1. Technical Field
This disclosure relates generally to devices, and more particularly to an ear clip for a device.
2. Background Art
Headsets, such as wireless audio headsets, are becoming increasingly poplar. Wireless headsets, such as those used to wirelessly communicate with a mobile device traditionally include a frame that houses a loudspeaker that is placed over the user's ear. Optionally, a microphone can extend from the housing toward the user's cheek, jaw or mouth.
Users generally desire such headsets to be “hands free,” which means that the headset includes a mechanism to keep the headset attached to the ear, thereby freeing the user's hands for other tasks. It is important for such mechanisms to securely hold the headset against the ear. Prior art headsets used a headband to hold the headset against the ear. Headbands are cumbersome and unfashionable to use. Other headsets use a “plug” that is wedged into a user's ear. These plugs are uncomfortable to wear. Additionally, individuals have different ear sizes so one plug may not fit all users.
Due to the drawbacks of these prior art systems, more modern devices employ an ear hook that wraps around the user's ear to keep the headset attached while in use. Many ear hooks are bulky and not especially comfortable to wear. It would be advantageous to have an improved ear hook.
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present disclosure.
Embodiments of the disclosure are now described in detail. Referring to the drawings, like numbers indicate like parts throughout the views. As used in the description herein and throughout the claims, the following terms take the meanings explicitly associated herein, unless the context clearly dictates otherwise: the meaning of “a,” “an,” and “the” includes plural reference, the meaning of “in” includes “in” and “on.” Relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. Also, reference designators shown herein in parenthesis indicate components shown in a figure other than the one in discussion. For example, talking about a device (10) while discussing figure A would refer to an element, 10, shown in figure other than figure A.
Embodiments of the disclosure provide an ear hook assembly suitable for use with an electronic device. In one embodiment, the ear hook assembly only comprises three components: an ear hook, a device hook, and a retaining sleeve. While prior art ear hook assemblies required four or more pieces, embodiments of the disclosure advantageously save cost, assembly time, and allow for thinner ear hook assembly constructs.
In one embodiment, the device hook and the ear hook are mechanically coupled in an engagement. The retaining sleeve is then slid over the engagement to retain the engagement together. In one embodiment, the retaining sleeve is disposed about an ear hook portion that is mechanically coupled at the engagement with a device hook portion to retain the three components together. One of the ear hook portion or the device hook portion is male in one embodiment, while the other is female. For illustrative purposes, the ear hook portion will be illustrated herein as the female component, while the device hook portion will be illustrated as the male component. However, those of ordinary skill in the art having the benefit of this disclosure will understand that the opposite configuration could also be used, i.e., where the device hook portion is the female component and the ear hook portion is the male component.
In one embodiment, the ear hook portion comprises a cantilevered protuberance engagement component and a protuberance passage channel. In one embodiment, the protuberance passage channel includes a fissure that terminates at a gap on the outer surface of the ear hook portion. Where the device hook portion comprises a shaft and an engagement protrusion, the engagement protrusion sits at the gap when the device hook portion is fully inserted into a bore of the ear hook portion. In one embodiment the retention sleeve includes one or more protuberances that extend into the retention sleeve toward an engagement axis of the assembly. When the retention sleeve slides over the engagement, one of the protuberances can advantageously translate through the fissure to aid alignment.
To keep the retention sleeve in place, in one embodiment the ear hook portion comprises a cantilevered protuberance engagement component that includes a beam that separates a distal end and a fulcrum. When the retention sleeve passes over the engagement, a protuberance contorts the beam by deflecting the distal end. Once the protuberance passes over the distal end, the beam contortion is reversed, thereby allowing the distal end to become biased against the protuberance to retain a device hook engagement component and an ear hook engagement component together.
Embodiments of the disclosure offer numerous advantages over prior art ear hook assemblies that use four, five, or more parts. A primary benefit is reduced cost. While the least expensive four-piece ear hook assembly may cost twenty-five cents or more, embodiments of the disclosure reduce this cost to between eighteen and twenty cents, which represents as much as a twenty-eight percent cost savings. A second benefit is easier assembly. Prior art designs require welding and other complicated processes. Embodiments of the disclosure provide an assembly that is simple and quick to assemble by hand. A third benefit is size. The thinnest prior art designs had a diameter of five millimeters or more. By contrast, embodiments of the present disclosure can be reduced to three and a half millimeters in diameter, which translates into increased comfort for the user. Other advantages will become obvious in the discussion that follows.
Turning to
To assemble the prior art ear hook assembly 101, the plastic cap 104 must be ultrasonically welded or glued to a mounting terminal 204 on the disposed on the plastic hub 105. Once this complex and time-consuming welding process is done, the metal sleeve 103 is placed over the plastic cap 104 for aesthetic purposes only. The metal sleeve 103 does nothing mechanically; it merely provides a metallic break in the otherwise plastic prior art ear hook assembly 101.
A male snap-fit device 202 is then snapped into the plastic cap 104. This is best shown in the sectional view of
There are several problems with this prior art design. The first is the thickness. To keep the sidewalls 301,302 from breaking when they deflect, they must be at least a predetermined thickness. Similarly, to provide sufficient retention forces, the ledges 307,308 have to be at least a predetermined thickness. The plastic cap 104 must have a predetermined thickness as well to be able to sonically weld to the mounting terminal 205 of the plastic hub 105. Each of these thicknesses results in a very thick assembly. The assembly of
A second disadvantage is that it requires sonic welding. As noted, above, sonic welding is a complex and time consuming process that increases the overall cost of the assembly. A third problem is that the assembly requires four parts, which also increases cost.
A third disadvantage of the prior art design is that the strength of the “snap joint,” formed when the male snap-fit device 202 is inserted into the plastic cap 104, is highly dependent upon a specific alignment during insertion. It is also dependent on very tight dimensional tolerances of the metal sleeve 103. When the metal sleeve 103 is slightly too tall, it stops and/or prevents the male snap-fit device 202 from fully inserting into the plastic cap 104. Accordingly, the male snap-fit device 202 is only only retained in the plastic cap 104 by a mostly friction fit only. Over time, the ear hook 102 eventually separates from the plastic cap 104 because the male snap-fit device slips out of the plastic cap 104. Users are quickly dissatisfied with this situation as the assembly appears to have broken for no reason.
Yet another disadvantage occurs when the plastic cap 104 is not sufficiently welded or attached to the mounting terminal 204. This also causes the assembly to separate. Experimental testing has shown that the only way to address this problem is to increase quality control and manual examination of pieces coming out of the welding or attaching station, which increases the overall cost of the prior art assembly.
Embodiments of the present disclosure provide solutions to each of these problems by providing an ear hook assembly that is only three components, thereby simplifying the design and reducing the cost. Additionally, embodiments of the present disclosure eliminate the need for sonic welding or other complex processes. As noted above, embodiments of the disclosure are simple to assemble by hand. Finally, embodiments of the present disclosure can be much thinner in diameter. This directly results in increased comfort for the user.
Turning to
In the illustrative embodiment of
In one embodiment, the device hook 403 is manufactured from a rigid plastic material while the ear hook 402 is manufactured from a pliant material. For example, the device hook 403 can be manufactured from nylon, styrene, ABS, polycarbonate, or polycarbonate-ABS, PMMA, PVC, or other polyamide-based thermoplastics in one embodiment. To be pliant about a user's ear and to allow the device hook engagement component 405 to engage the ear hook engagement component 406, the ear hook 402 can be manufactured from nylon or other polyamide-type thermoplastics like those listed above with reference to the device hook 403. In one embodiment, the retention sleeve 404 is manufactured from a metal such as stainless steel.
In this illustrative embodiment, the retention sleeve 404 includes at least one protuberance 407 that extends into the retention sleeve 404 toward an engagement axis 408 of the ear hook assembly 401. The ear hook engagement component 406 includes at least two retention sleeve friction engagement components 409,410. The retention sleeve friction engagement components 409,410 are radially separated by a cantilevered protuberance engagement component.
As will be shown in subsequent figures, in one embodiment the cantilevered protuberance engagement component includes a distal end to retain the device hook engagement component 405 and the ear hook engagement component 406 together when the retention sleeve 404 is placed over both the device hook engagement component 405 and the ear hook engagement component 406. This retention can be performed without any additional parts in one embodiment. Said differently, the three parts shown in
Each of the three components will now be shown in more detail individually. Turning to
As shown in
In one embodiment, the retention sleeve friction engagement components 409,410 are separated by a cantilevered protuberance engagement component 901, which is most easily illustrated in
In one embodiment, the gap 1004 is off-axis with the beam 1001 of the cantilevered protuberance engagement component 901. For example, as shown in
As best shown in
As best shown in
In one embodiment, the fissure 706 and the gap 708 intersect to form an engagement flap 709. As will be described below with reference to
Turning now to
Turning now to
In the illustrative embodiment of
Turning now to
In one embodiment, step 1301 also includes aligning the protuberance 407 away from the ear hook 502 as well. Recall from above that in one embodiment the protuberances are off-center in that they are closer to one end 1201 of the retention sleeve 404 than they are to the other end 1202 of the retention sleeve 404. In one embodiment, step 1301 includes initially aligning the other end 1202 toward the end 707 of the ear hook engagement component 406 and the one end 1201 away from the end 707 of the ear hook engagement component 406. The reason for performing this end alignment is to cause the beam (1001) of the cantilevered protuberance engagement component (901) to contort when engaged by one of the protuberances (1207) of the retention sleeve 404. This will be described in more detail below with reference to
At step 1302, the retention sleeve 404 is passed in a first direction 1303. In one embodiment, this causes one protuberance 407 to translate through the fissure 706 and into the gap (708). In one embodiment, the retention sleeve 404 is passed beyond the end of the ear hook engagement component 406 by at least a predetermined distance 1304. The predetermined distance 1304 is set such that any contortion of the beam (1001) of the cantilevered protuberance engagement component (901) can be reversed once the protuberance (1207) has sufficiently passed along the beam (1001). Once this is done, a user can hold the retention sleeve 404 such that one end 1201 remains at or beyond the predetermined distance 1304 from the end 707 of the ear hook engagement component 406.
At step 1401, the device hook engagement component 405 is inserted into the bore (501) of the ear hook engagement component 406. Where the device hook engagement component 405 comprises an engagement protrusion (1103) that has a larger diameter than the shaft (1102) of the device hook engagement component 405, this insertion can cause the engagement flap (709) to open. Said differently, the engagement protrusion (1103) can cause an end 710 of the engagement flap (709) to contort away from the engagement axis 408 when the engagement protrusion (1103) is positioned in the bore along the engagement axis 408 at the engagement flap (709). Accordingly, the inserting occurring at step 1401 can cause an opening of the engagement flap (709) defined by the fissure 706. Once the device hook engagement component 405 is fully inserted into the ear hook engagement component 406, the end 710 of the engagement flap (709) can return to its normal position.
At step 1402, the retention sleeve 404 is moved in a second direction 1403 to the end (707) of the ear hook engagement component 406. As will be described in more detail in
Turning now to
As shown at sectional view 1501, the cantilevered protuberance engagement component 901 includes a beam 1001, a distal end 1002, and a fulcrum 1003. When the shaft 1102 of the device hook engagement component (405) is fully inserted into the bore (501) of the ear hook engagement component (406), the fulcrum 1003 is biased against the shaft 1102 as shown in sectional view 1501.
When the retention sleeve 404 is initially slid over the ear hook engagement component (406) in the first direction (1303) as described in
Then, when the retention sleeve (404) is moved in the second direction (1403), the protuberance 1207 again engages the distal end 1002 of the cantilevered protuberance engagement component 901 to again contort the beam 1001. However, once the retention sleeve (404) has passed in the second direction (1403) to the end (707) of the ear hook engagement component (406), the protuberance 1207 passes beyond the distal end 1002 of the cantilevered protuberance engagement component 901. The beam 1001 then returns to the position shown in sectional view 1501 and becomes biased against the protuberance 1207 to retain the device hook engagement component (405) and the ear hook engagement component (406) together. Said differently, the uncontorted beam 1001 is configured to prevent movement of the retention sleeve 404 along a second direction (1403) opposite the first direction (1303).
Another feature shown in sectional views 1501,1502 relates to the bore (501). As shown in sectional view 1502, in one embodiment, the bore (501) in one embodiment has a diameter 1505 that is greater along the gap 1004 disposed adjacent to the cantilevered protuberance engagement component 901 than is a diameter 1504 along the fissure 706.
Another feature shown in the sectional views 1501,1502 relates to the thickness of the overall ear hook assembly 401. As noted above, using the unique and extraordinary three-part assembly shown in
Turning now to
Turning now to
At 1702, the one of the device hook engagement component or the ear hook engagement component of 1701 defines a gap adjacent to the cantilevered protuberance engagement component opposite the distal end. At 1703, the one of the device hook engagement component or the ear hook engagement component of 1701 further defines a bore extending along the engagement axis. At 1703, the gap of 1702 defines an opening between an outer surface of the one of the device hook engagement component or the ear hook engagement component and the bore.
At 1704, another of the one of the device hook engagement component or the ear hook engagement component of 1701 comprises a shaft terminating at an engagement protrusion. At 1705, the engagement protrusion of 1704 is frustoconical in shape.
At 1706, the cantilevered protuberance engagement component of 1701 comprises a fulcrum and beam. At 1706, the fulcrum is biased against the shaft when inserted into the bore.
At 1707, the beam of 1706 is configured to contort when engaged by the at least one protuberance translating in a first direction parallel to the engagement axis. At 1708, the beam of 1706 is configured to prevent movement of the retention sleeve along a second direction opposite the first direction.
At 1709, the ear hook engagement component of 1701 comprises an ear hook extending distally therefrom. At 1709, the device hook engagement component of 1701 comprises a hook extending therefrom.
At 1710, the at least two retention sleeve friction engagement components of 1701 are further separated by a protuberance passage channel. At 1711, the protuberance passage channel of 1710 comprises a fissure terminating at a gap to define an engagement flap.
At 1712, the one of the device hook engagement component or the ear hook engagement component of 1701 further comprises a bore extending along the engagement axis. At 1712, another of the one of the device hook engagement component or the ear hook engagement component of 1701 comprises an engagement protrusion. At 1712, an end of the engagement flap is to contort away from the engagement axis when the engagement protrusion is positioned in the bore along the engagement axis at the engagement flap.
At 1713, the one of the device hook engagement component or the ear hook engagement component of 1701 further comprises a bore extending along the engagement axis. At 1713, the bore is larger in diameter along the gap than along the fissure. At 1714, the one of the device hook engagement component or the ear hook engagement component of 1701 is less than four millimeters in diameter.
At 1715, an assembly for an electronic device comprises only three components. At 1715, the three components comprise an ear hook, a device hook, and a retaining sleeve. At 1715, device hook and the ear hook are mechanically coupled in an engagement. At 1715, the engagement is retained by the retaining sleeve. At 1716, the retaining sleeve of 1715 is disposed about an ear hook portion mechanically coupled at the engagement with a device hook portion to retain the only three components together.
At 1717, the ear hook portion of 1715 comprises a cantilevered protuberance engagement component and a protuberance passage channel. At 1717, the protuberance passage channel is separated from a retention sleeve friction engagement component by a fissure. At 1717, the fissure terminates at a gap disposed on an outer surface of the ear hook portion.
At 1718, a method of assembling an ear hook comprises passing a retention sleeve in a first direction beyond an end of one of a device hook engagement component or an ear hook engagement component by at least a predetermined distance. At 1718, the method also comprises inserting another of the device hook engagement component or the ear hook engagement component into a bore of the one of the device hook engagement component or the ear hook engagement component. At 1718, the method also comprises moving the retention sleeve in a second direction toward the end to pass a protuberance of the retention sleeve over a cantilevered protuberance engagement component to retain the one of the device hook engagement component or the ear hook engagement component together as an assembly.
At 1719, the passing of 1718 further comprises translating another protuberance through a fissure. At 1720, the inserting of 1718 further comprises opening an engagement flap defined by the fissure with the another of the device hook engagement component or the ear hook engagement component into the one of the device hook engagement component or the ear hook engagement component.
In the foregoing specification, specific embodiments of the present disclosure have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present disclosure as set forth in the claims below. Thus, while preferred embodiments of the disclosure have been illustrated and described, it is clear that the disclosure is not so limited. Numerous modifications, changes, variations, substitutions, and equivalents will occur to those skilled in the art without departing from the spirit and scope of the present disclosure as defined by the following claims. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present disclosure. The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims.
Number | Date | Country | |
---|---|---|---|
61842886 | Jul 2013 | US |