This application is a new U.S. patent application that claims benefit of JP 2017-136215 filed on Jul. 12, 2017, the content of 2017-136215 is incorporated herein by reference.
The present invention relates to a three-phase reactor, and more specifically relates to a three-phase reactor having balanced three-phase inductance.
Reactors are used in order to reduce harmonic current occurring in inverters, etc., to improve input power factors, and to reduce inrush current to the inverters. The reactor has iron cores made of a magnetic material and coils formed on outer peripheries of the iron cores.
Reactors having linearly arranged windings are reported so far (for example, Japanese Unexamined Patent Publication (Kokai) No. JP 2009-283706, hereinafter referred to as “Patent Document 1”). A reactor according to Patent Document 1 has a heatsink, a plurality of windings arranged on the heatsink, and a biasing means for biasing the windings toward the heatsink. The reactor according to Patent Document 1 has a problem that, since three-phase power is asymmetrical, various values, including magnetic flux, do not become completely uniform. Owing to the unbalanced three-phase power, heat generation, leakage flux (tend to have a coupling coefficient of approximately 0.3, which is lower than its ideal value 0.5), noise, electromagnetic waves may be produced. Thus, in large-sized potential reactors, fences are required to be provided to keep people away from the potential reactors. With an increase in the number of devices using electromagnetic waves, such as cellular phones, demands for the electromagnetic waves are increased more and more. The leakage flux may have adverse effects on heart pacemakers.
Reactors having three-phase coils arranged in circumferences are reported too (for example, International Publication No. WO 2012/157053, hereinafter referred to as “Patent Document 2”). A reactor according to Patent Document 2 includes two yoke cores disposed oppositely, three magnetic pole cores that have coils wound thereon and gap regulation means, and three zero-phase magnetic pole cores having no coil wound thereon. The two opposite yoke cores are connected each other through the three magnetic pole cores and the three zero-phase magnetic pole cores. The three magnetic pole cores are arranged in a circumference at a certain angle with respect to a concentric axis of the yoke cores. The three zero-phase magnetic pole cores are each disposed between the magnetic pole cores with respect to the concentric axis of the yoke cores. Owing to the three zero-phase magnetic pole cores, magnetic flux flows into the zero-phase magnetic pole cores and hardly flows into the other phases, thus causing a reduction in mutual inductance. Therefore, this structure is unsuitable for use of the mutual inductance.
In the reactor of Patent Document 2, each core is made of a sheet metal wound into a roll, and hence magnetic flux tends to flow in the form of the roll. Therefore, in the cores, a magnetic flux path is not likely to have a shortest and minimum magnetic resistance, and is likely to have a low mutual inductance and a low self-inductance. The reactor also has the problem in manufacture and assembly that the reactor is unsuitable for drilling, tapping, etc. Therefore, for example, an inductance regulation mechanism (a screw, etc.) is difficult to use in the reactor. Furthermore, it is difficult to prevent magnetic flux produced by the coils from leaking outside.
The present invention aims at providing a three-phase reactor that has a reactance having an increased inductance, by taking advantage of a mutual inductance, owing to balanced three-phase power, as well as taking advantage of a self-inductance.
A three-phase reactor according to an embodiment includes a first plate iron core and a second plate iron core disposed oppositely to each other; a plurality of cylindrical iron cores disposed between the first plate iron core and the second plate iron core orthogonally to the first plate iron core and the second plate iron core, the iron cores being disposed rotationally symmetrically with respect to an axis equidistant from central axes of the iron cores, as a rotation axis; and a plurality of coils each wound on each of the iron cores.
The objects, features, and advantages of the present invention will become more apparent from the following description of embodiments along with accompanying drawings. In the accompanying drawings:
A three-phase reactor according to the present invention will be described below with reference to the drawings. However, the technical scope of the present invention is not limited to its embodiments, but embraces invention described in claims and equivalents thereof.
A three-phase reactor according to a first embodiment will be described.
The first plate iron core 1 and the second plate iron core 2 are iron cores disposed oppositely to each other. In the example of
The cores (31, 32, and 33) are cylindrical iron cores disposed between the first plate iron core 1 and the second plate iron core 2, in such a manner that central axes (31y, 32y, and 33y) are orthogonal to the first plate iron core 1 and the second plate iron core 2. The number of the iron cores is three in the example of
Each of the cores (31, 32, and 33) has a circular cylindrical shape in the example of
The rotation axis C1 may coincide with a central axis of the first plate iron core 1 or the second plate iron core 2.
Inductance=Self-inductance+Mutual Inductance
As a result, the mutual inductance can be effectively used.
According to the structure of
It is apparent from the magnetic analysis result of
Furthermore, as is apparent from
Using the iron cores (31, 32, and 33) made of magnetic steel sheets laminated in an axial direction, magnetic flux flows more easily than in using wound iron cores.
The first plate iron core 1, the second plate iron core 2, and the iron cores (31, 32, and 33) can be fitted to each other. For example, the first plate iron core 1 and the second plate iron core 2 may be provided with openings to fit the iron cores (31, 32, and 33) therein, and the iron cores (31, 32, and 33) may be fitted into the openings. However, in consideration of the size of the reactor depending on its application, the first plate iron core 1, the second plate iron core 2, and the iron cores (31, 32, and 33) may be coupled by another method. For example, the first plate iron core 1, the second plate iron core 2, and the iron cores (31, 32, and 33) may be screwed for reinforcement.
In the above description, neither the first plate iron core 1 nor the second plate iron core 2 has an opening, but at least one of the first plate iron core 1 and the second plate iron core 2 may have an opening at its middle portion.
In the above description, none of the iron cores (31, 32, and 33) has a gap, but at least one of the iron cores (31, 32, and 33) may have a first gap. The first gap may be formed between surfaces orthogonal to a longitudinal direction of the iron cores (31, 32, and 33). The first gap is preferably provided in a middle portion of each of the iron cores (31, 32, and 33). A magnetic resistance is calculated by the length, magnetic permeability, and cross sectional area of a magnetic path. The magnetic permeability of an iron core is of the order of approximately 1000 times larger than that of air. Thus, in a core-type reactor having a gap, an air portion, i.e., a gap portion, constitutes a main magnetic resistance, and the magnetic resistance of an iron core portion is negligible. In a core-type reactor having no gap, an iron core portion constitutes a magnetic resistance. Only providing the air portion, i.e., the gap portion, significantly varies a physical property in a flow of magnetic flux, due to the difference in magnetic permeability, thus serving different applications. A current to saturate the iron core is largely different too, and therefore reactors can be used in variety of applications.
Next, a three-phase reactor according to a second embodiment will be described.
In a reactor, when an iron core has a gap, a suction force occurs in the gap portion in an axial direction of the iron core. To support the structure against the suction force, a cover 5 is provided. The cover 5 is made of any of iron, aluminum, and resin. Alternatively, the cover 5 may be made of a magnetic material or a conductive material.
The outer peripheries of the first plate iron core 1 and the second plate iron core 2 are preferably circular or elliptical in shape. In the same manner as the cover 5, forming the first plate iron core 1 and the second plate iron core 2 in a simple shape, such as a round, an ellipse, etc., allows processing and manufacturing with high accuracy. Thus, by combination of the iron cores (31, 32, and 33), the first plate iron core 1, the second plate iron core 2, and the cover 5 that are processed with high accuracy, a gap formed in the iron core is easily controlled so as to be kept at constant dimensions. As a result, it is possible to reduce variations in a gap length, owing to a suction force exerted on the gap. However, this function can be performed, without using the cover 5 of a cylindrical shape, and without using the first plate iron core 1 and the second plate iron core 2 of round or elliptical shapes.
The cover 5 made of iron, aluminum, etc., can prevent magnetic flux and electromagnetic waves from leaking outside. The cover 5 made of a magnetic material, such as iron, functions as a path of the magnetic flux, and prevents leakage flux from getting outside. Noise, such as electromagnetic waves, can be also prevented from leaking outside. Furthermore, the cover 5 made of iron, aluminum, etc., can reduce eddy current, and improve ease of passage of the magnetic flux.
The cover 5 made of a material having a low magnetic permeability and a low resistivity, such as aluminum, can block electromagnetic waves. In general, three-phase alternating current is formed by switching elements, such as IGBT (insulated gate bipolar transistor) elements, and a rectangular electromagnetic wave may become a problem in an EMC (electromagnetic compatibility) test, etc. The cover 5 made of resin, etc., can prevent entry of liquid, foreign matter, etc.
In conventional art, an example in which zero-phase magnetic pole cores are provided as a measure against direct current magnetic flux, not zero-phase, i.e., three-phase alternating current magnetic flux, is reported. On the other hand, in this embodiment, as illustrated in the magnetic analysis result of
Next, a three-phase reactor according to a third embodiment will be described.
The rod member 6 is preferably disposed such that the axis (rotation axis C1) equidistant from the central axes (31y, 32y, and 33y) of the iron cores (31, 32, and 33) coincides with the central axis of the rod member 6, based on the disposition of the iron cores (31, 32, and 33) having the coils (41, 42, and 43) wound thereon and the shapes of the first plate iron core 1 and the second plate iron core 2. The rod member 6 is preferably made of a magnetic material.
In the case of the reactor, since a large suction force is exerted between a gap, supporting the centers of the first plate iron core 1 and the second plate iron core 2 allows effectively reducing distortion of the first plate iron core 1 and the second plate iron core 2. Since the suction force is exerted only in the direction of attracting iron cores disposed oppositely through the gap, distortion (variations of the gap) can be effectively reduced also in the direction of a load.
Next, a three-phase reactor according to a fourth embodiment will be described.
As the gap regulation mechanisms (71, 72, and 73), screws provided in the first plate iron core 1 can be used. The screws contact the cover 5 at their end surfaces. Screw holes are formed in the first plate iron core 1. Turning the screws, functioning as the gap regulation mechanisms (71, 72, and 73), can move the first plate iron core 1 up and down. The second gap d can be formed between the first plate iron core 1 and an end of each of the iron cores (310, 320, and 330), and the size of the second gap d can be regulated by the screws. By regulating the second gap d, the magnitude of an inductance can be finely regulated. It also becomes possible that a single reactor forms inductances of different magnitudes.
As described above, the first plate iron core 1 can be secured only by the screws that function as the gap regulation mechanisms (71, 72, and 73). However, against a magnetic suction force exerted on the second gap d, the first plate iron core 1 and the cover 5 may be secured by screwing first securing screws (81, 82, and 83) into threads formed in the cover 5 through threaded holes formed in the first plate iron core 1, in order to strengthen the coupling. On the other hand, the second plate iron core 2 and the cover 5 may be secured by second securing screws (91, 92, and 93), in order to strength the coupling.
As a gap regulation mechanism other than the screws, a member such as a spacer may be sandwiched between the first plate iron core 1 and the cover 5, and a gap may be formed using securing screws.
The cover 5 is provided in the example of
In the structure illustrated in
In the three-phase reactors according to the above embodiments, at least one of the first plate iron core 1, the second plate iron core 2, the iron cores (31, 32, and 33), the cover 5, and the rod member 6 may be made of a wound iron core. Furthermore, a rod-shaped central iron core may be disposed at the center of the wound iron core.
Next, a three-phase reactor according to a fifth embodiment will be described.
The iron cores (311, 321, and 331) penetrate through the first plate iron core 1 and the second plate iron core 2, and the air-core structures extend to the outside of the first plate iron core 1 and the second plate iron core 2. Thus, the insulating oil or the magnetic fluid is flowed into the air-core structures from the side of the first plate iron core 1, and is ejected from the side of the second plate iron core 2.
A cooling water or a cooling oil may be flowed into the air-core structures of the iron cores (311, 321, and 331). This structure allows improvement in cooling performance of the three-phase reactor 105.
Each of the three-phase reactors according to the embodiments has a reactance having an increased inductance, by taking advantage of an increased mutual inductance, owing to balanced three-phase power, as well as taking advantage of a self-inductance.
Number | Date | Country | Kind |
---|---|---|---|
2017-136215 | Jul 2017 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4419648 | Seipel | Dec 1983 | A |
7148782 | Hirzel | Dec 2006 | B2 |
10256737 | Yang | Apr 2019 | B2 |
20030112111 | Bolotinsky | Jun 2003 | A1 |
20140268896 | Kurita | Sep 2014 | A1 |
20140292455 | Kurita | Oct 2014 | A1 |
20150179330 | Nakanoue | Jun 2015 | A1 |
20150213943 | Fogelberg | Jul 2015 | A1 |
Number | Date | Country |
---|---|---|
2575820 | Sep 2003 | CN |
105990003 | Oct 2016 | CN |
206163266 | May 2017 | CN |
2584572 | Apr 2013 | EP |
1164604 | Oct 1958 | FR |
36029937 | Nov 1961 | JP |
S59217313 | Dec 1984 | JP |
H01315116 | Dec 1989 | JP |
H03141623 | Jun 1991 | JP |
2009-283706 | Dec 2009 | JP |
2011158290 | Dec 2011 | WO |
2012157053 | Nov 2012 | WO |
2013065095 | May 2013 | WO |
2014167571 | Oct 2014 | WO |
Number | Date | Country | |
---|---|---|---|
20190019611 A1 | Jan 2019 | US |