The present disclosure relates to the field of air conditioners, in particular to a three-tube heat recovery multi-split air conditioning system, a control method for the three-tube heat recovery multi-split air conditioning system, and a non-transitory computer readable storage medium.
A three-tube heat recovery multi-split air conditioning system can operate in a cooling mode and in a heating mode at the same time. When a part of or the whole outdoor heat exchangers of the multi-split air conditioning system act as evaporators, a low pressure saturation temperature of the system may be lower than an outdoor ambient temperature, and a liquid refrigerant in the outdoor heat exchangers can be ensured to absorb heat. However, if the outdoor ambient temperature is lower than a temperature (for example, below 5° C.), the low pressure saturation temperature of the multi-split air conditioning system will be lower than the freezing point of water. In this case, if the system has an indoor cooling requirement, then a temperature of the refrigerant in a coil tube of a cooling indoor unit would be lower than the freezing point because the temperature of the refrigerant in the coil tube of the cooling indoor unit is approximate to the low pressure saturation temperature of the system; the coil tube and a fin would be frosted; the indoor unit frequently enters an anti-freezing protection mode, thus affecting the comfort of the cooling indoor unit, and having the possibility of blowing condensed water and freezing an indoor unit tube.
The embodiments of the present disclosure are to solve at least one of the problems in the related art to a certain extent. Therefore, the present disclosure provides a three-tube heat recovery multi-split air conditioning system. The system can adjust an evaporation temperature of a cooling indoor unit via a low temperature cooling and anti-freezing module, and an indoor cooling requirement under a low temperature can be effectively satisfied, thus preventing the indoor unit from being frozen, and ensuring the reliability and comfort of the system.
The present disclosure further provides a control method for the three-tube heat recovery multi-split air conditioning system.
The present disclosure further provides a non-transitory computer readable storage medium.
In a first aspect, an embodiment of the present disclosure provides a three-tube heat recovery multi-split air conditioning system, including: an outdoor unit, including at least one compressor, a low pressure liquid storage tank and an outdoor heat exchanger; an indoor unit, including an indoor heat exchanger; a refrigerant distribution device, having one side connected to the outdoor unit via a high pressure liquid tube, a low pressure air tube and a high pressure air tube, and the other side connected to the indoor unit, and including a heat exchange assemble, a cooling-heating switching valve, and a low temperature cooling and anti-freezing module, and the heat exchange assembly includes a first flow channel and a second flow channel; a first end of the low temperature cooling and anti-freezing module is connected to the low pressure air tube; a second end of the low temperature cooling and anti-freezing module is connected to the second heat exchange flow channel of the heat exchange assembly; and a third end of the low temperature cooling and anti-freezing module is connected to the cooling-heating switching valve; and a controller, configured to acquire an evaporation temperature of the cooling indoor unit and an outdoor ambient temperature when the three-tube heat recovery multi-split air conditioning system operates in a cooling mode or a mixed operation mode, determine whether the evaporation temperature of the cooling indoor unit requires to be adjusted according to the evaporation temperature of the cooling indoor unit and the outdoor ambient temperature, and control the low temperature cooling and anti-freezing module to generate an intermediate pressure between the second end of the low temperature cooling and anti-freezing module and the low pressure air tube to adjust the evaporation temperature of the cooling indoor unit if the evaporation temperature of the indoor unit requires to be adjusted.
In the three-tube heat recovery multi-split air conditioning system according to the embodiment of the present disclosure, the controller is configured to acquire an evaporation temperature of the cooling indoor unit and an outdoor ambient temperature when the three-tube heat recovery multi-split air conditioning system operates in a cooling mode or a mixed operation mode, determine whether the evaporation temperature of the cooling indoor unit requires to be adjusted according to the evaporation temperature of the cooling indoor unit and the ambient temperature, and control the low temperature cooling and anti-freezing module to generate an intermediate pressure between the second end of the low temperature cooling and anti-freezing module and the low pressure air tube to adjust the evaporation temperature of the cooling indoor unit if the evaporation temperature of the indoor unit requires to be adjusted. Therefore, the system can adjust the evaporation temperature of the cooling indoor unit via the low temperature cooling and anti-freezing module, and an indoor cooling requirement under a low temperature can be effectively satisfied, thus preventing the indoor unit from being frozen, and ensuring the reliability and comfort of the system.
In a second aspect, an embodiment of the present disclosure provides a control method for the three-tube heat recovery multi-split air conditioning system, including: acquiring an evaporation temperature of the cooling indoor unit and an outdoor ambient temperature; determining whether the evaporation temperature of the cooling indoor unit requires to be adjusted according to the evaporation temperature of the cooling indoor unit and the outdoor ambient temperature; and controlling the low temperature cooling and anti-freezing module to generate an intermediate pressure between the second end of the low temperature cooling and anti-freezing module and the low pressure air tube to adjust the evaporation temperature of the cooling indoor unit if the evaporation temperature of the cooling indoor unit requires to be adjusted.
In the control method for the three-tube heat recovery multi-split air conditioning system according to the embodiment of the present disclosure, first, an evaporation temperature of the cooling indoor unit and an outdoor ambient temperature are acquired; then, whether the evaporation temperature of the cooling indoor unit requires to be adjusted is determined according to the evaporation temperature of the cooling indoor unit and the outdoor ambient temperature; and if the evaporation temperature of the cooling indoor unit requires to be adjusted, then the low temperature cooling and anti-freezing module is controlled to generate an intermediate pressure between the second end of the low temperature cooling and anti-freezing module and the low pressure air tube to adjust the evaporation temperature of the cooling indoor unit. Therefore, the method can adjust the evaporation temperature of the cooling indoor unit via the low temperature cooling and anti-freezing module, and an indoor cooling requirement under a low temperature can be effectively satisfied, thus preventing the indoor unit from being frozen, and ensuring the reliability and comfort of the system.
In a third aspect, an embodiment of the present disclosure provides a non-transitory computer readable storage medium having stored therein a computer program that, when executed by a processor, causes the processor to realize the control method as described in the second aspect of the present disclosure.
In the non-transitory computer readable storage medium according to the embodiment of the present disclosure, first, an evaporation temperature of the cooling indoor unit and an outdoor ambient temperature are acquired; then, whether the evaporation temperature of the cooling indoor unit requires to be adjusted is determined according to the evaporation temperature of the cooling indoor unit and the outdoor ambient temperature; and if the evaporation temperature of the cooling indoor unit requires to be adjusted, then the low temperature cooling and anti-freezing module is controlled to generate an intermediate pressure between the second end of the low temperature cooling and anti-freezing module and the low pressure air tube to adjust the evaporation temperature of the cooling indoor unit, and an indoor cooling requirement under a low temperature can be effectively satisfied, thus preventing the indoor unit from being frozen, and ensuring the reliability and comfort of the system.
Embodiments of the present disclosure will become apparent and easy to understand from the descriptions of the embodiments hereafter in combination with the drawings, and
The embodiments of the present disclosure will be described in detail hereafter, and the examples of the embodiments are shown in the drawings, and the same or similar signs from beginning to end denote the same or similar elements or the elements having the same or similar functions. The embodiments described below with reference to the drawings are for illustration only, and are intended to explain the present disclosure, but not to limit the present disclosure.
The three-tube heat recovery multi-split air conditioning system, the control method for the three-tube heat recovery multi-split air conditioning system and the non-transitory computer readable storage medium provided according to the embodiments of the present disclosure will be described hereafter with reference to the drawings.
The outdoor unit 1 includes at least one compressor 11, a low pressure liquid storage tank 12, and an outdoor heat exchanger 13; the indoor unit 2 includes an indoor heat exchanger 21; an exhaust end of the compressor 11 is connected to the outdoor heat exchanger 13 and the indoor heat exchanger 21 respectively; a suction end of the compressor 11 is connected to one end of the low pressure liquid storage tank 12; and the other end of the low pressure liquid storage tank 12 is connected to the outdoor heat exchanger 13; One side of the refrigerant distribution device 3 is connected to the outdoor unit 1 via a high pressure liquid tube L1, a low pressure air tube L2 and a high pressure air tube L3, and the other side of the refrigerant distribution device 3 is connected to the indoor unit 2; the refrigerant distribution device 3 includes a heat exchange assemble 31, a cooling-heating switching valve 32, and a low temperature cooling and anti-freezing module 33, and the heat exchange assembly 31 includes a first flow channel L4 and a second flow channel L5; a first end a of the low temperature cooling and anti-freezing module 33 is connected to the low pressure air tube L2; a second end b of the low temperature cooling and anti-freezing module 33 is connected to the second heat exchange flow channel L5 of the heat exchange assembly 31; and a third end c of the low temperature cooling and anti-freezing module 33 is connected to the cooling-heating switching valve 32. The controller is configured to acquire an evaporation temperature of the cooling indoor unit and an outdoor ambient temperature when the three-tube heat recovery multi-split air conditioning system operates in a cooling mode or a mixed operation mode, determine whether the evaporation temperature of the cooling indoor unit requires to be adjusted according to the evaporation temperature of the cooling indoor unit and the outdoor ambient temperature, and control the low temperature cooling and anti-freezing module 33 to generate an intermediate pressure between the third end c of the low temperature cooling and anti-freezing module and the low pressure air tube L2 to adjust the evaporation temperature of the cooling indoor unit if the evaporation temperature of the indoor unit requires to be adjusted.
As shown in
In one embodiment, as shown in
A high temperature high pressure refrigerant at an outlet of the compressor 11 flows to the refrigerant distribution device 3 via the four-way valve ST1, enters the condenser 212, and releases heat into a room; the refrigerant is cooled to low temperature high pressure liquid; a part of the refrigerant flows to the outdoor heat exchanger 13 for evaporation, and the other part flows to the evaporator 211 for evaporation; the evaporated gaseous refrigerant of the evaporator 211 and the gaseous refrigerant of the outdoor heat exchanger converge at the outdoor unit, and then return to the compressor 11. The indoor unit and the outdoor evaporator are arranged in parallel, and the evaporation temperatures of the two are close. When the ambient temperature is low (for example, below 5° C.), in order to ensure the evaporator 211 to absorb heat, the evaporation temperature is lower than the freezing point.
Therefore, in the present disclosure, the refrigerant distribution device 3 is internally provided with a low temperature cooling and anti-freezing module 33; the module is disposed on the low pressure air tube L2; a first end of the module is in communication with the low pressure air tube L2; a second end of the module is disposed on the secondary heat exchange flow channel of the heat exchange assembly 31; and a third end of the module is disposed in front of the cooling-heating switching valve. When the three-tube heat recovery multi-split air conditioning system operates in the cooling mode or the mixed operation mode, the controller acquires an evaporation temperature of the cooling indoor unit and an outdoor ambient temperature, determine whether the evaporation temperature of the cooling indoor unit requires to be adjusted according to the evaporation temperature of the cooling indoor unit and the outdoor ambient temperature; for example, if the evaporation temperature of the cooling indoor unit is lower than 1° C., and the outdoor ambient temperature is lower than 8° C., then the controller can determine that the evaporation temperature of the cooling indoor unit requires to be adjusted. If the evaporation temperature of the cooling indoor unit requires to be adjusted, the controller controls the low temperature cooling and anti-freezing module 33 to generate an intermediate pressure between the third end c of the low temperature cooling and anti-freezing module 33 and the low pressure air tube L2; the evaporation temperature of the cooling indoor unit is positively correlated with pressure, and therefore, the controller can adjust the evaporation temperature of the cooling indoor unit by adjusting a pressure difference between the third end c of the low temperature cooling and anti-freezing module 33 and the low pressure air tube L2; for example, if the evaporation temperature is low, then the pressure difference between the third end c of the low temperature cooling and anti-freezing module 33 and the low pressure air tube L2 can be improved; the pressure on the low pressure air tube L2 side keeps unchanged, and therefore, the improvement of the pressure difference can improve the pressure of the third end c of the low temperature cooling and anti-freezing module 33, and the evaporation pressure of the evaporator can be improved, and the evaporation temperature can be accordingly improved. The system can adjust the evaporation temperature of the cooling indoor unit via the low temperature cooling and anti-freezing module, and an indoor cooling requirement under a low temperature can be effectively satisfied, thus preventing the indoor unit from being frozen, and ensuring the reliability and comfort of the system.
In the present disclosure, the throttle valve can be an electronic expansion valve, an electromagnetic valve or a combination of the electronic expansion valve and the electromagnetic valve.
According to an embodiment of the present disclosure, when the three-tube heat recovery multi-split air conditioning system has an indoor cooling requirement, the system operates in the cooling mode or the mixed operation mode, the evaporation temperature of the cooling indoor unit is less than or equal to a first preset temperature T1 for a first preset time t1, and the outdoor ambient temperature is less than or equal to a third preset temperature T, the controller determines that the evaporation temperature of the cooling indoor unit requires to be adjusted; and when the three-tube heat recovery multi-split air conditioning system operates in the heating mode, the outdoor ambient temperature is greater than the third preset temperature T3, or the evaporation temperature of the cooling indoor unit is greater than the first preset temperature T1 and anti-freezing protection does not start in the cooling indoor unit within the first preset time t1, the controller determines that the evaporation temperature of the cooling indoor unit does not require to be adjusted, and the third preset temperature T3 is greater than the first preset temperature T1.
In the present disclosure, the first preset temperature T1, the third preset temperature T3 and the first preset time can be preset according to practical situations, for example, T1 can be 1° C., T3 can be 8° C., and t1 can be 5 min.
In one embodiment, as shown in
As an example, as shown in
The controller is further configured to: control the first end of the first four-way valve ST4 to communicate with the second end of the first four-way valve ST4 if the evaporation temperature of the cooling indoor unit does not require to be adjusted; and control the second end of the first four-way valve ST4 to communicate with the fourth end of the first four-way valve ST4 if the evaporation temperature of the cooling indoor unit requires to be adjusted.
In one embodiment, as shown in
If the evaporation temperature of the cooling indoor unit requires to be adjusted, EXV3 is completely opened, and the controller controls ST4 to change direction to enable the second end to communicate with the fourth end; the high temperature high pressure refrigerant discharged by the compressor 11 is delivered to the condenser 212 for condensation via the high pressure air tube L3 and Svb; the generated low temperature high pressure liquid refrigerant is returned to the refrigerant distribution device 3; a part of the liquid refrigerant is returned to the outdoor unit 1 via the high pressure liquid tube L1, is throttled by EXV1 and EXV2, is evaporated in the outdoor heat exchanger to be a gaseous refrigerant, converges with the low pressure gaseous refrigerant returned from the low pressure air tube, and finally is returned to the suction end of the compressor 11; the other part is throttled by EXV4 to be an intermediate pressure liquid refrigerant; the intermediate pressure liquid refrigerant is evaporated by the evaporator 211; the generated intermediate pressure gaseous refrigerant is throttled by ST4 and EXV6, then flows to the second heat exchange flow channel L5 of the heat exchange assembly 31 and the low pressure air tube L2, and is finally returned to the outdoor unit 1. It can be understood that if the evaporation temperature of the cooling indoor unit requires to be adjusted, the throttling of EXV6 can generate an intermediate pressure between EXV6 and the low pressure air tube L2; the pressure difference between EXV6 and the low pressure air tube L2 can be changed by changing the opening degree of EXV6, and the evaporation temperature of the cooling indoor unit can be changed to effectively satisfy the indoor cooling requirement under a low temperature, thus preventing the indoor unit from being frozen, and ensuring the reliability and comfort of the system.
As another example, as shown in
Further, the controller can be further configured to: control the third electromagnetic valve Sv3 to open if the evaporation temperature of the cooling indoor unit does not require to be adjusted; and control the third electromagnetic valve Sv3 to close if the evaporation temperature of the cooling indoor unit requires to be adjusted.
In one embodiment, as shown in
If the evaporation temperature of the cooling indoor unit requires to be adjusted, EXV3 is completely opened, and the controller controls Sv3 to close; the high temperature high pressure refrigerant discharged by the compressor 11 is delivered to the condenser 212 for condensation via the high pressure air tube L3 and Svb; the generated low temperature high pressure liquid refrigerant is returned to the refrigerant distribution device 3; a part of the liquid refrigerant is returned to the outdoor unit 1 via the high pressure liquid tube L1, is throttled by EXV1 and EXV2, is evaporated in the outdoor heat exchanger to be a gaseous refrigerant, converges with the low pressure gaseous refrigerant returned from the low pressure air tube, and finally is returned to the suction end of the compressor 11; the other part is throttled by EXV4 to be an intermediate pressure liquid refrigerant; the intermediate pressure liquid refrigerant is evaporated by the evaporator 211; the generated intermediate pressure gaseous refrigerant is throttled by the one-way valve D and EXV7, then flows to the second heat exchange flow channel L5 of the heat exchange assembly 31 and the low pressure air tube L2, and is finally returned to the outdoor unit 1. It can be understood that if the evaporation temperature of the cooling indoor unit requires to be adjusted, the throttling of EXV7 can generate an intermediate pressure between EXV7 and the low pressure air tube L2; the pressure difference between EXV7 and the low pressure air tube L2 can be changed by changing the opening degree of EXV7, and the evaporation temperature of the cooling indoor unit can be changed to effectively satisfy the indoor cooling requirement under a low temperature, thus preventing the indoor unit from being frozen, and ensuring the reliability and comfort of the system.
According to one embodiment of the present disclosure, in the system as shown in
According to one embodiment of the present disclosure, in the system as shown in
In the present disclosure, the first preset temperature T1, the second preset temperature T2, the first preset time t1 and the second preset time t2 can be preset according to practical situations, for example, T1 can be 1° C., T2 can be 12° C., t1 can be 5 min, and t2 can be 30-60 min. The adjustment period of the throttle valve can be 1 min. That is, if the evaporation temperature of the cooling indoor unit requires to be adjusted the controller acquires the evaporation temperature of the cooling indoor unit every 1 min to adjust the opening degree of EXV6 or EXV7.
In one embodiment, if the evaporation temperature of the cooling indoor unit requires to be adjusted, EXV3 is completely opened; in
In summary, in the three-tube heat recovery multi-split air conditioning system according to the embodiment of the present disclosure, the controller is configured to acquire an evaporation temperature of the cooling indoor unit and an outdoor ambient temperature when the three-tube heat recovery multi-split air conditioning system operates in a cooling mode or a mixed operation mode, determine whether the evaporation temperature of the cooling indoor unit requires to be adjusted according to the evaporation temperature of the cooling indoor unit and the ambient temperature, and control the low temperature cooling and anti-freezing module to generate an intermediate pressure between the second end of the low temperature cooling and anti-freezing module and the low pressure air tube to adjust the evaporation temperature of the cooling indoor unit if the evaporation temperature of the indoor unit requires to be adjusted. Therefore, the system can adjust the evaporation temperature of the cooling indoor unit via the low temperature cooling and anti-freezing module, and an indoor cooling requirement under a low temperature can be effectively satisfied, thus preventing the indoor unit from being frozen, and ensuring the reliability and comfort of the system.
On the basis of the three-tube heat recovery multi-split air conditioning system, the present disclosure further provides a control method for the three-tube heat recovery multi-split air conditioning system.
S1, acquiring an evaporation temperature of a cooling indoor unit and an outdoor ambient temperature;
The evaporation temperature of the cooling indoor unit and the outdoor ambient temperature can be acquired via corresponding temperature sensors.
S2, determining whether the evaporation temperature of the cooling indoor unit requires to be adjusted according to the evaporation temperature of the cooling indoor unit and the outdoor ambient temperature.
Further, determining whether the evaporation temperature of the cooling indoor unit requires to be adjusted according to the evaporation temperature of the cooling indoor unit and the outdoor ambient temperature, includes: determining that the evaporation temperature of the cooling indoor unit requires to be adjusted if the three-tube heat recovery multi-split air conditioning system has an indoor cooling requirement, the system operates in the cooling mode or the mixed operation mode, the evaporation temperature of the cooling indoor unit is less than or equal to a first preset temperature T1 for a first preset time t1, and the outdoor ambient temperature is less than or equal to a third preset temperature T3, the controller; and determining that the evaporation temperature of the cooling indoor unit does not require to be adjusted if the three-tube heat recovery multi-split air conditioning system operates in the heating mode, the outdoor ambient temperature is greater than the third preset temperature T3, or the evaporation temperature of the cooling indoor unit is greater than the first preset temperature T1 and anti-freezing protection does not start in the cooling indoor unit within the first preset time t1, and the third preset temperature T3 is greater than the first preset temperature T1. The first preset temperature T1, the third preset temperature T3 and the first preset time can be preset according to practical situations, for example, T1 can be 1° C., T3 can be 8° C., and t1 can be 5 min.
S3, controlling the low temperature cooling and anti-freezing module to adjust the evaporation temperature of the cooling indoor unit if the evaporation temperature of the cooling indoor unit requires to be adjusted.
In one embodiment, as shown in
If the evaporation temperature of the cooling indoor unit requires to be adjusted, the low temperature cooling and anti-freezing module is controlled to generate an intermediate pressure between the third end c of the low temperature cooling and anti-freezing module and the low pressure air tube; the evaporation temperature of the cooling indoor unit is positively correlated with pressure, and therefore, the evaporation temperature of the cooling indoor unit can be adjusted by adjusting a pressure difference between the third end c of the low temperature cooling and anti-freezing module and the low pressure air tube; for example, if the evaporation temperature is low, then the pressure difference between the third end c of the low temperature cooling and anti-freezing module and the low pressure air tube can be improved; the pressure on the low pressure air tube side keeps unchanged, and therefore, the improvement of the pressure difference can improve the pressure of the third end c of the low temperature cooling and anti-freezing module, and the evaporation pressure of the evaporator can be improved, and the evaporation temperature can be accordingly improved. The method can adjust the evaporation temperature of the cooling indoor unit via the cooling and anti-freezing module, and an indoor cooling requirement under a low temperature can be effectively satisfied, thus preventing the indoor unit from being frozen, and ensuring the reliability and comfort of the system.
According to one embodiment of the present disclosure, the method may further include: controlling the first end of the first four-way valve ST4 to communicate with the second end of the first four-way valve ST4 if the evaporation temperature of the cooling indoor unit does not require to be adjusted; and controlling the second end of the second four-way valve ST4 to communicate with the fourth end of the first four-way valve ST4 if the evaporation temperature of the cooling indoor unit requires to be adjusted.
In one embodiment, as shown in
If the evaporation temperature of the cooling indoor unit requires to be adjusted, EXV3 is completely opened, and ST4 is controlled to change direction to enable the second end to communicate with the fourth end; the high temperature high pressure refrigerant discharged by the compressor 11 is delivered to the condenser 212 for condensation via the high pressure air tube L3 and Svb; the generated low temperature high pressure liquid refrigerant is returned to the refrigerant distribution device 3; the other part of the liquid refrigerant is returned to the outdoor unit 1 via the high pressure liquid tube L1, is throttled by EXV1 and EXV2, is evaporated in the outdoor heat exchanger to be a gaseous refrigerant, converges with the low pressure gaseous refrigerant returned from the low pressure air tube, and finally is returned to the suction end of the compressor 11. the other part is throttled by EXV4 to be an intermediate pressure liquid refrigerant; the intermediate pressure liquid refrigerant is evaporated by the evaporator 211; the generated intermediate pressure gaseous refrigerant is throttled by ST4 and EXV6, then flows to the second heat exchange flow channel L5 of the heat exchange assembly 31 and the low pressure air tube L2, and is finally returned to the outdoor unit 1. It can be understood that if the evaporation temperature of the cooling indoor unit requires to be adjusted, the throttling of EXV6 can generate an intermediate pressure between EXV6 and the low pressure air tube L2; the pressure difference between EXV6 and the low pressure air tube L2 can be changed by changing the opening degree of EXV6, and the evaporation temperature of the cooling indoor unit can be changed to effectively satisfy the indoor cooling requirement under a low temperature, thus preventing the indoor unit from being frozen, and ensuring the reliability and comfort of the system.
According to another embodiment of the present disclosure, the method may further include: controlling the third electromagnetic valve Sv3 to open if the evaporation temperature of the cooling indoor unit does not require to be adjusted; and controlling the third electromagnetic valve Sv3 to close if the evaporation temperature of the cooling indoor unit requires to be adjusted.
In one embodiment, as shown in
If the evaporation temperature of the cooling indoor unit requires to be adjusted, EXV3 is completely opened, and Sv3 is controlled to close; the high temperature high pressure refrigerant discharged by the compressor 11 is delivered to the condenser 212 for condensation via the high pressure air tube L3 and Svb; the generated low temperature high pressure liquid refrigerant is returned to the refrigerant distribution device 3; the other part of the liquid refrigerant is returned to the outdoor unit 1 via the high pressure liquid tube L1, is throttled by EXV1 and EXV2, is evaporated in the outdoor heat exchanger to be a gaseous refrigerant, converges with the low pressure gaseous refrigerant returned from the low pressure air tube, and finally is returned to the suction end of the compressor 11. the other part is throttled by EXV4 to be an intermediate pressure liquid refrigerant; the intermediate pressure liquid refrigerant is evaporated by the evaporator 211; the generated intermediate pressure gaseous refrigerant is throttled by the one-way valve D and EXV7, then flows to the second heat exchange flow channel L5 of the heat exchange assembly 31 and the low pressure air tube L2, and is finally returned to the outdoor unit 1. It can be understood that if the evaporation temperature of the cooling indoor unit requires to be adjusted, the throttling of EXV7 can generate an intermediate pressure between EXV7 and the low pressure air tube L2; the pressure difference between EXV7 and the low pressure air tube L2 can be changed by changing the opening degree of EXV7, and the evaporation temperature of the cooling indoor unit can be changed to effectively satisfy the indoor cooling requirement under a low temperature, thus preventing the indoor unit from being frozen, and ensuring the reliability and comfort of the system.
According to one embodiment of the present disclosure, the method further include: acquiring an evaporation temperature of the cooling indoor unit if the evaporation temperature of the cooling indoor unit requires to be adjusted; reducing an opening degree of the first throttle valve EXV6 by a first preset opening degree X if the evaporation temperature of the cooling indoor unit is less than or equal to the first preset temperature T1 for the first preset time t1, or anti-freezing protection starts in the indoor unit; keeping the opening degree of the first throttle valve EXV6 unchanged if the evaporation temperature of the cooling indoor unit is greater than the first preset temperature T1 and anti-freezing protection does not start in the indoor unit; and increasing the opening degree of the first throttle valve EXV6 by the first preset opening degree X if the evaporation temperature of the cooling indoor unit is greater than a second preset temperature T2 and anti-freezing protection does not start in the indoor unit within a second preset time t2, and the first preset temperature T1 is less than the second preset temperature T2.
According to one embodiment of the present disclosure, in the system as shown in
In the present disclosure, the first preset temperature T1, the second preset temperature T2, the first preset time t1 and the second preset time t2 can be preset according to practical situations, for example, T1 can be 1° C., T2 can be 12° C., t1 can be 5 min, and t2 can be 30-60 min. The adjustment period of the throttle valve can be 1 min. That is, if the evaporation temperature of the cooling indoor unit requires to be adjusted the controller acquires the evaporation temperature of the cooling indoor unit every 1 min to adjust the opening degree of EXV6 or EXV7.
In one embodiment, if the evaporation temperature of the cooling indoor unit requires to be adjusted, EXV3 is completely opened; in
In the control method for the three-tube heat recovery multi-split air conditioning system according to the embodiment of the present disclosure, first, an evaporation temperature of the cooling indoor unit and an outdoor ambient temperature are acquired; then, whether the evaporation temperature of the cooling indoor unit requires to be adjusted is determined according to the evaporation temperature of the cooling indoor unit and the outdoor ambient temperature; and if the evaporation temperature of the cooling indoor unit requires to be adjusted, then the low temperature cooling and anti-freezing module is controlled to generate an intermediate pressure between the second end of the low temperature cooling and anti-freezing module and the low pressure air tube to adjust the evaporation temperature of the cooling indoor unit. Therefore, the method can adjust the evaporation temperature of the cooling indoor unit via the low temperature cooling and anti-freezing module, and an indoor cooling requirement under a low temperature can be effectively satisfied, thus preventing the indoor unit from being frozen, and ensuring the reliability and comfort of the system.
In addition, the present disclosure further provides a non-transitory computer readable storage medium having stored therein a computer program that, when executed by a processor, causes the processor to realize the control method.
In the non-transitory computer readable storage medium according to the embodiment of the present disclosure, first, an evaporation temperature of the cooling indoor unit and an outdoor ambient temperature are acquired; then, whether the evaporation temperature of the cooling indoor unit requires to be adjusted is determined according to the evaporation temperature of the cooling indoor unit and the outdoor ambient temperature; and if the evaporation temperature of the cooling indoor unit requires to be adjusted, then the low temperature cooling and anti-freezing module is controlled to generate an intermediate pressure between the second end of the low temperature cooling and anti-freezing module and the low pressure air tube to adjust the evaporation temperature of the cooling indoor unit, and an indoor cooling requirement under a low temperature can be effectively satisfied, thus preventing the indoor unit from being frozen, and ensuring the reliability and comfort of the system.
In the descriptions of the present disclosure, it should be understood that the azimuth or position relationships indicated by the terms “center”, “longitudinal”, “transverse”, “length”, “width”, “thickness”, “upper”, “lower”, “front”, “back”, “left”, “right”, “vertical”, “horizontal”, “top”, “bottom”, “inside”, “outside”, “clockwise”, “anticlockwise”, “axial direction”, “radial direction”, “circumferential” and the like are on the basis of the azimuth and position relationships as shown in the drawings, and are only intended to facilitate and simplify the description of the present disclosure, but not intended to indicate or imply that the designated devices or elements may have a specific azimuth or are constructed and operated in a specific azimuth. Therefore, the terms should not be considered to limit the present disclosure.
In addition, the terms “first” and “second” are used for the purpose of description only, but should not be considered to indicate or imply relative importance or implicitly indicate the number of the indicated features. Therefore, a feature defined by “first” or “second” may explicitly or implicitly include one or more the features. In the description of the present disclosure, unless otherwise stated, “a plurality of” means two or more.
In the present disclosure, unless otherwise specified and stated, the terms “mount”, “connect”, “connection”, “fix” and the like should be understood in a broad sense, for example, the term “connection” can be a fixed connection, a detachable connection, or an integral connection, can be a mechanical connection, or an electrical connection, and can be a direct connection, an indirect connection via an intermediate medium, an internal communication between two elements, or an interaction relationship between two elements.
In the present disclosure, unless otherwise specified and stated, a first feature being “on” or “under” a second feature means that the first feature and the second feature can be in direct contact, or in indirect contact via an intermediate medium. Furthermore, the first feature being “on”, “above” and “over” the second feature means that the first feature can be right above or obliquely above the second feature, or only denotes that the horizontal height of the first feature is greater than that of the second feature. The first feature being “under”, “below” and “underneath” the second feature means that the first feature can be right below or obliquely below the second feature, or only denotes that the horizontal height of the first feature is less than that of the second feature.
In the description of the specification, the reference terms “one embodiment”, “some embodiments”, “example”, “a specific example” or “some examples” and the like mean that the specific characteristic, structure, material or feature described in combination with the embodiment or the example are contained in at least one embodiment or example of the present disclosure. In the specification, the schematic recitation of the above-described terms does not necessarily refer to the same embodiment or example. Furthermore, the described specific characteristic, structure, material or feature can be combined in an appropriate manner in any one or more embodiments or examples.
Number | Date | Country | Kind |
---|---|---|---|
201810635734.5 | Jun 2018 | CN | national |
The present disclosure is a national phase application of International Application No. PCT/CN2018/122229, filed on Dec. 20, 2018, which claims the priority of Chinese Application No. 201810635734.5, filed in the Chinese Patent Office on Jun. 20, 2018, the entireties of which are herein incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2018/122229 | 12/20/2018 | WO | 00 |