is inserted pivotably into the middle housing 7 of the leaf hinge part 3 and also secured against falling out therein—for example, by means of an O-ring. Driver bushing 15 and eccentric bushing 14 can each have a corresponding ring groove 34, 36 for accommodating the O-ring (
If the middle housing 7 of the leaf hinge part 3 is inserted between the two housings 5, 6 of the frame hinge part 2, the pin 4 can be inserted into all three housings 5, 6, 7 and/or into the bushings 19, 14, 15/18 mounted in the housings. The pin 4 can be secured in the housings 6, 7, 5 by screwing an adjusting screw 8 into the internal thread, which is accessible from below, of the lower housing 6. A lock screw 9 can optionally be provided for securing the adjusting screw 8. Adjusting screw 8 and lock screw 9 are embodied as hollow screws having continuous, central middle opening, wherein the middle openings each have a drive profile 80, 90 for the interaction with a corresponding wrench for pivoting the screws 8, 9 (
Optionally, a snap ring and a circumferential groove in the pin 4 and, at the same height, a ring groove in the corresponding bushing 15, 14, 19 can be provided as a break-in safeguard 60, 61, 62, 63, as shown in
As a break-in safeguard 60, 61, 62, 63, before the insertion of the pin 4 into the housings 5, 7, 6, a snap ring is pressed into the circumferential groove of the pin 4, as shown in enlarged form by way of examples in
The break-in safeguard 60, 61 is preferably located in the region of the upper pin section 12, as shown in
A break-in safeguard 61 in the lower region of the upper pin section 12 is also conceivable, as described in greater detail under the reference sign 61 in
As shown by way of example in
In a further variant, a break-in safeguard 62 is provided in the middle section 11 of the pin 4, as shown in
It is also conceivable to provide a break-in safeguard 63 in the lower pin section 13, which secures the pin 4 axially in the bearing bushing 19 in the lower housing 6 of the frame part 2. The snap ring can then simply be pushed from below over the lower pin end before the installation and pressed into the circumferential groove of the lower pin section 13. The statements above apply again with respect to play of the snap ring in circumferential groove and ring groove.
In order that the axial adjustability remains unobstructed in spite of axial securing of the pin 4, enough play is provided in the axial direction for the snap ring in the circumferential groove and the ring groove as is provided by the adjusting screw 8 in axial adjustability for the door hinge 1. The play in the axial direction for the snap ring in the circumferential groove and the ring groove is provided above all in the last-mentioned variants with the break-in safeguard 63 in the lower pin section 13, but can also be provided in all other variants, which simplifies the production.
The pin 4 is rotatably mounted in the assembled state in the lower housing 7, more precisely in its lower bearing bushing 19 and on the adjusting screw 8—or on washers 22 and/or thrust washers 20, 21 arranged between the pin 4 and adjusting screw 8. The concentric axes of the upper section 12 and the lower section 13 of the pin 4 then form the pivot axis S of the door hinge 1 in the installed state, about which the leaf element fastened on the leaf hinge part 3 is pivotable.
The pin 4 secured in the three housings 5, 6, 7 is thus inserted in the assembled state of the door hinge 1 at least with a large part of its lower section 13 into the lower bearing bushing 19 of the lower housing 6 (see
In general, the internal diameter of the driver bushing 15 approximately corresponds to the external diameter of the upper pin section 12 or is minimally larger than this diameter, so that the pin 4 is pivotably mounted in principle with its upper section 12 in the driver bushing 15.
The pin 4 is provided at the upper end of its upper section 12 with a thread, which is used to accommodate a lock element 10. In most of the examples shown here, the lock element 10 is designed as a lock nut 10′, for example, as also in
By way of the clamping described hereafter of the pin 4 with the leaf hinge part 3, the pin 4 is connected in a rotationally-fixed manner to the leaf hinge part 3 and therefore to a leaf element (not shown) fastened on the leaf hinge part 3, whereby the leaf element fastened on the leaf hinge part 3 is pivotable about the pivot axis S.
The pin 4 is clamped in the following manner with the middle housing 7 of the leaf hinge part 3.
The lock element 10 screwed onto the thread of the upper pin section 12 is accessible from above through the upper housing 5 and the upper end region 50′ of the driver bushing 15. It has the drive profile 100 for adjustment, for example, a hex socket or star, so that tightening or loosening of the lock element 10 is possible using a corresponding hex wrench or star wrench by access from above through the upper housing 5 and the enlarged internal diameter in the end region 50′ of the driver bushing 15. By way of the tightening of the lock element 10, on the one hand, the pin 4 is drawn upward, on the other hand, the lock element 10 is pressed downward, against the offset 38 of the driver bushing 15 used as the buttress. Furthermore, the driver bushing 15 is thus pressed downward against the collar 27 of the middle housing 7, which presses the eccentric bushing 14 located therein against the lower shoulder 32 of the pin 4. Therefore, the following components of the three-part door hinge 1 are clamped to form a packet by the tightening of the lock element 10: pin 4, middle housing 7, eccentric bushing 14 located in the middle housing, driver bushing 15 located in the upper housing 5. In the operationally-ready state, the lock element 10 is tightened, so that in the operationally-ready state, the pin 4 forms a unit by means of clamping with the following components of the door hinge 1:
The driver bushing 15 together with the upper pin section 12 can still rotate freely in the upper bearing bushing 18 of the upper housing 5, however, and the lower pin section 13 is also still freely rotatable in the lower bearing bushing 19 and freely rotatable on the adjusting screw 8 or the thrust washers 20, 21 and washers 22 in the lower housing 6. Because of this rotation freedom and because of the clamping of the pin 4 with the middle housing 7 of the leaf hinge part 3, it is ensured that pin 4 rotates in relation to the frame hinge part 2 upon pivoting of the leaf element and thus the leaf element is pivotable about the pivot axis S of the door hinge 1. Washers 22 and thrust washers 20, 21 are optionally provided between the lower part of the pin 13 and the adjusting screw 8 to absorb the pressure and friction forces during this rotation.
A course, it is also possible to design the lock element 10 as a lock screw 10″, as shown in
The thrust washers 20, 21 and the washers 22 have central, through-hole openings 45, 46, which are dimensioned so that the wrench matching with the drive profile 40 of the pin 4 can be guided through these middle openings 45, 46 and the pin 4 can be pivoted.
In one particular embodiment, the thrust washers 20, 21 have distribution grooves for an optimum distribution of a lubricant, as also described, for example, in EP 2586944 of the same applicant. Using a tip of a corresponding lubricant container designed as a spray nozzle, the continuous, central middle openings 46 of the thrust washers 20, 21 can be accessed through the lock screw 9 and adjusting screw 8 designed as hollow screws or through the drive profiles 90, 80 thereof, respectively, and lubricant can be introduced. The supply with lubricant is very conveniently and easily possible in a door hinge 1 thus designed, since only the lower cover screw 23 has to be unscrewed from the door hinge 1 for this purpose.
The adjusting screw 8 and the optional lock screw 9 are used, in addition to absorbing the load of the leaf element, also for the axial adjustment of the pin 4 and therefore—with vertical installation—for a vertical adjustment of the leaf element (door leaf/window sash). The adjusting screw 8 and the optional lock screw 9 are designed as hollow screws having pervasive middle opening, wherein the middle openings are each formed as drive profiles 80, 90, respectively. For the axial adjustment of the pin 4, firstly the countering is loosened at the lock screw 9 in the lower housing 6 and then the desired axial position is set using the adjusting screw 8. In order that the lock screw 9 does not have to be entirely unscrewed from the lower housing 6 for the adjustment, in order to reach the adjusting screw 8, the drive profile 90 of the lock screw 9 is larger than the drive profile 80 of the adjusting screw 8. It thus has, for example, a wrench width of a hex socket or star profile which is larger by 1 to 2 numbers. In this manner, after the loosening of the lock screw 9, the drive profile 80 of the adjusting screw 8 can be accessed using a matching wrench corresponding to the drive profile 80 of the adjusting screw 8 through the lock screw 9 or through the drive profile 90 formed as the middle opening, and the adjusting screw 8 can be adjusted. Using the corresponding larger wrench matching with the drive profile 90 of the lock screw 9, after the adjustment of the adjusting screw 8, the lock screw 9 can be tightened again and the performed setting can thus be secured. As indicated above, although the lock screw 9 is shown in all of the figures, the lock screw 9 is optional: it is clear to a person skilled in the art that the functionality is also secured solely via an adjusting screw 8. Only the permanent maintenance of the selected setting is somewhat less secure without lock screw.
If the described clamping by means of the lock element 10 is loosened, the leaf element can thus be translationally adjusted in two dimensions orthogonal to the pivot axis S by the mechanisms described hereafter of the door hinge 1 according to the invention.
As already described above and shown once again clearly in
This rotational adjustment takes place, as already described above, on the one hand by means of a corresponding wrench via the drive profile 50 of the driver bushing 15, which it has at the upper end 50′ thereof. In particular, this drive profile 50 is also a hex socket, star socket, etc., which is again dimensioned sufficiently large that, on the one hand, the lock element 10 passes through it and, on the other hand, the lock element 10 can be reached using a profiled tool matching correspondingly to its drive profile 100, 100′. The driver bushing 15 is moreover, as also already described above, sufficiently long that it protrudes beyond the upper part of the pin 12, so that the drive profile 50 thereof can readily be reached and used as intended via the lock element 10.
If—as stated—the clamping of the “packet” is thus disengaged by loosening the lock element 10, on the one hand, the driver bushing 15 can be pivoted using a tool, which as a consequence also pivots the eccentric bushing 14 and results in an adjustment of a first eccentricity 14′. On the other hand—simultaneously or sequentially—the rotational location of the pin 4 can be adjusted independently of the adjustment of the eccentric bushing 14, which results in particular in a rotational adjustment of the eccentric middle pin section 11 in the eccentric bushing 14 and thus in the adjustment of a second eccentricity 11′.
This rotational adjustment of the pin 4 is brought about by inserting a matching wrench through the lower end of the lower housing 6 in the middle openings of adjusting screw 8 and optional lock nut 9, thrust washers 20, 21, and washers 22 into the drive profile 40 of the pin 4 located in the lower end of the lower pin section 13 and pivoting the pin 4 with the aid of the wrench. The drive profile 40 is again, for example, a hex socket, star socket, etc., which is correspondingly small in relation to the middle openings 45 of the washers 22 and the middle openings 46 of the thrust washers 20, 21 and also in relation to the middle openings or drive profiles 80, 90 of the lock screw 9 and adjusting screw 8 designed as hollow profile screws so that the matching wrench fits through all of these middle openings 45, 46 or drive profiles 80, 90, respectively, and can be inserted into the drive profile 40 of the pin 4. By pivoting the wrench in the drive profile 40 of the pin 4, the rotational location of the pin 4 can be adjusted unobstructed.
The pin 4 is preferably integrally formed, i.e., the upper pin section 12, the middle pin section 11, and the lower pin section 13 are formed from one piece, for example, by turning or casting, or the pin sections 12, 11, 13 are manufactured as separate parts and are connected to one another in an axially-fixed and rotationally-fixed manner.
The adjustment of the rotational location of the pin 4 adjusts—independently of the first eccentricity 14′—the second eccentricity 11′, namely the eccentric middle pin section 11. By way of the adjustment of the two eccentricities 14′, 11′, the middle longitudinal axis T of the middle housing 7—and with it the middle housing 7 of the leaf hinge part 3 and the leaf element (door leaf/window sash) fixedly connected to the leaf hinge part—can be displaced parallel to the pivot axis S of the door hinge 1; specifically within a circular area F, which is defined by the two eccentricities 11′, 14′ and is perpendicular to the pivot axis S of the door hinge 1, to an arbitrary point, wherein the center of the circular area F is the pivot axis S (
If a desired adjustment has been successfully performed via the drive profile 50 of the driver bushing 15 and via the drive profile 40 at the lower end of the lower pin section 13, this setting is “frozen” by means of the lock element 10, i.e., the “packet” is clamped.
All adjustments and the subsequent fixing of these adjustments—i.e., both the adjustment in the axial direction (first dimension) and also the two adjustments orthogonal to the axis S (second and third dimensions)—are possible without taking a leaf element fixedly connected to the leaf hinge part (3) off of the hinge and without removing the three-part door hinge 1.
The adjustability is different depending on the dimension of the door hinge 1. In one preferred embodiment, the door hinge 1 is axially adjustable by approximately ±4 mm. In this embodiment, any point within a theoretical circle of in particular approximately 03.2 mm about the pivot axis S can be set orthogonally to the pivot axis.
However, other adjustment distances can also be implemented depending on the dimension of the door hinge.
Correspondingly,
The advantages of this three-part door hinge are:
It is obvious that the exemplary embodiments shown and explained above are illustrated solely schematically. In particular, it is to be noted that details which are explicitly illustrated and explained in the context of the scope of protection of the patent claims are usable both separately from one another and also in any combination with one another.
Number | Date | Country | Kind |
---|---|---|---|
17160256 | Mar 2017 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
1484536 | Way | Feb 1924 | A |
1540581 | Way | Jun 1925 | A |
1900081 | Swerer | Mar 1933 | A |
2533502 | Philips | Dec 1950 | A |
2724144 | Lohrman | Nov 1955 | A |
5689855 | Tang | Nov 1997 | A |
6484363 | Chung | Nov 2002 | B1 |
7162774 | Von Resch | Jan 2007 | B1 |
20040107541 | Miller | Jun 2004 | A1 |
Number | Date | Country |
---|---|---|
9215565 | Mar 1994 | DE |
0962616 | Dec 1999 | EP |
1672155 | Jun 2006 | EP |
2586944 | Oct 2011 | EP |
624 111 | May 1949 | GB |
2 276 204 | Sep 1994 | GB |
Entry |
---|
EP 17 16 0256 European Search Report, Sep. 11, 2017, pp. 1-7. |
Number | Date | Country | |
---|---|---|---|
20180258674 A1 | Sep 2018 | US |