The nature and mode of operation of the present invention will now be more fully described in the following detailed description of the invention taken with the accompanying drawing figures, in which:
Returning to
Cover plate 130 is driveably engaged with turbine hub 19 by engagement with spline portion 28. Cover plate 130 is fixedly connected to cover plate 134 by rivet 136. Together, edges of window cutouts in cover plates 130 and 134 engage a first end of coil spring 138. Coil spring 138, in turn, engages edge of window cutout in flange 140. Flange 140 is driveably engaged with drive hub 156 through spline portion 157. Drive hub 156 is driveably engaged with input shaft 203 through spline portion 157. Overload spline (not shown) driveably engages turbine hub 19 and drive hub 156 after a predetermined amount of rotational displacement by cover plate 130 relative to flange 140.
During operation in torque converter mode, clutch pack 108 is not engaged. Therefore, torque received by cover 11 is transferred to pump housing 20 through weld 160. Pump torque received by turbine shell 30 is imparted on turbine hub 19 through rivet 32. Spline 28 transmits torque to cover plate 130 which is in turn shared with cover plate 134 by riveted connection 136. Cover plates 130 and 134 compress spring 138 against flange 140. Flange outputs damper torque to drive hub 156 through spline connection 157. When rotational displacement exceeds the predetermined amount, overload spline (not shown) directly engages turbine hub 19 and drive hub 156, advantageously preventing excessive turbine torque from passing through coil springs 138. Therefore, cover plates 130 and 134, and flange 140 need only be sized for engine torque rather than multiplied turbine torque.
When torque converter clutch mode is commanded, pressurized oil enters pressure chamber 200 through input shaft (not shown). Pressurized oil in pressure chamber 200 forces clutch piston plate 102 towards pump 34, thereby compressing clutch pack 108. Torque received by cover 11 is transferred to clutch plates 110 and 114 by leaf springs 126 and 128, respectively, and apply plate 155 through weld 160. Compression of friction material rings 118, 120, 122, and 124 transfers torque to clutch plates 112 and 116. Clutch plate 112 transfers a portion of torque to cover plate 130 through spline connection 132. Clutch plate 116 transfers a remaining portion of torque to cover plate 130 through spline portion 28 in turbine hub 19. Therefore, plates 116 and 130 are tightly engaged with spline portion 28, advantageously eliminating the possibility of rattle caused by spline lash.
A three-pass apply system allows cooling of clutch pack 108 while maintaining a controlled pressure in pressure chamber 200. Cooling flow enters flow chamber 202 through orifice 40 from gap between input shaft 203 and stator shaft 158. Oil is forced radially outward through friction material rings 118, 120, and 122. In some aspects, friction material rings are grooved to allow oil flow. After cooling oil passes through rings 118, 120, and 122, it exits flow chamber 202 through orifice 24 in apply plate 155 or through friction material ring 124. Oil exits torque converter flow chamber 202 through the gap between stator shaft 158 and pump hub 50.
Thus, it is seen that the objects of the present invention are efficiently obtained, although modification and changes to the invention should be readily apparent to those having ordinary skill in the art, which modifications are intended to be within the spirit and scope of the invention as claimed. It also is understood that the foregoing description is illustrative of the present invention and should not be considered as limiting. Therefore, other embodiments of the present invention are possible without departing from the spirit and scope of the present invention.
This patent application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 60/816,932, filed Jun. 28, 2006, which application is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60816932 | Jun 2006 | US |