Three-transistor active reset pixel

Information

  • Patent Grant
  • 10425601
  • Patent Number
    10,425,601
  • Date Filed
    Sunday, April 15, 2018
    7 years ago
  • Date Issued
    Tuesday, September 24, 2019
    5 years ago
Abstract
Imaging apparatus includes a photosensitive medium, which is configured to convert incident photons into charge carriers. An array of three-transistor (3T) pixel circuits, coupled to the photosensitive medium, is arranged in rows and columns on a semiconductor substrate and collects the charge carriers from the photosensitive medium. A readout circuitry includes a plurality of column readout lines; each column readout line is coupled to respective outputs of the pixel circuits in a corresponding column of the array and includes a current source load coupled between a constant-voltage supply and the outputs of the pixel circuits, and a bypass switch in parallel with the current source load. Control circuitry alternately opens the bypass switch on each column readout line during a signal readout phase and closes the bypass switch during a pixel reset phase.
Description
FIELD OF THE INVENTION

The present invention relates generally to optoelectronic devices, and particularly to optoelectronic image sensors.


BACKGROUND

A typical three-transistor (3T) pixel of an optoelectronic image sensor suffers from high reset noise, which limits the signal-to-noise ratio (SNR) and dynamic range of the pixel. A common noise component in these image sensors is kTC noise, wherein C is the switch capacitance of the field-effect transistor (FET) gate, k is Boltzmann's constant, and T is the absolute temperature (measured in ° K).


Active pixel reset is a known method for suppressing kTC noise in a 3T pixel. For this purpose, a dedicated operational amplifier is typically coupled to each column adjacent to the pixel array. Designs of this sort are described, for example, by B. Fowler et al., “Low Noise Readout using Active Reset for CMOS APS,” Proc. SPIE 3965, Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications, p. 126, SPIE Press, Bellingham, Wash., 2000, as well as M. Ishii et al., “An Ultra-low Noise Photoconductive Film Image Sensor with a High-speed Column Feedback Amplifier Noise Canceller,” IEEE 2013 SYMPOSIUM ON VLSI CIRCUITS, pp. C8-C9, June 2013, IEEE, New York, N.Y. A distributed feedback amplifier for kTC noise suppression in 3T pixels was proposed by L. Kozlowski et al. in “Pixel Noise Suppression via SoC Management of Tapered Reset in a 1920×1080 CMOS Image Sensor,” IEEE Journal of Solid-State Circuits, vol. 40, pp. 2766-2776, December 2005, IEEE, New York, N.Y.


SUMMARY

Embodiments of the present invention that are described hereinbelow provide improved circuitry and methods for controlling an image sensor.


There is therefore provided, in accordance with an embodiment of the invention, imaging apparatus, including a photosensitive medium configured to convert incident photons into charge carriers. An array of three-transistor (3T) pixel circuits is coupled to the photosensitive medium and is arranged in rows and columns on a semiconductor substrate and configured to collect the charge carriers from the photosensitive medium. There is further provided a constant-voltage supply. A readout circuitry includes a plurality of column readout lines, wherein each column readout line is coupled to respective outputs of the pixel circuits in a corresponding column of the array and includes a current source load coupled between the constant-voltage supply and the outputs of the pixel circuits, and a bypass switch in parallel with the current source load. Control circuitry is coupled to alternately open the bypass switch on each column readout line during a signal readout phase, in which the collected charge carriers are read out of the pixel circuits, and to close the bypass switch during a pixel reset phase, in which the pixel circuits are reset.


In a disclosed embodiment, the photosensitive medium includes a photosensitive film.


In further embodiments, each of the 3T pixel circuits includes a floating diffusion node coupled to collect the charge carriers from the photosensitive medium; a reset transistor having a first gate coupled to receive a reset signal from the control circuitry, a first source connected to the floating diffusion node, and a first drain; an amplifier transistor having a second gate connected to the floating diffusion node, a second drain connected to the first drain, and a second source connected to one of the column readout lines; and a select transistor having a third gate coupled to receive a select signal from the control circuitry, a third drain connected to the first and second drains, and a third source connected to a ground potential. In some embodiments the reset and select transistors include nMOS transistors, and the amplifier transistor includes a pMOS transistor.


In further embodiments, the control circuitry is configured to provide a tapered reset signal to the pixel circuits while the bypass switch is closed. In some embodiments, the tapered reset signal has a falling edge having a taper length of at least 100 ns. In still further embodiments, the control circuitry is configured to apply the tapered reset signal to multiple rows of the array simultaneously.


In some embodiments the control circuitry is configured to reopen the bypass switch on each column readout line during a reset read phase, following the pixel reset phase.


There is also provided, in accordance with an embodiment of the present invention, a method for image sensing, the method including providing a photosensitive medium configured to convert incident photons into charge carriers with an array of three-transistor (3T) pixel circuits arranged in rows and columns on a semiconductor substrate and configured to collect the charge carriers from the photosensitive medium. The method further includes coupling readout circuitry, including a plurality of column readout lines, to respective outputs of the pixel circuits in corresponding columns of the array, each column readout line including a current source load coupled between a constant-voltage supply and the outputs of the pixel circuits, and a bypass switch in parallel with the current source load; and alternately opening the bypass switch on each column readout line during a signal readout phase, in which the collected charge carriers are read out of the pixel circuits, and closing the bypass switch during a pixel reset phase, in which the pixel circuits are reset.


The present invention will be more fully understood from the following detailed description of the embodiments thereof, taken together with the drawings in which:





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic sectional view of an image sensor, in accordance with an embodiment of the invention;



FIG. 2 is a schematic circuit diagram of a 3T pixel circuit and its associated circuitry, in accordance with an embodiment of the invention;



FIG. 3 is a timing diagram that schematically illustrates the operation of the circuitry of FIG. 2, in accordance with an embodiment of the invention;



FIGS. 4a-b are plots that schematically show simulation results of kTC noise, in accordance with an embodiment of the invention; and



FIG. 5 is a schematic representation of an equivalent circuit for calculating kTC noise, in accordance with an embodiment of the invention.





DETAILED DESCRIPTION OF EMBODIMENTS
Overview

Active pixel reset is a known method for suppressing kTC noise in a 3T pixel circuit in an image sensor. The active reset approach is based on an amplifier with negative feedback, using a tapered reset signal. Existing approaches use a reset amplifier in the column readout circuit, and the column readout line is part of the amplifier feedback loop. The high capacitance of the column readout line may slow down the reset. Moreover, when the column readout line is used as a part of the feedback loop, only one row of pixels in the image sensor can be reset at a time. Additionally, these existing approaches consume substantial power and chip area.


Embodiments of the present invention that are described herein provide apparatus and methods to mitigate these problems by providing an in-pixel reset amplifier that can be reconfigured as a source follower for signal readout in the course of switching the readout lines of an array of 3T pixel circuits in an image sensor between pixel reset and signal readout phases. In the disclosed embodiments, the readout circuitry of the array comprises a column readout line for each column of the array, with a current source load between a constant-voltage supply and the outputs of the pixel circuits of the line. A bypass switch is coupled in parallel with the current source load on each column readout line and is controlled by control circuitry. During the signal readout phase, in which the collected charge carriers are read out of the pixel circuits, the control circuitry opens the bypass switch on each column readout line, so that readout current flows through the current source load. During the pixel reset phase, in which the pixel circuits are reset, the control circuitry closes the bypass switch and thus bypasses the load.


The 3T pixel circuits may comprise any suitable type or types of transistors, such as nMOS and/or pMOS. In some embodiments, however, it is advantageous to use a pMOS-transistor in each pixel circuit as the in-pixel amplifier coupling the pixel circuit to the column readout line. The use of a pMOS transistor, rather than the more conventional nMOS, is made possible by the present design and allows for a more efficient implementation of the active reset. Specifically, in the disclosed embodiments, a photoconductive film is used as the photosensitive material in the image sensor, meaning that the photocharge is not collected in the silicon substrate of the image sensor. This feature alleviates problems that can otherwise arise when a pMOS-transistor is used in a CMOS (complementary metal-oxide-semiconductor) image sensors.


In the disclosed embodiments, the in-pixel amplifier is dynamically configured as a single-stage feedback amplifier during the pixel reset phase of the sensor and as a source follower during the signal readout phase. During the pixel reset phase, when the bypass switch on the column readout line is closed, a reset transistor in the pixel circuit creates the feedback path for the single-stage feedback amplifier, and a select transistor serves as the load for the amplifier. During the signal readout phase, with the bypass switch open, the column readout line reads the photocharge through the source follower.


The disclosed design has a number of advantages over 3T pixel circuits with active reset that are known in the art. These advantages include both reduced reset noise and significantly faster reset, since there is no external loop in the case of an in-pixel reset amplifier, and the capacitance of the internal feedback loop is low, for example on the order of a few fF. The overall reset speed is further enhanced by the possibility afforded by the present design of resetting multiple rows simultaneously, since each column readout line is coupled to all rows of the column and is not used as part of the reset feedback loop.


System Description


FIG. 1 is a schematic sectional view of an image sensor 20, in accordance with an embodiment of the invention.


Image sensor 20 comprises a photosensitive medium, for example a photosensitive film 22, which converts incident photons, indicated by an arrow 34, into charge carriers (photocharge). Photosensitive film 22 is coupled by pixel electrodes 24 to pixel circuits 26, which are manufactured by known methods for manufacturing semiconductor integrated circuits on a silicon substrate 30. Photosensitive film 22 is covered by a top electrode 32, which is transparent to the incoming light. Top electrode 32 functions as a bias electrode for image sensor 20.


Photosensitive film 22 in the present example comprises a continuous blanket layer of photosensitive material. Photosensitive film 22 may comprise, for example, elemental semiconductors, compound semiconductors, colloidal nanocrystals, epitaxial quantum wells, epitaxial quantum dots, organic photoconductors, bulk heterojunction organic photoconductors, or any other suitable photosensitive material that is known in the art. These materials may be hybrid-bonded to image sensor 20, and may form, for example, photoconductors, p-n junctions, heterojunctions, Schottky-diodes, quantum well stacks, quantum wires, quantum dots, phototransistors, or combinations of these devices connected in series and parallel.


Photosensitive film 22 is effectively partitioned into an array 36 of photodetectors (pixels) 38, wherein the pixel pitch is defined by the pitch of pixel electrodes 24, as indicated by dotted lines 40. Pixel electrodes 24 are connected to respective pixel circuits 26. Optionally, individual photodetectors 38 in photosensitive film 22 can be separated by pixel isolation (not shown), which defines the size and pitch of the pixels in array 36. Top electrode 32, comprising indium tin oxide, for example, can be common for all photodetectors 38 of array 36, or may alternatively be partitioned among individual pixels or groups of pixels.


Pixel circuits 26 are coupled to control circuitry 42, a constant-voltage supply 44 (VDD), and readout circuitry 46, as will be further detailed in FIG. 2, below. Typically (although not necessarily), array 36 comprises a two-dimensional matrix of pixels, arranged in rows and columns. In the description that follows, readout circuitry 46 is assumed (in accordance with convention in the art of image sensors) to be connected to a respective column readout line for each column of the pixels, while other signals are applied row-by-row. The terms “rows” and “columns” are assigned arbitrarily, however, and their functions, in terms of readout and application of control signals, could equally be interchanged.



FIG. 2 is a schematic circuit diagram of 3T pixel circuit 26 and associated circuitry in image sensor 20, in accordance with an embodiment of the invention. Pixel circuit 26 comprises a reset transistor 50 (T1), an amplifier transistor 52 (T2), and a select transistor 54 (T3). In some embodiments, as mentioned above, transistors 50 and 54 are nMOS transistors, while transistor 52 is a pMOS transistor. The notation “nMOS transistor” refers to an n-type metal-oxide field-effect transistor, and the notation “pMOS transistor” refers to a p-type metal-oxide field-effect transistor. The sources, drains, and gates of the three transistors are labelled respectively as Sn, Dn, and Gn for transistor Tn, with n=1, 2 or 3.


Photodetector 38 (PD) is coupled via a floating diffusion node 56 (FD) to gate G2 of amplifier transistor T2, and to source S1 of reset transistor T1. Gate G1 of reset transistor T1 is coupled to receive a RESET signal 58, issued by control circuitry 42. Drain D1 of reset transistor T1 is coupled to drain D2 of amplifier transistor T2 and drain D3 of select transistor T3. Gate G3 of select transistor T3 is coupled to receive a SELECT signal 60, issued by control circuitry 42. Source S2 of amplifier transistor T2 is coupled to a column readout line 62.


A current source load 64 (I1) is coupled between constant voltage supply 44 and column readout line 62. A switch 66 (SW1) is coupled in parallel with current source load 64. Switch SW1 is alternatively closed and opened by a RESET-ENABLE signal 68 issued by control circuitry 42.



FIG. 3 is a timing diagram 70 that schematically illustrates the operation of the circuitry of FIG. 2, in accordance with an embodiment of the invention. Timing diagram 70 shows potentials at selected locations in pixel circuit 26 and its associated circuitry, as shown in FIG. 2, against a horizontal time axis. The curves depicting the potentials have been shifted from each other in a vertical direction for the sake of clarity. The same labelling as in FIG. 2 is used in timing diagram 70.


Timing diagram 70 is divided into three phases, marked by I, II, and III: Phase I is a signal readout phase, phase II is a pixel reset phase, and phase III is a reset readout phase. The start times of these three phases are labelled respectively by tI, tII, and tIII. The end of phase III is labelled by tIV.


At tI, the start of the signal readout phase, control circuitry 42 brings SELECT signal 60 to a high potential (typically equal to VDD), and RESET signal 58 and RESET-ENABLE signal 68 to a ground potential. The levels of potentials VFD and VCRL, at floating diffusion node (FD) 56 and column readout line 62, respectively, depend on the photocharge collected at the floating diffusion node.


At tII, the start of pixel reset phase, control circuitry 42 simultaneously brings RESET-ENABLE signal 68 up to VDD and SELECT signal 60 down to a level VBIAS, which is the bias potential for transistor T3 while it functions as a load for transistor T2 (as further detailed below). Switch 66 is thus closed, and VCRL accordingly rises to the level of VDD. (As a result, it is possible to reset the pixels in multiple rows at the same time by applying the potentials described here.) After a delay of Δt, typically up to 10 ns for settling column readout line 62 to VDD, control circuitry 42 brings RESET signal 58 up to VDD and, at the end of the pixel reset phase, brings it down to ground level with a tapered falling edge 72. The purpose of the taper is to enable active reset and thus reduce the kTC noise. The time scale of the taper is described further below with reference to FIGS. 4a-b.


At tIII, the start of the reset readout phase, control circuitry 42 brings RESET-ENABLE signal 68 down to ground level, opening switch 66, and brings SELECT signal 60 up to the level of VDD.


At tIV, the end of the reset readout phase, control circuitry 42 brings SELECT signal 60 down to ground level. This turns off select transistor T3 and disables pixel source follower T2.


The following describes, with reference to FIGS. 2-3, the operation of pixel circuit 26 with the associated circuitry during the three phases of signal readout (phase I), pixel reset (phase II), and reset readout (phase III):


During the signal readout phase (I), SELECT signal 60 goes high (to VDD). Select transistor T3 is in linear mode and couples drain D2 of amplifier transistor T2 to ground. Switch SW1 is open because RESET-ENABLE signal 68 is low. Therefore, source S2 of amplifier transistor T2 is connected to current source load II, and operates in a source-follower mode with unity gain. Transistor T2 thus transfers the potential VFD of floating diffusion (FD) node 56 to the potential VCRL of column readout line 62, from which it is read out by readout circuitry 46.


During the pixel reset phase (II), SELECT signal 60 goes down to the level of VBIAS, so that select transistor T3 operates in a saturation mode. Simultaneously RESET-ENABLE signal 68 goes high, closing switch SW1 and coupling source S2 of amplifier transistor T2 directly to VDD. Pixel circuit 26 now functions as a single-stage amplifier, with select transistor T3 as its active load and reset transistor T1 as the feedback loop of amplifier transistor T2. RESET signal 58, with tapered falling edge 72, is applied to gate G1 of reset transistor T1. The gradual slope of falling edge 72 of RESET signal 58 provides time for the feedback loop to react, so that the single-stage amplifier suppresses or reduces the kTC noise in a time period of tens of nanoseconds. During the pixel reset phase, the potential VFD of floating diffusion (FD) node 56 rises to a high level (the so-called reset level), then drops with falling edge 72 of RESET signal 58 in preparation for receiving new photocharge.


In the reset read phase (III) the control signals (SELECT signal 60, RESET signal 58, and RESET-ENABLE signal 68) have the same values as in the signal readout phase (I). Switch 66 is open, and amplifier transistor T2 is again in the source-follower mode. Potential VFD is thus transferred to potential VCRL of column readout line 62, and read out by readout circuit 46. This second reading of VFD may be utilized by readout circuitry 46 and control circuitry 42 in canceling voltage offsets in the readout path.



FIGS. 4a-b are plots that schematically show simulation results of kTC noise, in accordance with an embodiment of the invention. FIG. 4a is a plot 80 of calculated kTC noise as a function of a duration tf of tapered falling edge 72 of RESET signal 58. FIG. 4b shows a part of RESET signal 58 within pixel reset phase (II). As shown in FIG. 4b, duration tf is defined as the time it takes for falling edge 72 of RESET signal 58 to fall from its maximum value to its minimum value.


In plot 80, kTC noise is normalized to one for the value tf=0, that is, for the case in which no taper is imposed on falling edge 72. The calculations have been performed assuming an open loop gain of 12 for amplifier transistor T2. As shown in plot 80, kTC noise is suppressed by more than a factor of two for a taper length tf=100 ns, and a factor of three for a taper length tf=400 ns, as compared to falling edge 72 with no taper (tf=0). Thus, desirably the taper length is set to be at least 100 ns, and possibly higher.



FIG. 5 is a schematic representation of an equivalent circuit 82 used in calculating the kTC noise that was shown in FIG. 4a, in accordance with an embodiment of the invention. In circuit 82, equivalent to pixel circuit 26, the components are a feedback transistor impedance 84 (RFB) corresponding to transistor T1, a load transistor impedance 86 (RL) corresponding to transistor T3, and an amplifier transistor transconductance 88 (Gm), corresponding to transistor T2. A capacitance 90 (CFD) corresponds to the parasitic capacitance of floating diffusion (FD) node 56.


The kTC noise power may be calculated using the method described by R. Kapusta et al. in “Sampling Circuits That Break the kT/C Thermal Noise Limit,” IEEE Journal of Solid-State Circuits, vol. 49, pp. 1694-1701, August 2014, IEEE, New York, N.Y. Based on the above reference, the formula for kTC noise power may be written as









V
_

FD
2

=


kT

C
FD




(



γ






R
L




R
L

+

R
FB



+

1


G
m



R
L



+

1


G
m



R
FB




)



,





wherein k is Boltzmann's constant, T is the absolute temperature, and γ is the amplifier noise factor. Of the three terms within the parenthesis, the first one describes the noise of the amplifier (which can generally be ignored), the second describes the noise of the load resistor, and the third describes the noise of the feedback resistor. Based on this formula, kTC noise decreases with an increase of open loop gain (Gm*RL) and with an increase of RFB, provided that RFB>>RL. The condition RFB>>RL is achieved by tapered falling edge 72 of RESET signal 58.


It will be appreciated that the embodiments described above are cited by way of example, and that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof which would occur to persons skilled in the art upon reading the foregoing description and which are not disclosed in the prior art.

Claims
  • 1. Imaging apparatus, comprising: a photosensitive medium configured to convert incident photons into charge carriers;an array of three-transistor (3T) pixel circuits coupled to the photosensitive medium and arranged in rows and columns on a semiconductor substrate and configured to collect the charge carriers from the photosensitive medium;a constant-voltage supply;readout circuitry, comprising a plurality of column readout lines, each column readout line coupled to respective outputs of the pixel circuits in a corresponding column of the array and comprising a current source load coupled between the constant-voltage supply and the outputs of the pixel circuits, and a bypass switch in parallel with the current source load; andcontrol circuitry coupled to alternately open the bypass switch on each column readout line during a signal readout phase, in which the collected charge carriers are read out of the pixel circuits, and close the bypass switch during a pixel reset phase, in which the pixel circuits are reset.
  • 2. The imaging apparatus according to claim 1, wherein the photosensitive medium comprises a photosensitive film.
  • 3. The imaging apparatus of claim 1, wherein each of the 3T pixel circuits comprises: a floating diffusion node coupled to collect the charge carriers from the photosensitive medium;a reset transistor having a first gate coupled to receive a reset signal from the control circuitry, a first source connected to the floating diffusion node, and a first drain;an amplifier transistor having a second gate connected to the floating diffusion node, a second drain connected to the first drain, and a second source connected to one of the column readout lines; anda select transistor having a third gate coupled to receive a select signal from the control circuitry, a third drain connected to the first and second drains, and a third source connected to a ground potential.
  • 4. The imaging apparatus of claim 3, wherein the reset and select transistors comprise nMOS transistors, and wherein the amplifier transistor comprises a pMOS transistor.
  • 5. The imaging apparatus of claim 1, wherein the control circuitry is configured to provide a tapered reset signal to the pixel circuits while the bypass switch is closed.
  • 6. The imaging apparatus according to claim 5, wherein the tapered reset signal has a falling edge having a taper length of at least 100 ns.
  • 7. The imaging apparatus according to claim 5, wherein the control circuitry is configured to apply the tapered reset signal to multiple rows of the array simultaneously.
  • 8. The imaging apparatus according to claim 1, wherein the control circuitry is configured to reopen the bypass switch on each column readout line during a reset read phase, following the pixel reset phase.
  • 9. A method for image sensing, the method comprising: providing a photosensitive medium configured to convert incident photons into charge carriers with an array of three-transistor (3T) pixel circuits arranged in rows and columns on a semiconductor substrate and configured to collect the charge carriers from the photosensitive medium;coupling readout circuitry, comprising a plurality of column readout lines, to respective outputs of the pixel circuits in corresponding columns of the array, each column readout line comprising a current source load coupled between a constant-voltage supply and the outputs of the pixel circuits, and a bypass switch in parallel with the current source load; andalternately opening the bypass switch on each column readout line during a signal readout phase, in which the collected charge carriers are read out of the pixel circuits, and closing the bypass switch during a pixel reset phase, in which the pixel circuits are reset.
  • 10. The method according to claim 9, wherein providing the photosensitive medium comprises providing a photosensitive film.
  • 11. The method according to claim 9, wherein each of the 3T pixel circuit comprises: a floating diffusion node coupled to collect the charge carriers from the photosensitive medium;a reset transistor having a first gate coupled to receive a reset signal from the control circuitry, a first source connected to the floating diffusion node, and a first drain;an amplifier transistor having a second gate connected to the floating diffusion node, a second drain connected to the first drain, and a second source connected to one of the column readout lines; anda select transistor having a third gate coupled to receive a select signal from the control circuitry, a third drain connected to the first and second drains, and a third source connected to a ground potential.
  • 12. The method according to claim 11, wherein the reset and select transistors comprise nMOS transistors, and wherein the amplifier transistor comprises a pMOS transistor.
  • 13. The method according to claim 9, and comprising providing a tapered reset signal to the pixel circuits while the bypass switch is closed.
  • 14. The method according to claim 13, wherein the tapered reset signal has a falling edge having a taper length of at least 100 ns.
  • 15. The method according to claim 13, wherein providing a tapered reset signal comprises applying the tapered reset signal to multiple rows of the array simultaneously.
  • 16. The method according to claim 9, and comprising reopening the bypass switch on each column readout line during a reset read phase, following the pixel reset phase.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application 62/502,390, filed May 5, 2017, which is incorporated herein by reference.

US Referenced Citations (77)
Number Name Date Kind
5648660 Lee et al. Jul 1997 A
5717458 Yonemoto Feb 1998 A
6133862 Dhuse et al. Oct 2000 A
6317154 Beiley et al. Nov 2001 B2
6493030 Kozlowski et al. Dec 2002 B1
6911640 Bencuya et al. Jun 2005 B1
7078670 Atlas et al. Jul 2006 B2
7561194 Luo et al. Jul 2009 B1
7773404 Sargent et al. Aug 2010 B2
7923801 Tian et al. Apr 2011 B2
7923802 Tian et al. Apr 2011 B2
8223234 Inuiya et al. Jul 2012 B2
8736733 Tian et al. May 2014 B2
9451188 Tian et al. Sep 2016 B2
9456159 Hynecek Sep 2016 B1
9491383 Boisvert Nov 2016 B2
9871160 Tian et al. Jan 2018 B2
10225504 Tian Mar 2019 B2
20020017612 Yu et al. Feb 2002 A1
20040119853 Kokubun et al. Jun 2004 A1
20040160522 Fossum et al. Aug 2004 A1
20040174449 Lee et al. Sep 2004 A1
20050104089 Engelmann et al. May 2005 A1
20050205879 Fukunaga Sep 2005 A1
20050248674 Mabuchi et al. Nov 2005 A1
20060181629 Miyashita et al. Aug 2006 A1
20070051943 Lee et al. Mar 2007 A1
20070052055 McKee Mar 2007 A1
20070076093 Misawa Apr 2007 A1
20070076108 Misawa Apr 2007 A1
20070132052 Sargent et al. Jun 2007 A1
20070164333 Wright Jul 2007 A1
20070228503 Yokoyama Oct 2007 A1
20080173964 Akram Jul 2008 A1
20080284884 Makino et al. Nov 2008 A1
20090027529 Jung et al. Jan 2009 A1
20090290059 Suzuki Nov 2009 A1
20100002113 Ota Jan 2010 A1
20100053386 Sizukuisi et al. Mar 2010 A1
20100060769 Inuiya Mar 2010 A1
20100140732 Eminoglu et al. Jun 2010 A1
20100201856 Hayashi et al. Aug 2010 A1
20100276670 Shen et al. Nov 2010 A1
20110049665 Goto Mar 2011 A1
20110069210 Ogura et al. Mar 2011 A1
20110216212 Watanabe et al. Sep 2011 A1
20110228144 Tian et al. Sep 2011 A1
20120074297 Yonekura et al. Mar 2012 A1
20120173175 Devicharan et al. Jul 2012 A1
20120200752 Matsunaga et al. Aug 2012 A1
20120268635 Furuta et al. Oct 2012 A1
20130075593 Williams et al. Mar 2013 A1
20130208157 Bechtel et al. Aug 2013 A1
20130277536 Mizuno et al. Oct 2013 A1
20140054466 Kurokawa et al. Feb 2014 A1
20140131554 Ishii et al. May 2014 A1
20140146211 Mori et al. May 2014 A1
20140175591 Tian et al. Jun 2014 A1
20140284663 Meinhold et al. Sep 2014 A1
20140313386 Jiang et al. Oct 2014 A1
20150015747 Hizi Jan 2015 A1
20150015759 Kavakan et al. Jan 2015 A1
20150070544 Smith et al. Mar 2015 A1
20150304582 Hirota Oct 2015 A1
20150319386 Brady et al. Nov 2015 A1
20150357360 Tian et al. Dec 2015 A1
20160037070 Mandelli et al. Feb 2016 A1
20160037099 Mandelli et al. Feb 2016 A1
20160037114 Mandelli et al. Apr 2016 A1
20160155882 Tian et al. Jun 2016 A1
20170013218 Tian et al. Jan 2017 A1
20170054928 Boisvert et al. Feb 2017 A1
20170201693 Sugizaki et al. Jul 2017 A1
20170208273 Mandelli et al. Jul 2017 A1
20170264836 Mandelli et al. Sep 2017 A1
20180027193 Bock et al. Jan 2018 A1
20180175102 Togashi et al. Jun 2018 A1
Foreign Referenced Citations (1)
Number Date Country
2008131313 Oct 2008 WO
Non-Patent Literature Citations (8)
Entry
U.S. Appl. No. 15/269,659 office action dated Jun. 18, 2018.
U.S. Appl. No. 15/657,068 office action dated Oct. 18, 2018.
Pain et al., “Reset Noise Suppression in Two-Dimensional CMOS Photodiode Pixels through Column-based Feedback-Reset”, International Electron Devices Meeting, San Fransisco, Session 32.5, 4 pages,Dec. 8-11, 2002.
International Application # PCT/US17/57094 search report dated Jan. 17, 2018.
Fowler et al., “Low Noise Readout using Active Reset for CMOS APS”, Proceedings SPIE, vol. 3965, Sensors and Camera Systems for Scientific, Industrial, and Digital , 10 pages, 2000.
Kozlowski et al., “Pixel Noise Suppression via SoC Management of Tapered Reset in a 1920×1080 CMOS Image Sensor”, IEEE Journal of Solid-State Circuits, vol. 40, 42 pages, Jan. 2006.
Ishii et al., “An Ultra-low Noise Photoconductive Film Image Sensor With a High-speed Column Feedback Amplifier Noise Canceller”, Dig. VLSI Circuits, pp. C8-C9, Jun. 2013.
Kapusta et al., “Sampling Circuits That Break the kT/C Thermal Noise Limit”, IEEE Journal of Solid-State Circuits, vol. 49, No. 8, pp. 1694-1701, Aug. 2014.
Provisional Applications (1)
Number Date Country
62502390 May 2017 US