The present invention relates generally to implantable valves for use with short or long term implantable vascular access devices. More specifically, the present invention relates to a system and method for employing pressure activated valves for use with, for example, peripherally inserted central catheters (“PICC”s). Conventional vascular access devices are surgically implanted under the skin to allow for repeated access to a selected vascular structure, such as an artery or a vein, for introducing fluids to and/or withdrawing fluids from the selected vascular structure.
The present invention is directed to an apparatus for facilitating fluid flow between an internal body structure and a device external to the body, the apparatus comprising a housing having proximal and distal chambers separated from one another by a wall and fluidly connected to proximal port and distal ports, respectively, the wall including first and second openings therethrough and a valve selectively sealing the first and second openings and including a canopy biased toward a sealing position sealingly surrounding the first opening, the bias of the canopy being set to define a first pressure differential at which the canopy is moved out of the sealing position to permit fluid transfer between the proximal and distal chambers in a first direction and a duck-bill stem extending through the second opening and including a lumen extending therethrough with walls of the stem surrounding a first end of the lumen being biased toward a sealing position in which the first end is closed, the bias of the walls of the stem surrounding the first end being set so that, when a second pressure differential applied between an exterior of the stem and the lumen is at least a second predetermined level, the first end opens to permit flow between the proximal and distal chambers.
The present invention may be further understood with reference to the following description and the related appended drawings, wherein like elements are provided with the same reference numerals. The present invention describes an exemplary three-way valve for selective infusion and/or aspiration of fluids. Exemplary embodiments of the present invention may be employed for long-term (e.g., greater than 60 days) or short-term (e.g., less than 60 days) use in the body while the ability of the valve to seal after opening to permit fluid flow therethrough remains substantially constant over an extended period of time.
As shown in
A portion of the three-way valve 101 of the present invention is formed as an umbrella valve with a stem 119 extending proximally through the wall 110. A distal portion of the three-way valve 101 is umbrella-shaped with a canopy 114 extending proximally and radially outward from a distal-most end 116 thereof. The canopy 114 is biased toward a resting shape in which a peripheral portion 118 thereof sealingly contacts a distal surface of the wall 110. The three-way valve 101 of the present invention may be formed, for example, as a unitary element, of a single semi-rigid material shaped and sized to flex away from resting sealing positions to open positions only when acted upon by a predetermined threshold pressure differential as will be described in more detail below. The three-way valve 101 may be formed of a silicone material with deformable properties, the silicone being deformed under pressures ranging from approximately 0.2-300 psi. However, those skilled in the art will understand that the valve 101 may be composed of separate parts bonded (e.g., through welding, adhesives, etc.) of the same or different materials to obtain desired operating characteristics. A thickness of the canopy 114 may decrease from the end 116 of the valve 101 to the peripheral portion 118 thereof by an amount selected so that the increased flexibility of the peripheral portion 118 sets at a desired level the predetermined threshold differential at which the peripheral portion 118 will be flexed out of sealing contact with the distal surface of the wall 110. Alternatively, the canopy 114 may be formed with a uniform thickness with the thickness chosen in light of the material properties to achieve the desired threshold pressure. Furthermore, as would be understood by those skilled in the art, biasing members may be included in the material of the canopy 114 to achieve the desired operating characteristics of the valve 101.
The wall 110 includes one or more openings 112 radially within the peripheral portion 118 and sealed with respect to the chamber 104b thereby. The openings 112 may, for example, be formed as one or more arced slots distributed evenly about a centerline of the valve 101. The arc-shaped slots may be formed in any of a plurality of lengths and quantities and along any desired path, some of which are disclosed in
When a user wishes to infuse a fluid into the body, a fluid delivery device is fluidly coupled to a proximal end of the device 100 (e.g., by attaching a syringe to a luer of a PICC or by inserting a needle through a self-sealing septum into the chamber 104a to supply fluid to the chamber 104a. When an infusion pressure in the first chamber 104a increases to the point at which the pressure differential applied by the fluid through the openings 112 against the proximal surface of the portion 118 reaches the predetermined threshold level, the portion 118 flexes distally out of contact with the wall 110 allowing fluid flow into the chamber 104b and out of the port 106 through a catheter or other conduit attached thereto to the target body structure. When the supply of fluid is terminated and the pressure differential applied to the proximal surface of the portion 118 drops below the threshold level, the portion 118 is flexed under its bias back to the sealing position engaging the wall 110 and preventing further fluid transfer between the chambers 104a and 104b.
The stem 119 of the valve 101 extends through a central opening 117 in the wall 110 proximally into the chamber 104a to a duck-bill opening 120 at a proximal end thereof. The stem 119 and the opening 120 allow aspiration of fluids from the target body structure into the chamber 104b and from there into the chamber 104a and out of the body as will be described in more detail below. Specifically, a distal portion of the stem 119 forms two parts separated by a slit with the two parts biased toward a sealing position in which the duck-bill opening 120 is sealed to prevent fluid transfer between the chamber 104b and the chamber 104a. The stem 119 includes a substantially conical lumen 122 extending therethrough from a distal opening 123 within the chamber 104b to the duck-bill opening 120 in the chamber 104a. A diameter of the lumen 122 decreases from the opening 123 to a minimum at the opening 120. In the sealing position, the distal parts of the stem 119 are in sealing contact with one another closing the duck-bill opening 120 and preventing fluid flow therethrough. Upon application of a negative pressure in the first chamber 104a (e.g., by applying a negative pressure to a syringe attached to the luer for a PICC or by withdrawing fluid therefrom via a needle inserted through a self-sealing septum (not shown)), the pressure differential between the chamber 104a and the lumen 122 moves the distal portions of the stem 119 away from one another opening the duck-bill opening 120 and permitting fluid flow through the lumen 122 from the chamber 104b to the chamber 104a and into the needle for withdrawal from the body. Then, when the negative pressure is no longer applied by the needle, the bias of the stem 119 urges the distal parts thereof back into sealing contact with one another preventing further fluid transfer between the chambers 104b and 104a.
The three-way valve 101 is further provided with at least one annular rib 124 engaging a portion of the wall 110 surrounding the hole 117 and preventing the valve 101 from being moved out of position within the hole 117 into either of the chambers 104a and 104b. Specifically, the annular rib 124 extends radially from the stem 119 to a diameter exceeding that of the hole 117 preventing distal movement of the valve 101 relative to the wall 110 while the canopy 114 extending radially outward from the distal portion of the stem 119 prevents movement of the valve 101 proximally through the hole 117 into the chamber 104a. As would be understood by those skilled in the art, the annular rib 124 may be formed in any of a plurality of configurations such as, for example, a trapezoidal configuration as shown in
As shown in
The chamber 204a encircles the chamber 204b (e.g., as an annular space therearound). As described above, one or more openings 212 is formed at a distal end of the chamber 204a allowing fluids injected thereinto to flow against the proximal surface of the canopy 214 and, when a pressure differential between the chamber 204c and the chamber 204b exceeds a predetermined threshold level, the peripheral portion 218 of the canopy 214 is moved out of sealing engagement with the portion(s) of the wall of the chamber 204b surrounding the opening 212 into an open position permitting fluid flow from the chamber 204c into the chamber 204b in the direction of arrow A. The fluid then flows through the chamber 204b to a distal opening (not shown) into a conduit for delivery to the target body structure.
Aspiration from the target body structure via the three-way valve 201 is performed via the aspiration port 234 fluidly connected to the chamber 204b. Similar to the chamber 104a of
The device 200 of
In an alternate embodiment, as shown in
As shown in
As would be understood by those skilled in the art, the piezoelectric element 413 may comprise 2 or more piezoelectric sheets on either side of the arm 412 so that actuation of the element 413 causes a mechanical strain bending the cantilever arm 412 away from the opening 422. As would be understood by those skilled in the art, the lead 414 may extend through the skin to a port accessible to a user or to a known implanted inductive coupling. Alternatively, the lead 414 may extend to a PICC luer (not shown), wherein a proximal end thereof (not shown) is located externally to the body.
Accordingly, when infusion or aspiration of a fluid or other material is desired, an electrical potential is applied to the lead 414 activating the piezoelectric element 413 and causing the cantilever arm 412 to deflect away from the opening 422. At this point, fluid pressure (i.e., negative aspiration pressure or positive infusion pressure) applied to the port 406 (e.g., via a needle inserted into an implanted port fluidly connected thereto) causes fluid transfer between the catheter connected to the port 420 and the source of fluid pressure via the port 406. When the desired fluid transfer has been completed, the supply of electric energy is terminated and the cantilever arm 412 returns to the sealing position over the orifice 422 preventing further fluid transfer.
As shown in
As shown in
As shown in
As shown in
Those skilled in the art will understand that the embodiments described herein are for illustrative and descriptive purposes only and are not intended to limit the present invention which is to be limited only by the scope of the claims appended hereto. There are many modifications of the present invention which will be apparent to those skilled in the art without departing from the teaching of the present invention. For example, in any of the embodiments described herein, the directions of the components of the devices could be completely reversed with respect to the direction of flow (i.e., every instance of distal could be replaced with proximal or infusion replaced with aspiration) without departing from the scope of the invention. Furthermore, any of these devices may be implanted or external and may be employed to facilitate the transfer of any fluid with any body structure without departing from the scope of the invention. Furthermore, those skilled in the art will understand that for the valves disclosed herein that are activated by fluid pressure, the threshold level necessary to activate the valve for infusion may be set to the same or a different level than that set for aspiration. Still further, in any of the embodiments disclosed herein, the valves may be formed of a plurality of layers joined together. The multiple-layer valves may incorporate materials of differing properties to achieve deflection at predetermined threshold infusion and aspiration pressures.
Number | Name | Date | Kind |
---|---|---|---|
2446571 | Browne | Mar 1944 | A |
2720881 | Jones | Oct 1955 | A |
2755060 | Twyman | Jul 1956 | A |
3113586 | Edmark, Jr. | Dec 1963 | A |
3159176 | Russell et al. | Dec 1964 | A |
3477438 | Allen et al. | Nov 1969 | A |
3514438 | Nelsen et al. | May 1970 | A |
3525357 | Koreski | Aug 1970 | A |
3621557 | Cushman et al. | Nov 1971 | A |
3669323 | Harker et al. | Jun 1972 | A |
3673612 | Merrill et al. | Jul 1972 | A |
3674183 | Venable et al. | Jul 1972 | A |
3710942 | Rosenberg | Jan 1973 | A |
3788327 | Donowitz et al. | Jan 1974 | A |
3811466 | Ohringer | May 1974 | A |
3941149 | Mittleman | Mar 1976 | A |
3955594 | Snow | May 1976 | A |
4072146 | Howes | Feb 1978 | A |
4142525 | Binard et al. | Mar 1979 | A |
4143853 | Abramson | Mar 1979 | A |
4244379 | Smith | Jan 1981 | A |
4387879 | Tauschinski | Jun 1983 | A |
4405316 | Mittleman | Sep 1983 | A |
4434810 | Atkinson | Mar 1984 | A |
4447237 | Frisch et al. | May 1984 | A |
4468224 | Enzmann et al. | Aug 1984 | A |
4502502 | Krug | Mar 1985 | A |
4524805 | Hoffman | Jun 1985 | A |
4543087 | Sommercorn et al. | Sep 1985 | A |
4552553 | Schulte et al. | Nov 1985 | A |
4610665 | Matsumoto et al. | Sep 1986 | A |
4616768 | Flier | Oct 1986 | A |
4646945 | Steiner et al. | Mar 1987 | A |
4673393 | Suzuki et al. | Jun 1987 | A |
4681572 | Tokarz et al. | Jul 1987 | A |
4692146 | Hilger | Sep 1987 | A |
4722725 | Sawyer et al. | Feb 1988 | A |
4790832 | Lopez | Dec 1988 | A |
4798594 | Hillstead | Jan 1989 | A |
4801297 | Mueller | Jan 1989 | A |
4908028 | Colon et al. | Mar 1990 | A |
4944726 | Hilal et al. | Jul 1990 | A |
4946448 | Richmond | Aug 1990 | A |
4960412 | Fink | Oct 1990 | A |
5000745 | Guest et al. | Mar 1991 | A |
5009391 | Steigerwald | Apr 1991 | A |
5030210 | Alchas et al. | Jul 1991 | A |
5084015 | Moriuchi | Jan 1992 | A |
5098405 | Peterson et al. | Mar 1992 | A |
5125893 | Dryden | Jun 1992 | A |
5147332 | Moorehead | Sep 1992 | A |
5149327 | Oshiyama | Sep 1992 | A |
5167638 | Felix et al. | Dec 1992 | A |
5169393 | Moorehead et al. | Dec 1992 | A |
5176652 | Littrell | Jan 1993 | A |
5176662 | Bartholomew et al. | Jan 1993 | A |
5201722 | Moorehead et al. | Apr 1993 | A |
5205834 | Moorehead et al. | Apr 1993 | A |
5249598 | Schmidt | Oct 1993 | A |
5254086 | Palmer et al. | Oct 1993 | A |
5324274 | Martin | Jun 1994 | A |
5330424 | Palmer et al. | Jul 1994 | A |
5336203 | Goldhardt et al. | Aug 1994 | A |
5360407 | Leonard et al. | Nov 1994 | A |
5370624 | Edwards et al. | Dec 1994 | A |
5395352 | Penny | Mar 1995 | A |
5396925 | Poli et al. | Mar 1995 | A |
5399168 | Wadsworth et al. | Mar 1995 | A |
5401255 | Sutherland et al. | Mar 1995 | A |
D357735 | McPhee | Apr 1995 | S |
5405340 | Fageol et al. | Apr 1995 | A |
5411491 | Goldhardt et al. | May 1995 | A |
5453097 | Paradis | Sep 1995 | A |
5454784 | Atkinson et al. | Oct 1995 | A |
5469805 | Gibbs | Nov 1995 | A |
5470305 | Arnett et al. | Nov 1995 | A |
5484420 | Russo | Jan 1996 | A |
5542923 | Ensminger et al. | Aug 1996 | A |
5545150 | Danks et al. | Aug 1996 | A |
5554136 | Luther | Sep 1996 | A |
5562618 | Cai et al. | Oct 1996 | A |
5571093 | Cruz et al. | Nov 1996 | A |
5575769 | Vaillancourt et al. | Nov 1996 | A |
5624395 | Mikhail et al. | Apr 1997 | A |
5637099 | Durdin et al. | Jun 1997 | A |
5667500 | Palmer et al. | Sep 1997 | A |
5707357 | Mikhail et al. | Jan 1998 | A |
5743873 | Cai et al. | Apr 1998 | A |
5743884 | Hasson et al. | Apr 1998 | A |
5743894 | Swisher | Apr 1998 | A |
5752938 | Flatland et al. | May 1998 | A |
5803078 | Brauner | Sep 1998 | A |
5807349 | Person et al. | Sep 1998 | A |
5810789 | Powers et al. | Sep 1998 | A |
5843044 | Moorehead | Dec 1998 | A |
5853397 | Shemesh et al. | Dec 1998 | A |
5865308 | Qin et al. | Feb 1999 | A |
5944698 | Fischer et al. | Aug 1999 | A |
5984902 | Moorehead | Nov 1999 | A |
5989233 | Yoon | Nov 1999 | A |
6033393 | Balbierz et al. | Mar 2000 | A |
6045734 | Luther et al. | Apr 2000 | A |
6050934 | Mikhail et al. | Apr 2000 | A |
6056717 | Finch et al. | May 2000 | A |
6062244 | Arkans | May 2000 | A |
6092551 | Bennett | Jul 2000 | A |
6099505 | Ryan et al. | Aug 2000 | A |
6120483 | Davey et al. | Sep 2000 | A |
6152909 | Bagaoisan et al. | Nov 2000 | A |
6210366 | Sanfilippo | Apr 2001 | B1 |
6227200 | Crump et al. | May 2001 | B1 |
6270489 | Wise et al. | Aug 2001 | B1 |
6306124 | Jones et al. | Oct 2001 | B1 |
6364861 | Feith et al. | Apr 2002 | B1 |
6364867 | Wise et al. | Apr 2002 | B2 |
6375637 | Campbell et al. | Apr 2002 | B1 |
6436077 | Davey et al. | Aug 2002 | B1 |
6442415 | Bis et al. | Aug 2002 | B1 |
6446671 | Armenia et al. | Sep 2002 | B2 |
6508791 | Guerrero | Jan 2003 | B1 |
6551270 | Bimbo et al. | Apr 2003 | B1 |
6610031 | Chin | Aug 2003 | B1 |
6726063 | Stull et al. | Apr 2004 | B2 |
6786884 | DeCant et al. | Sep 2004 | B1 |
6874999 | Dai et al. | Apr 2005 | B2 |
6953450 | Baldwin et al. | Oct 2005 | B2 |
6994314 | Garnier et al. | Feb 2006 | B2 |
7081106 | Guo et al. | Jul 2006 | B1 |
7252652 | Moorehead et al. | Aug 2007 | B2 |
7291133 | Kindler et al. | Nov 2007 | B1 |
7316655 | Garibotto et al. | Jan 2008 | B2 |
7435236 | Weaver et al. | Oct 2008 | B2 |
7601141 | Dikeman et al. | Oct 2009 | B2 |
7637893 | Christensen et al. | Dec 2009 | B2 |
7758541 | Wallace et al. | Jul 2010 | B2 |
20010023333 | Wisse et al. | Sep 2001 | A1 |
20010037079 | Burbank et al. | Nov 2001 | A1 |
20020010425 | Guo et al. | Jan 2002 | A1 |
20020016584 | Wise et al. | Feb 2002 | A1 |
20020121530 | Socier | Sep 2002 | A1 |
20020156430 | Haarala et al. | Oct 2002 | A1 |
20020165492 | Davey et al. | Nov 2002 | A1 |
20020193752 | Lynn | Dec 2002 | A1 |
20030122095 | Wilson et al. | Jul 2003 | A1 |
20040034324 | Seese et al. | Feb 2004 | A1 |
20040064128 | Raijman et al. | Apr 2004 | A1 |
20040102738 | Dikeman | May 2004 | A1 |
20040108479 | Garnier et al. | Jun 2004 | A1 |
20040186444 | Daly et al. | Sep 2004 | A1 |
20040193119 | Canaud et al. | Sep 2004 | A1 |
20040210194 | Bonnette et al. | Oct 2004 | A1 |
20040267185 | Weaver et al. | Dec 2004 | A1 |
20050010176 | Dikeman et al. | Jan 2005 | A1 |
20050027261 | Weaver et al. | Feb 2005 | A1 |
20050043703 | Nordgren | Feb 2005 | A1 |
20050049555 | Moorehead et al. | Mar 2005 | A1 |
20050149116 | Edwards et al. | Jul 2005 | A1 |
20050171490 | Weaver et al. | Aug 2005 | A1 |
20050171510 | DiCarlo et al. | Aug 2005 | A1 |
20050283122 | Nordgren | Dec 2005 | A1 |
20060129092 | Hanlon et al. | Jun 2006 | A1 |
20060135949 | Rome et al. | Jun 2006 | A1 |
20060149211 | Simpson et al. | Jul 2006 | A1 |
20070161940 | Blanchard et al. | Jul 2007 | A1 |
20070161970 | Spohn et al. | Jul 2007 | A1 |
20070276313 | Moorehead et al. | Nov 2007 | A1 |
20080108956 | Lynn et al. | May 2008 | A1 |
20090292252 | Lareau et al. | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
0128625 | Dec 1984 | EP |
0337617 | Oct 1989 | EP |
0864336 | Sep 1998 | EP |
0930082 | Jul 1999 | EP |
1016431 | Jul 2000 | EP |
2718969 | Oct 1995 | FR |
966137 | Aug 1964 | GB |
2102398 | Feb 1983 | GB |
59133877 | Aug 1984 | JP |
63255057 | Oct 1988 | JP |
9038197 | Feb 1997 | JP |
WO-8902764 | Apr 1989 | WO |
WO-9112838 | Sep 1991 | WO |
WO-9206732 | Apr 1992 | WO |
WO-9516480 | Jun 1995 | WO |
WO-9617190 | Jun 1996 | WO |
WO-9623158 | Aug 1996 | WO |
WO-9641649 | Dec 1996 | WO |
WO-9723255 | Jul 1997 | WO |
WO-9726931 | Jul 1997 | WO |
WO-9822178 | May 1998 | WO |
WO-9942166 | Aug 1999 | WO |
WO-0006230 | Feb 2000 | WO |
WO-0044419 | Aug 2000 | WO |
WO-0174434 | Oct 2001 | WO |
WO-03084832 | Oct 2003 | WO |
WO-2005023355 | Mar 2005 | WO |
WO-2008089985 | Jul 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20100191192 A1 | Jul 2010 | US |