The present disclosure relates to an improved three-way dimming ballast circuit for a gas discharge lamp such as a compact fluorescent lamp (CFL) ballast which is adapted to be used with a conventional three-way dimming Edison screw base.
The conventional dimming lamp base and dimming circuit of
U.S. Pat. No. 7,109,665, incorporated by reference, discloses a three-way dimming CFL ballast that operates at a single high bus voltage, while varying the switching frequency to control lamp current. The ballast accepts three different light level input switch command conditions and an off condition to provide three different light output levels. A closed loop current feedback control maintains a precise switching frequency for the ballast to produce accurate light output levels based on the selected light output switch selection. A reference voltage is provided to the feedback loop based on the selected light output level to drive the switching frequency at the appropriate value. The ballast circuit provides CFL control for three-way dimming and is adapted to be used with the three-way dimming Edison screw base illustrated in
The disclosed circuits provide improvements over the circuit described in U.S. Pat. No. 7,109,665, including the following:
1. The ballast is designed around the IRS2530D “Simple Dim” Control IC, which contains closed loop regulating circuitry internally, thus substantially simplifying and reducing the cost of the external circuitry provided herein to realize three-way dimming control. The structure and operation of the IRS2530D are described in U.S. application Ser. No. 11/551,435, filed Oct. 20, 2006, titled DIMMING BALLAST CONTROL CIRCUIT (docket no. IR-3087), the disclosure of which is incorporated herein in its entirety.
2. The ballast described here provides for the independent programming of three distinct light levels, wherein an adjustment of one level does not affect the settings of the other levels.
3. The ballast described here also includes an override circuit, which forces the output to maximum and overrides the dimming control when the selected light output is switched to maximum.
Other features and advantages will become apparent from the following description, with reference to the accompanying drawings.
Referring first to Ser. No. 11/551,435, the IRS2530D control IC incorporates a simple but effective dimming control loop that allows the peak lamp arc current to be regulated. The current is sensed by a series current sensing resistor shown as RCS in
Referring now to
The maximum light level is actuated by an override circuit 24. When both of the L1 and L2 inputs are connected to the line input then a pair of small signal transistors Q1 and Q2 will both be switched on, allowing current to flow through the zener diode D7 into RDIM. The presence of D7 provides that no current can flow through Q1 and Q2 if only one of the inputs L1 and L2 is connected to the line.
Q1 and Q2 have high voltage blocking capability to prevent leakage of current from collector to emitter when no base current is flowing. Preferably VCEO may be 300V.
Some residual voltage may be present on either C1 or C2 even if the corresponding input is not connected to the line input. The provision of the zener diode D7 in the circuit provides that this residual voltage will not be sufficient to switch on the corresponding transistor. Therefore, when both L1 and L2 are connected to the line input, current is permitted to pass through D7. The value of D7 is preferably at least 68V.
Thus, when Q1 and Q2 are both switched on, then current will flow through D7 and pull up the voltage at RDIM and C5 (point A) to a level that will cause the IRS2530D to drive the lamp at maximum output. The voltage at the DIM pin in this condition can be determined by selecting the value of the pull-up resistor RPU, which is arranged in series with Q1 and Q2. If this voltage is too high the IRS2530D ignition detection will not be able operate and the IC will shut down shortly after ignition.
Referring now to the simplified circuit 30 shown in
Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. Therefore, the present invention is not limited by the specific disclosure herein.
This application is based on and claims priority to U.S. Provisional Patent Application Ser. No. 60/927,104, filed on May 1, 2007 and titled THREE WAY DIMMING BALLAST CIRCUIT, the entire contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5719471 | Kachmarik | Feb 1998 | A |
5831395 | Mortimer et al. | Nov 1998 | A |
5866993 | Moisin | Feb 1999 | A |
6956336 | Ribarich | Oct 2005 | B2 |
7109665 | Green | Sep 2006 | B2 |
Number | Date | Country | |
---|---|---|---|
20080272709 A1 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
60927104 | May 2007 | US |