1. Field of the Invention
This invention pertains generally to circuit interrupters and, more particularly, to vacuum circuit interrupters, such as, for example, vacuum circuit breakers. The invention also pertains to disconnect switches that provide a grounding function.
2. Background Information
Circuit interrupters provide protection for electrical systems from electrical fault conditions such as, for example, current overloads and short circuits. Typically, circuit interrupters include a spring powered operating mechanism which opens electrical contacts to interrupt the current through the conductors of an electrical system in response to abnormal conditions, although a wide range of mechanical or electromechanical driving mechanisms may be employed.
Vacuum circuit interrupters (e.g., vacuum circuit breakers; vacuum reclosers; other vacuum switching devices) include separable contacts disposed within an insulating housing. Vacuum circuit interrupters, such as, for example, power circuit breakers for systems operating above about 1,000 volts, typically utilize vacuum switches (not to be confused with vacuum switching devices), such as vacuum interrupters (not to be confused with vacuum circuit interrupters), as the switch element. Generally, one of the separable contacts is fixed relative to both the insulating housing and to an external electrical conductor which is interconnected with the circuit to be controlled by the vacuum circuit interrupter. The other separable contact is movable. The movable contact assembly usually comprises a stem of circular cross-section having the movable contact at one end enclosed within a vacuum envelope (e.g., vacuum chamber; vacuum bottle) of the vacuum interrupter and a driving mechanism at the other end which is external to the vacuum envelope. The driving mechanism provides the motive force to move the movable contact into or out of engagement with the fixed contact. Hence, the vacuum interrupter has two positions: on and off.
Vacuum interrupters are typically used, for instance, to reliably interrupt medium voltage alternating current (AC) currents and, also, high voltage AC currents of several thousands of amperes or more. Typically, one vacuum interrupter is provided for each phase of a multi-phase circuit and the vacuum interrupters for the several phases are actuated simultaneously by a common operating mechanism, or separately or independently by separate operating mechanisms.
It is known to provide a three-position switching and isolating apparatus, including gas-insulated switch-disconnectors and isolators, suitable for use in medium voltage switchgear. Blade contacts for closing, breaking, isolation and earthing are arranged inside a cylinder in sulfur hexafluoride (SF6) gas typically at a pressure of about 202 kPa absolute. The blade contacts can take three positions: closed, open and earthed. Because of arcing considerations, such a three-position switching and isolating apparatus can generally interrupt or break only very modest levels of current. It is known to electrically connect such a three-position switching and isolating apparatus in series with a circuit breaker or fuse, which performs current interruption.
Prior proposals incorporate a switching function (i.e., current interruption), a disconnection (of a line bus) function, and a grounding (of a load bus) function all in one vacuum envelope of a vacuum interrupter. See, for example, Kajiwara, Satoru, et al., “Development of 24-kV Switchgear with Multi-functional Vacuum Interrupters for Distribution,” Hitachi Review, Vol. 49, No. 2, 2000, pp. 93–100; and U.S. Pat. No. 6,720,515. Such a vacuum interrupter has four positions: on, off, disconnect and earth. These prior proposals all have the inherent disadvantage that the open contact gap in the vacuum envelope has a finite probability of breaking down under a suitably high voltage pulse (e.g., a relatively high voltage pulse resulting from lightning). In addition, arcing products generated during current interruption could lead to a breakdown between the line and ground contacts, rather than the line and interruption contacts. Jüttner, “Instabilities of prebreakdown currents in vacuum I: late breakdowns,” J. Phys. D: Appl. Phys. 32, pp. 2537–43 (1999).
If a breakdown were to occur during the disconnect function (i.e., after the off position but before the earth position of a four-position vacuum interrupter), then it would violate the standards requirements for dielectric coordination, and could potentially endanger personnel on the load side of the vacuum interrupter.
In addition, the four-position vacuum interrupters have a significantly more complicated design than current vacuum interrupter designs and would, therefore, be much more difficult to manufacture and be more expensive.
Accordingly, there is room for improvement in vacuum circuit interrupters.
There is a need for a vacuum circuit interrupter that reliably improves dielectric coordination and minimizes the chance of breakdown during a disconnect function, without significantly increasing total cost.
This need and others are met by the present invention, which combines the advantages of a conventional vacuum circuit interrupter as being a reliable and effective device to interrupt current with the reliable insulating performance of an insulating medium, such as, for example, air, sulfur hexafluoride (SF6) or insulating oil.
In accordance with one aspect of the invention, a vacuum circuit interrupter comprises: a first conductor; a vacuum switch comprising: a second conductor, and a vacuum envelope containing a fixed contact assembly and a movable contact assembly movable between a closed circuit position in electrical connection with the fixed contact assembly and an open circuit position spaced apart from the fixed contact assembly, the second conductor being outside of the vacuum envelope, the second conductor being electrically connected to the fixed contact assembly; a third conductor electrically connected to the movable contact assembly; a fourth conductor; and an operating mechanism structured to: (a) open and close the fixed contact assembly and the movable contact assembly of the vacuum switch, and (b) move the vacuum switch and the second conductor thereof between a first position wherein the second conductor is electrically connected to the first conductor, and a second position wherein the second conductor is electrically connected to the fourth conductor.
The movable contact assembly of the vacuum switch may include a longitudinal axis; the operating mechanism may be structured to, first, open the fixed contact assembly and the movable contact assembly by moving the movable contact assembly along the longitudinal axis and away from the fixed contact assembly and to, second, rotate the vacuum switch and the second conductor thereof away from the first position wherein the second conductor is electrically connected to the first conductor and toward the second position wherein the second conductor is electrically connected to the fourth conductor.
The operating mechanism may be further structured to, third, close the fixed contact assembly and the movable contact assembly by moving the movable contact assembly along the longitudinal axis and toward the fixed contact assembly.
The movable contact assembly of the vacuum switch may include a longitudinal axis; the operating mechanism may be structured to, first, open the fixed contact assembly and the movable contact assembly by moving the movable contact assembly along the longitudinal axis and away from the fixed contact assembly, to, second, move the vacuum switch and the second conductor thereof along the longitudinal axis and away from the first conductor, and to, third, rotate the vacuum switch and the second conductor thereof toward the second position wherein the second conductor is electrically connected to the fourth conductor.
The operating mechanism may be further structured to, fourth, close the fixed contact assembly and the movable contact assembly by moving the movable contact assembly along the longitudinal axis and toward the fixed contact assembly.
The operating mechanism may be structured to provide movement among: a closed position wherein the second conductor is electrically connected to the first conductor and the fixed contact assembly is electrically connected to the movable contact assembly of the vacuum switch, an open position wherein the second conductor is electrically connected to the first conductor and the fixed contact assembly is electrically disconnected from the movable contact assembly of the vacuum switch, a disconnected position wherein the second conductor is electrically disconnected from the first conductor and the fixed contact assembly is electrically disconnected from the movable contact assembly of the vacuum switch, a transitional position wherein the second conductor is electrically disconnected from the first conductor, the fixed contact assembly is electrically disconnected from the movable contact assembly of the vacuum switch, and the second conductor is electrically connected to the fourth conductor, and a grounded position wherein the second conductor is electrically disconnected from the first conductor, the fixed contact assembly is electrically connected to the movable contact assembly of the vacuum switch, and the second conductor is electrically connected to the fourth conductor.
The operating mechanism may be structured to provide movement among: a closed position wherein the second conductor is electrically connected to the first conductor and the fixed contact assembly is electrically connected to the movable contact assembly of the vacuum switch, a disconnected position wherein the second conductor is electrically disconnected from the first conductor and the fixed contact assembly is electrically disconnected from the movable contact assembly of the vacuum switch, and a grounded position wherein the second conductor is electrically disconnected from the first conductor, the fixed contact assembly is electrically connected to the movable contact assembly of the vacuum switch, and the second conductor is electrically connected to the fourth conductor.
As another aspect of the invention, a vacuum circuit interrupter comprises: a first conductor including a contact portion; a vacuum switch comprising: a first vacuum envelope containing a fixed contact assembly and a movable contact assembly movable between a closed circuit position in electrical connection with the fixed contact assembly and an open circuit position spaced apart from the fixed contact assembly, and a second conductor electrically connected to the fixed contact assembly, the second conductor including a contact portion; a third conductor electrically connected to the movable contact assembly; a fourth conductor including a contact portion, the contact portions of the first, second and fourth conductors being outside of the vacuum envelope; an operating mechanism structured to: (a) open and close the fixed contact assembly and the movable contact assembly of the vacuum switch, and (b) move the vacuum switch and the second conductor thereof between a first position wherein the contact portion of the second conductor is electrically connected to the contact portion of the first conductor, and a second position wherein the contact portion of second conductor is electrically connected to the contact portion of the fourth conductor; and a second envelope containing at least the contact portions of the first, second and fourth conductors.
The second envelope may further contain an insulating medium.
As another aspect of the invention, a vacuum circuit interrupter comprises: a first conductor; a vacuum switch comprising: a second conductor, a vacuum envelope including a first end and a second end, the vacuum envelope containing a fixed contact assembly proximate the first end of the vacuum envelope and substantially containing a movable contact assembly proximate the second end of the vacuum envelope, the movable contact assembly movable between a closed circuit position in electrical connection with the fixed contact assembly and an open circuit position spaced apart from the fixed contact assembly, the second conductor being outside of the vacuum envelope, the second conductor being electrically connected to the fixed contact assembly, a first member outside of the vacuum envelope, the first member being structured to support the first end of the vacuum envelope, a second member outside of the vacuum envelope, the second member being structured to support the second end of the vacuum envelope, and a number of insulating support members outside of the vacuum envelope and disposed between the first and second members; a third conductor electrically connected to the movable contact assembly; a fourth conductor; and an operating mechanism structured to: (a) open and close the fixed contact assembly and the movable contact assembly of the vacuum switch, and (b) move the vacuum switch and the second conductor thereof between a first position wherein the second conductor is electrically connected to the first conductor, and a second position wherein the second conductor is electrically connected to the fourth conductor.
The first member may include a first opening; the second member may include a second opening; the second conductor may pass through the first opening of the first member; and a portion of the movable contact assembly may pass through the second opening of the second member.
A full understanding of the invention can be gained from the following description of the preferred embodiments when read in conjunction with the accompanying drawings in which:
As employed herein, the term “number” shall mean one or an integer greater than one (i.e., a plurality).
As employed herein, the statement that a part is “electrically interconnected with” one or more other parts shall mean that the parts are directly electrically connected together or are electrically connected together through one or more electrical conductors or generally electrically conductive intermediate parts. Further, as employed herein, the statement that a part is “electrically connected to” one or more other parts shall mean that the parts are directly electrically connected together or are electrically connected together through one or more electrical conductors. Also, as employed herein, the statement that two parts are “directly electrically connected together by” another part shall mean that the two parts are directly electrically connected together by only such other part.
As employed herein, the statement that two or more parts are “connected” or “coupled” together shall mean that the parts are joined together either directly or joined through one or more intermediate parts. Further, as employed herein, the statement that two or more parts are “attached” shall mean that the parts are joined together directly.
The present invention is described in association with a vacuum interrupter disconnect switch, although the invention is applicable to a wide range of vacuum circuit interrupters.
The vacuum interrupter 22 also includes a conductor 44 electrically connected to the fixed contact 32. The vacuum envelope 36 includes a first end 46 and a second end 48. The conductor 44 is outside of the vacuum envelope 36 and is electrically connected to the fixed contact assembly 50 in a manner well known to those skilled in the art. The vacuum envelope 36 contains a fixed contact assembly 50 including the fixed contact 32 proximate the first end 46 of the vacuum envelope 36 and substantially contains a movable contact assembly 52 including the movable contact 34 proximate the second end 48 of the vacuum envelope 36. In a manner well known to those skilled in the art, the movable contact assembly 52 is movable between a closed circuit position (not shown in
The insulating cage 24 includes a first member 54 (e.g., conductive; non-conductive) outside of the vacuum envelope 36 and being structured to support the first end 46 of the vacuum envelope 36. The insulating cage 24 also includes a second member 56 (e.g., conductive; non-conductive) outside of the vacuum envelope 36 and being structured to support the second end 48 of the vacuum envelope 36. The insulating rods 26 are also outside of the vacuum envelope 36 and are disposed between the first and second members 54,56. The rods 26 and the members 54,56 cooperate to mechanically support the vacuum envelope 36. Outside of the vacuum envelope 36, the operating mechanism 28 engages the movable stem 58 of the movable contact assembly 52, in order to move the same in the longitudinal directions shown by the arrows 30,40. Preferably, outside of the vacuum envelope 36, the operating mechanism 28 engages the insulating cage 24, in order to move the same and the vacuum envelope 36 in the rotational direction shown by the arrow 38 without providing any undue mechanical stress on the vacuum envelope 36.
The first member 54 includes a first opening 60 and the second member 56 includes a second opening 62. The conductor 44, which is electrically connected to the fixed contact assembly 50, passes through the first opening 60. A portion of the movable contact assembly 52 and, in particular, the movable stem 58, passes through the second opening 62.
The operating mechanism 28 is structured to: (a) open and close the fixed contact assembly 50 and the movable contact assembly 52 of the vacuum interrupter 22 by moving the movable stem 58 in the directions shown by the arrows 30 and 40, respectively, and (b) move the vacuum interrupter 22, insulating cage 24 and the conductor 44 thereof between a first position (as shown in
In
In
The vacuum interrupter disconnect switch 20′, thus, provides three functions: (1) switching (
In
Unlike
In
The vacuum interrupter disconnect switch 20″, thus, provides three functions: (1) switching (
As shown in
In
The vacuum interrupter disconnect switch 20″″, thus, provides three functions: (1) switching (
Although, for purposes of safety, the transitional positions of
The disclosed vacuum circuit interrupters 20,20′,20″,20′″,20″″ employ a conventional two-position vacuum interrupter 22. An operating mechanism 28,28′ preferably provides: (a) the longitudinal opening motion for the vacuum interrupter contacts 32,34, (b) the longitudinal or rotational motion for the vacuum interrupter 22, insulating cage 24 and conductor 44 for the disconnection function, and (c) the rotational motion for the vacuum interrupter 22, insulating cage 24 and conductor 44 for the grounding function. For example, the rotational motion can be relatively slow as compared to the opening and closing speeds of the vacuum interrupter fixed and movable contacts 32,34. This combines the excellent AC current interruption capability of the vacuum interrupter 22 with the isolation properties of a suitable insulating medium, such as, for example, air, SF6 or oil. Furthermore, the fixed conductor 44 of the vacuum interrupter 22 is employed as a series disconnect switch, thereby eliminating the need to use a separate disconnect switch.
The disclosed vacuum circuit interrupters 20,20′,20″,20′″,20″″ provide four functions: (1) load energized (vacuum interrupter contacts 32,34 closed;
While specific embodiments of the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of the invention which is to be given the full breadth of the claims appended and any and all equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
3571543 | Perkins et al. | Mar 1971 | A |
3671696 | Brunner | Jun 1972 | A |
5777287 | Mayo | Jul 1998 | A |
5905242 | Bernard et al. | May 1999 | A |
6529009 | Kikukawa et al. | Mar 2003 | B2 |
6720515 | Renz et al. | Apr 2004 | B2 |