This invention relates in general to new and improved devices used for reducing air pollution but more particularly pertains to a pollution re-burner system, respectively. The system when installed in-line with a pollution source provides reduction and/or complete combustion of harmful emissions generated there from. Such emissions including (but not limited to) compounds such as oxides of nitrogen, hydrocarbons, carbon monoxide, odors, organic and inorganic particulates. The pollution source can be of any type, such as smoke from a smokestack, engine exhaust, etc. The re-burner system is of very simple construction, is extremely energy efficient and does not require any moving parts or maintenance, respectively.
This invention has been derived from building and testing numerous Thermal Oxidizer and heat reactors units since 1993. Originally conceived and tested to destroy automotive and diesel engine exhaust pollution it has now proven to be an excellent source of high temperature to destroy emissions exhausted through smoke stacks, restaurant exhaust vents and the like. The same basic design has now proven to be an energy efficient and economical way to eliminate pollutants from home and commercial heating applications as well.
Reducing air pollution, particularly emissions from heating devices and diesel engines, harmful fuel odors and particulates has become a strong environmental objective both in the United States and around the world. Because of worldwide tightening of pollution emission standards, inventors have continually tried to invent devices and methods that will meet these increasingly stringent standards. This invention is most efficient and is extremely simple in construction with no moving parts, is most advantageous and cost effective.
There have been numerous attempts within the known prior art to develop a device that would be feasible and efficient. However, heretofore true success has not been attainable. Some examples of the prior art include the following patents.
Publication Number: 2008/0041044, entitled, “Device for Purifying Exhaust Gas of an Internal Combustion Engine”. This device is somewhat functional for its intended use but it is clearly very limited as it is specifically designed only for use with an internal combustion engine. It could not be used with any other type of pollution source. This is very unlike the present invention which is extremely versatile and applicable with any type of apparatus, engine, etc. More importantly the present invention greatly reduces NOx, soot, CO, hydrocarbons, VOC's and other pollutants as necessary in a new and novel manner.
Another example of known prior art is Publication Number: 2008/0047260, entitled “Exhaust After Treatment System With Spiral Mixer”. This reference is again much too complicated and not feasible for numerous variable applications of use. The reference is somewhat functional if used with small engines but it is still very limited and uses numerous costly components, all of which the present invention completely eliminates.
A further example of known prior art is Publication Number: 2008/0053073, entitled “Reformer Assisted Lean NOx Catalyst After Treatment System And Method”. This reference must be attached onto a lean burning, oxygen-rich engine only. For this device to operate it needs to be attached onto the engine and cannot be used with any type of exhaust system. More importantly the device requires use of expensive catalytic converters and various components, again all of which the present invention eliminates. If this device were to get even slightly fuel rich, the soot and hydrocarbons will clog-up the expensive catalytic converters, etc., thus, resulting in a device that is expensive, unreliable and simply not functional.
Another example of known prior art is Publication Number: 2008/0064587, entitled “Oxidation Catalyst For Exhaust Gas Purification, Catalyst Structure For Exhaust Gas Purification and Method for Purifying Exhaust Gas”. This again is much too complicated and costly and additionally requires use of an oxidation catalyst. More importantly, this reference is only functional for removal of CO and HC and is not usable for reducing or eliminating pollution of any other type, such as NOx, CO2 and Soot etc.
Still another example of known prior art includes Publication Number: 2008/0066456, entitled “Method and Apparatus To Selectively Reduce NOx In An Exhaust Gas Feedstream”. Again this reference is extremely limited in use as it is only functional for reduction of NOx by the use of SCR and is only feasible for a four cycle engine. A two cycle engine only runs with a rich environment in the exhaust and would therefore overwhelm their catalysts. A further disadvantage of this reference is the requirement for silver in their catalyst of which further selectively reduces NOx. A four cycle engine running lean all the time is an engine without any power. The present invention is efficient with any type of exhaust and is clearly not limited to either a two or four cycle engine. The noted reference is still further limited as it injects inject HC into the system to work with a selective catalytic converter to reduce NOx. The present invention during normal operation injects fuel into the system to heat up the pollution in order to burn all constituents contained therein. Thus again when compared to the prior art the present invention is extremely simplified and eliminates the need for additional components/substances, etc., in a manner heretofore not taught.
Further prior art includes Publication Number: 2008/0072578, entitled “Treatment System and Methods For Internal Combustion Engine Exhaust Streams”. This is a complex pollution management system where they have several catalysts in sequence in order to reduce the pollution. The reference uses noble metals and other precious metal components in the three way catalysts. Some of the noble metals in the platinum group exceed $2100.00 per ounce. This would become a very pricey set of catalytic converters, also in use HC and soot will clog the system eliminating any efficiency. The system requires extra air to provide for an engine lean burning exhaust atmosphere. Again the system is only adaptable for four cycle engines. The system is much too complex and expensive. The present invention accomplishes new and novel results without the need for expensive catalysts, precious metal components, etc.
Other prior art includes Publication Number: 2008/80087008, entitled “Duel Injector System For Diesel Emissions Control”. Again this reference is simply not feasible due to the need for additional components, catalyst's, etc, all of which the present invention clearly eliminates. It is clear within the prior art the advantage of a “VORTEX” has not been recognized and incorporated such as taught within the present invention.
Still further prior art includes Publication Number: 2008/8008700, entitled “Exhaust Gas Purifying Apparatus For Engine”. This reference is very complex and expensive to build.
Yet another type of prior art includes Publication Number: 2008/80087434, entitled “Engine/Steam Generator With Afterburner”. This reference incorporates us of Hydrogen peroxide (H2O2), when mixed with hydrocarbon based liquids such as used in vehicles is also used as a strong oxidizing propellant in liquid propellant rocket motors. High concentrations of H2O2 will react violently with anything it comes in contact with. Notably, Iron and Copper are incompatible with hydrogen peroxide; both are common metals in all types of vehicles. It will also corrode the human skin in a very short time. Amongst other negatives with this system is that there are no infrastructures to handle this type of material near any roadways in the US or Europe, let alone the rest of the world. This is a very dangerous liquid to even think about putting into an automobile. High strength hydrogen peroxide 70% to 99% pure H2O2 is a volatile liquid that corrodes just about any metals or organic material that it comes in contact with.
There remains a continuous need for a device that can always eliminate virtually all compounds such as, hydrocarbons, carbon monoxide, odors and organic and inorganic particulates from pollution exhausted from a pollution source such as a household chimney, smokestack, or any type of exhaust vent and still be energy efficient and significantly reduce oxides of nitrogen and CO2.
A primary object of the present invention is to provide a three phased combustion system that can use any type of liquid or gaseous fuel as a heat source. The conversion is generally 50% more efficient than current external combustion methods as the heat generated by the system consumes all hydrocarbons or anything with caloric value. The system is of simple construction requiring only a fuel/air/igniter/blower injection apparatus, a pollution delivery structure and an elongated cylinder.
It is therefore an object of the present invention to provide a three phased combustion system that overcomes the drawbacks and disadvantages associated within the known prior art. For example, the present invention has been simplified and accomplishes unusual results heretofore not achieved. The new end results are mainly attributable to the novel construction of pollution delivery structure and the elongated cylinder in combination.
Yet another important object of the present invention is to provide an improved highly efficient fuel/air/igniter/blower injection apparatus of which is functional with either a gaseous substance or a liquid substance. Due to the construction of the fuel/air/igniter/blower injection apparatus and associated adapter, reduction of carbon/soot buildup is substantially eliminated.
Still another object of the present invention is to provide enhanced performance due to the injection of urea into the reaction chamber via a novel urea delivery structure. However, it is to be noted in the event that the urea tank were to be emptied, the system would still provide “fuel staging” and 50% reduction of NOx unlike any other urea prior art systems.
Another object of the present invention is to provide a three phased combustion system that requires little or no maintenance, as it is extremely efficient and durable.
Still another object of the present invention is to provide a three phased combustion that can be easily manufactured, is extremely cost effective, very efficient and marketable.
Other objects and advantages will be seen when taken into consideration with the following specification and drawings.
Referring now in detail to the drawings wherein like characters refer to like elements throughout the various views. The present invention is substantially a three phased combustion system (10) that is extremely functional for reduction of harmful pollutants generated from a pollution source. It is to be noted the system is efficient for numerous types of pollution including emissions from smokestacks, any engine exhaust, restaurant flumes, etc. Thus the invention is not to be limited to any specific type of pollution.
The overall construction and functional parameters of the invention are exceptionally simple and basically requires only three components, namely, a fuel/air/igniter/blower injection apparatus (12), a pollution delivery structure (14) and an elongated cylinder (16). As depicted in
As further illustrated in
It can now be seen that during operation, when the fuel/air mixture with the pollution is forcibly directed into the first phase mixing chamber (22) and then ignited, the fuel/air mixture with the pollution in combination, are chemically converted into a first phase gaseous substance. Thereafter, due to the construction of the first phase mixing chamber (22) with the fuel/air/igniter/blower injection apparatus (12) and the first baffle plate (18-a) in combination, a first internal vortex (consisting of a first phase gaseous substance) is created within the first phase first phase mixing chamber (22). Therefore, the first phase results in increased dwell time wherein all particulate matter is forcibly concentrated toward and into the eye of the first internal vortex. Furthermore, this simultaneously causes NOx within the first phase gaseous substance to be converted into a nitrogen/oxygen mixture. To finalize the first phase the first baffle plate (18-a) has multiple directional vanes (34) for receiving and delivering the nitrogen/oxygen mixture into the second phase combustion chamber (24) for continuing the process as follows.
The second phase begins when the nitrogen/oxygen mixture is forcibly directed into the second phase combustion chamber (24). Due to the construction of the first baffle plate (18-a) with the second phase combustion chamber (24) and the second baffle plate (18-b) in combination, a second internal vortex (consisting of predominantly nitrogen) is created within the second phase combustion chamber (24). This further provides increased dwell time of which in turn produces intense heat of which results in consumption of the majority of any remaining oxygen. Thus, resulting in an “oxygen deprived nitrogen mixture” and almost total destruction of NOx because the “oxygen deprived nitrogen mixture” has minimal oxygen atoms to bond with. To finalize the second phase the second baffle plate (18-b) also has directional vanes (34) for receiving and delivering the now oxygen deprived nitrogen mixture into the third phase reaction chamber (26) for continuing the process as follows.
The third phase begins when the oxygen deprived nitrogen mixture is forcibly directed into the third phase reaction chamber (26). Due to the construction of the second baffle plate (18-b) with the third phase reaction chamber (26) and the third baffle plate in combination, a third internal vortex is created within the third phase reaction chamber (26) (consisting of predominantly nitrogen, CO2 and CO), this simultaneously resulting in a dramatic decrease of said intense heat resulting in a lower temperature wherein NOx cannot formulate. Thus within the third phase reaction chamber the process is finalized and the resultant hot environmentally friendly air can be expelled there from (via any appropriate exit means) and the resultant hot environmentally friendly air is usable for energy purposes.
Referring now in detail to
Referring now to
It is to be understood that the present invention is functional with any type of fuel/air/igniter/blower injection apparatus of engineering choice. However, the applicant has found that the actual shape of the adapter assembly (either 36 or 52) is of great importance. Extensive experiments have proven that the entire system is much more efficient and functional if the adapter is of a shape having only smooth internal surfaces. Thus, the shape of the adapter can be a convex, curve, bow, bowl, funnel, cone, round or U-shaped, etc., each of which provide varying characteristics and enhance performance. The most important aspect of the adapter construction is that there are no internal sharp angles or broken areas where eddy currents or vortices (Vortex) can form. If there are any sharp angles or areas where the gases slow down or form a dead space within the adapter, carbon/soot will start to form and in a short amount of time a build up will cause other numerous problems to occur. As a result due to the novel shape of the adapter, the present invention resolves important malfunction issues associated with the prior art. Thus, the present invention provides new and unexpected results heretofore not taught or known.
Another very important advantage of the present invention is the novel arrangement for the fuel/air/igniter/blower injection apparatus. The present invention is suitable for use with either a gaseous substance or a liquid substance.
In reference to
In reference to
To further define the fuel nozzle/igniter support structure (58) I now refer to
It is to be noted the embodiment as depicted in
In reference to
It is to be understood that the present pollution re-burner system is functional with any standard components, electronics and/or programs associated within the field. For example, standard operational systems of this type generally include a controller/computer, fuel pump/tank, air blower, fuel/igniter/injection assembly, thermocouples, meters etc. Therefore, the present invention is not to be limited to any particular prior art operational standards as such are numerous and inherently variable. However, the present invention does include new and novel features of which incorporate use of the above noted urea delivery structure (84) and advanced operational parameters associated therewith. To more clearly define these new and advanced specifics, I now refer to
The controller/microcomputer is interconnected (via standard electrical leads) in electrical communication with a fuel pump, a fuel tank, an air blower, an igniter(s), an optional fuel by-pass, urea air blower, a pollution input thermocouple, a reaction chamber thermocouple, a urea metering pump and a urea tank. It is to be noted the fuel by-pass is “optional” but is functional for returning any excess fuel back to the fuel tank for re-use for economical advantage. As illustrated within
In actual operation, the following procedural steps more clearly define proper operating parameters for programming the system.
It is to be noted that the overall components, namely the elongated cylinder (16), the pollution delivery structure (14), the adapter (36 or 52), the baffle plates (34), and/or the urea delivery structure (84) are each made from (or laminated with) a high heat-resistant material of engineering choice, such as stainless steel, inconel, hasteloy, ceramic, etc., or any other material that can withstand heat between 1800 and 2500 degrees Fahrenheit.
Although the invention has been herein shown and described in what is conceived to be the most practical and preferred embodiment, it is recognized that departures may be made there from within the scope and spirit of the invention, which is not to be limited to the details disclosed herein but is to be accorded the full scope of the claims so as to embrace any and all equivalent devices and apparatuses.
Number | Name | Date | Kind |
---|---|---|---|
4240784 | Dauvergne | Dec 1980 | A |
4412414 | Novick et al. | Nov 1983 | A |
5215018 | Sardari et al. | Jun 1993 | A |
5320523 | Stark | Jun 1994 | A |
5333458 | Loving | Aug 1994 | A |
5337567 | Loving | Aug 1994 | A |
5381659 | Loving et al. | Jan 1995 | A |
5572866 | Loving | Nov 1996 | A |
7047893 | Loving | May 2006 | B2 |
20060150614 | Cummings | Jul 2006 | A1 |
20080041044 | Tanaka | Feb 2008 | A1 |
20080047260 | Kapsos et al. | Feb 2008 | A1 |
20080053073 | Kalyanaraman et al. | Mar 2008 | A1 |
20080064587 | Kanno et al. | Mar 2008 | A1 |
20080066456 | Schmieg et al. | Mar 2008 | A1 |
20080072578 | Kumar | Mar 2008 | A1 |
20080087008 | Reba et al. | Apr 2008 | A1 |
20080087434 | Wilen et al. | Apr 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20090320726 A1 | Dec 2009 | US |