1. Field of the Invention
The subject invention relates to a threshold assembly for an entryway system.
2. Description of Related Art
Threshold assemblies are used with entryway systems to seal between a rail of the threshold assembly and a door panel of the entryway system. The entryway system typically includes a door frame and the door panel. Threshold assemblies typically include a sill base with the rail disposed on the sill base below the door panel when the door panel is in a closed position. The rail may be biased to engage and adjust to the door panel to create a water-tight seal between the rail and the door panel. In other words, as opposed to setting the door panel and/or the rail to a predetermined height relative to each other at the time of installation to create a proper seal between the door panel and the rail, the rail instead self-adjusts to the door panel when the door panel is in the closed position to seal against the door panel.
Traditionally, the rail is biased toward the door panel such that the door panel engages the rail and the rail seals against the door panel. Water that infiltrates the threshold assembly beyond the rail typically is trapped within the sill and unable to drain from the threshold assembly. As such, there remains a need to provide an improved threshold assembly.
The subject invention provides for a threshold assembly for use with an entryway system disposed within a structure, which has an exterior and an interior. The threshold assembly comprises a sill base extending between an exterior side for facing the exterior of the structure and an interior side for facing the interior of the structure. The threshold assembly further comprises a rail coupled to and disposed above the sill base with the rail movable relative to the sill base between an initial position having a first distance relative to the sill base and a sealed position having a second distance relative to the sill base with the first distance greater than the second distance for preventing intrusion of a fluid from the exterior to the interior of the structure. The threshold assembly also comprises a drainage element disposed beneath the rail and having a height relative to the sill base with the drainage element sloping away from the interior side of the sill base such that the height of the drainage element decreases from the interior side of the sill base to the exterior side of the sill base for providing positive drainage of any fluid that may infiltrate beyond the rail from the threshold assembly at the exterior side. Furthermore, the threshold assembly comprises a biasing member coupled to the rail and contacting the drainage element with the biasing member biasing the rail away from the drainage element into the initial position.
Accordingly, the drainage element provides positive drainage of the fluid that infiltrates the threshold assembly beyond the rail to prevent the threshold assembly from retaining the fluid or, worse yet, forcing the fluid into the structure. Providing positive drainage reduces the susceptibility of mold growth and rotting within the threshold assembly. Furthermore, the positioning of the biasing member beneath the rail limits the generation of a moment force within the biasing member which increases the resiliency of the biasing member.
Advantages of the subject invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings.
Referring to the Figures, wherein like numerals indicate like or corresponding parts throughout the several views, an entryway system 20 for disposing within an aperture of a structure 22 is generally shown in
The entryway system 20 includes a door frame 28 disposed in the aperture of the structure 22. The door frame 28 includes first and second door jambs 30, 32 spaced from each other. The door frame 28 defines an opening 34 for providing access between the interior 26 and the exterior 24 of the structure 22. Typically, the first and second door jambs 30, 32 are substantially parallel to one another. However, it is to be appreciated that the first and second door jambs 30, 32 may be disposed transverse to one another or in any other suitable configuration. The door frame 28 typically includes a door head 36 transverse to and extending between the first and second door jambs 30, 32.
The entryway system 20 includes a door panel 38 coupled to the door frame 28 and capable of moving between an open position, as shown in
As shown in
As shown in
As shown in
As set forth in the present application, the term drainage typically refers to movement of the fluid 53, which is typically water. However, it is to be appreciated that the drainage may refer to the movement of any fluid 53, including any debris that may be entrapped within the fluid 53. Furthermore, drainage may also refer to the movement of any object that is desired to be removed from the threshold assembly 40.
The tread surface 52 may also define a plurality of grooves 54 spaced from and parallel to one another and extending longitudinally along the sill base 42. The grooves 54 collect and direct the fluid 53, which poses a slipping hazard to a person stepping on the tread surface 52.
The threshold assembly 40 includes a drainage element 56. The drainage element 56 is coupled to the sill base 42. As shown in
As shown in
The drainage element 56 slopes away from the interior side 46 of the sill base 42 such that the height of the drainage element 56 decreases from the interior side 46 of the sill base 42 to the exterior side 44 of the sill base 42 for providing positive drainage of any fluid 53 that may infiltrate the threshold assembly 40. Said differently, the slope of the drainage element 56 directs fluid 53 from within the threshold assembly to the exterior 24 of the structure 22. The drainage element 56 extends to a first side 62 toward the interior side 46 of the sill base 42 and a second side 64 toward the exterior side 44 of the sill base 42.
The drainage element 56 may define a drainage surface 66. The drainage surface 66 extends toward the interior and exterior sides 44, 46 of the sill base 42. Said differently, the drainage surface 66 typically extends toward the first and second sides 62, 64 of the drainage element 56. The drainage surface 66 may define the sloping away of the drainage element 56. More specifically, the height of the drainage element 56 measured along the drainage surface 66 at the first side 62 of the drainage element 56 is further defined as a first height H1. The height of the drainage element 56 measured along the drainage surface 66 at the second side 64 of the drainage element 56 is further defined as a second height H2. The first height H1 of the drainage element 56 along the drainage surface 66 is greater than the second height H2 of the drainage element 56 along the drainage surface 66 which provides positive drainage. As discussed above, the sill base 42 may have the tread surface 52. The slope of the drainage surface 66 along the drainage element 56 provides positive drainage of the fluid 53 from the drainage element 56 to the tread surface 52, which is sloped to provide positive drainage from the threshold assembly 40 at the exterior 24 of the structure 22.
The drainage element 56 may define a dam 68 extending toward the rail 72 for preventing backflow toward the interior side 46 of the sill base 42. As set forth in the present application, the term “backflow” refers to a type of negative drainage. As an example, backflow is when the fluid 53 is forced from the exterior side 44 of the sill base 42 toward the interior side 46 of the sill base 42. Such backflow may occur due to wind forcing the fluid 53 up the drainage surface 66.
Typically, the dam 68 projects into the opening 34 at the first side 62 of the drainage element 56 with the drainage surface 66 extending from the dam 68 toward the second side 64 of the drainage element 56. The height of the drainage element 56 at the dam 68 is further defined as a third height H3 which is greater than each of the first and second heights H1, H2. Typically, the dam 68 extends longitudinally between the first and second door jambs 30, 32.
The third height H3 of the dam 68 is typically greater than the first and second heights H1, H2 of the drainage element 56 along the drainage surface 66. The third height H3 of the dam 68 acts to block backflow of the fluid 53 across the threshold assembly 40 and into the interior 26 of the structure 22.
As shown in
As shown in
As shown in
The rail 72 is movable relative to the sill base 42 between an initial position having a first distance D1 relative to the bottom surface 60 of the sill base 42 when the door panel 38 is in the open position, as shown in
As shown in
In one embodiment, as shown in
The rail 72 may have a first hook 80 and the drainage element 56 may have a second hook 82 with the first hook 80 selectively engaging the second hook 82 for coupling the rail 72 to the sill base 42. The first hook 80 is typically disposed on the body portion 74 of the rail 72 spaced from the hinge portion 76 with the first hook 80 extending toward the hinge portion 76. The second hook 82 is typically disposed on the drainage element 56 opposite the protrusion 70 with the protrusion 70 and the second hook 82 extending away from each other. The first hook 80 is disposed below the second hook 82. More specifically, the first hook 80 is between the second hook 82 and the sill base 42. The first hook 80 engages the second hook 82 when the rail 72 is in the initial position. The engagement of the first hook 80 with the second hook 82 prevents further pivoting of the body portion 74 about the hinge portion 76 beyond the initial position, which would disengage the leg portion 78 from the protrusion 70.
As set forth in the present embodiment, typically the body portion 74, the hinge portion 76, and the leg portion 78 of the rail 72 comprise a rigid plastic. Said differently, the body portion 74, the hinge portion 76, and the leg portion 78 of the rail 72 are made from a rigid plastic. However, it is to be appreciated that the body portion 74, the hinge portion 76, and the leg portion 78 may comprise any material having the desired rigidity. Furthermore, the body portion 74, the hinge portion 76, and the leg portion 78 are typically produced using an extrusion process. However, it is to be appreciated that the process for producing the body portion 74, the hinge portion 76, and the leg portion 78 may be any suitable manufacturing process.
As set forth in the present embodiment the drainage element 56 is typically the independent component as described above. Said differently, the drainage element 56 is a separate component relative to the sill base 42. It is to be appreciated that the drainage element 56 may be the unitary component with the sill base 42 as described above.
In an alternative embodiment, as shown in
Although the protuberance 86 extends toward the exterior side 44 of the sill base 42 and the hump 88 extends toward the interior side 46 of the sill base 42, it is to be appreciated that the protuberance 86 may extend toward the interior side 46 of the sill base 42 and the hump 88 may extend toward the exterior side 44 of the sill base 42. Moreover, it is to be appreciated that the protuberance 86 and the hump 88 may be any configuration for retaining the leg portion 78 within the recess 84 of the drainage element 56.
The hinge portion 76 may be further defined as a living hinge 90 with the body portion 74 pivoting about the living hinge 90 relative to the sill base 42. The living hinge 90 is typically a flexible material which allows the body portion 74 to pivot about the living hinge 90. The living hinge 90 typically comprises flexible polyvinyl chloride (PVC). However it is to be appreciated that the living hinge 90 may comprise any other material of suitable flexibility.
As set forth in the present embodiment, typically the body portion 74 and the leg portion 78 of the rail 72 comprise a rigid plastic. However, it is to be appreciated that the body portion 74 and the leg portion 78 may comprise any material having the desired rigidity. Furthermore, the body portion 74 and the leg portion 78 are typically produced using an extrusion process with living hinge 90 typically produced through a co-extrusion process. It is to be appreciated that the process for producing the body portion 74, the living hinge 90, and the leg portion 78 may be any suitable manufacturing process.
As described in the present embodiment the drainage element 56 is typically the unitary component with the sill base 42 as described above. It is to be appreciated that the drainage element 56 may be the independent component as described above or any other suitable configuration.
In one embodiment, the body portion 74 may extend from the hinge portion 76 toward the interior side 46 of the sill base 42, as shown in
As shown in
The primary surface 92 slopes away from the interior side 46 of the sill base 42 for providing positive drainage off of the rail 72 toward the exterior side 44 of the sill base 42. More specifically, the primary surface 92 extends from the apex 96 downwardly toward the exterior side 44 of the sill base 42. The slope of the primary surface 92 promotes positive drainage off of the rail 72 toward the tread surface 52.
In an alternative embodiment shown in
The rail 72 may have a dam seal 100 disposed between the body portion 74 and the drainage element 56. The dam seal 100 typically extends longitudinally along the rail 72. The dam seal 100 is substantially semi-circular in configuration. The dam seal 100 engages the dam 68 defined by the drainage element 56. The dam seal 100 deforms against the dam 68 when the rail 72 is in the sealed position. As such, with the rail 72 in the sealed position, the engagement of the dam seal 100 against the dam 68 creates a seal between the rail 72 and the drainage element 56 to further prevent backflow of the fluid 53 into the interior 26 of the structure 22.
The dam seal 100 is typically comprised of flexible polyvinyl chloride (PVC). However it is to be appreciated that the dam seal 100 may be any other material of suitable flexibility.
The rail 72 may include a fin 102 extending from the body portion 74 toward the exterior side 44 of the sill base 42 and abutting the tread surface 52 of the sill base 42. The abutment of the fin 102 with the sill base 42 further seals the rail 72 with the sill base 42 for preventing backflow of the fluid 53 toward the interior 26 of the structure 22.
As shown in
As shown in
As shown in
As shown in an alternative embodiment, the biasing member 104 may have a substantially semi-circular configuration with the biasing member 104 tangentially engaging the drainage surface 66 at the distal end 108, as shown in
Typically, the biasing member 104 extends along the rail 72 toward the first and second door jambs 30, 32. The biasing member 104 may be disposed along the entirety of the rail 72. It is to be appreciated that the biasing member 104 may be disposed along a portion of the rail 72. Furthermore, the biasing member 104 may be segmented such that the biasing member 104 is disposed along portions of the rail 72.
The biasing member 104 shown in
As set forth above, typically the body portion 74 is comprised of a rigid plastic and is produced using an extrusion process. The biasing member 104 is typically produced and coupled to the body portion 74 through a co-extrusion process. It is to be appreciated that the process for producing the body portion 74 and the biasing member 104 may be any suitable manufacturing process. Furthermore, it is to be appreciated that the biasing member 104 may be coupled to the body portion 74 in any suitable manner including, but not limited to, fasteners, adhesives, and the like.
As described above, the biasing member 104 is spaced from the hinge portion 76. The spacing of the biasing member 104 from the hinge portion 76 increases the resiliency of the rail 72 because the biasing member 104 provides secondary biasing of the rail 72 toward the initial position. Said differently, the biasing member 104 further biases the rail in conjunction with any internal biasing (memory) of the hinge portion 76 of the rail 72. Additionally, positioning of the biasing member 104 beneath the door panel 38 when the door panel 38 is in the closed position limits a generation of a moment force within the biasing member 104 thereby increases a resiliency of the biasing member 104, itself. Said differently, limiting the moment force acting on the biasing member 104 maintains the elasticity of the biasing member 104.
As described above, the fluid 53 may permeate toward the drainage surface 66 of the drainage element 56. The fluid 53 moves along the drainage surface 66 toward the second side 64 of the drainage element 56. With the rail 72 in the sealed position shown in
As described above, the rail 72 is typically spaced from both of the first and second door jambs 30, 32. As shown in
Each of the cornerpads 110 has a wedge configuration such that the cornerpads 110 extend further away from the door jambs 30, 32 toward the exterior 24 of the structure 22. As such, the rail 72 engages a portion of each of the cornerpads 110 adjacent to the exterior side 44 of the sill base 42. The cornerpads 110 elastically deform between the rail 72 and the door jambs 30, 32 creating a seal that prevents intrusion of water into the interior 26 of the structure 22 between the rail 72 and the door jambs 30, 32.
An example of suitable cornerpads are commercially available under the product name Leading Edge™ Corner Pad produced by Imperial Products by Homeshield, a Quanex Building Products company, is filed under U.S. patent application Ser. No. 11/779040 which has issued as U.S. Pat. No. 8,240,090, the disclosure of which is incorporated by reference. However, it is to be appreciated that the cornerpads 110 may be any suitable configuration.
As described above and shown in
As shown in at least
With reference to FIGS. 13 and 15-17, the door sweep 112 has a frame. The frame may include a first segment 118 and a second segment 120 spaced from the first segment 118. Said differently, the first and second segments 118, 120 are spaced from one another. The first and second segments 118, 120 are disposed along the lower surface 114 of the door panel 38. For example, the first and second segments 118, 120 may be disposed horizontally along the lower surface 114 of the door panel 38. Generally, the first segment 118 extends to an outside surface 122 of the door panel, as shown in
Referring to
However, it is to be appreciated that the fluid 53 may pass beyond the outside and inside seals 126, 128 resulting in the fluid 53 infiltrating between the door panel 38 and the door sweep 112. Additionally, if the door panel 38 includes an inlay 130, such as a glass panel, the fluid 53 may infiltrate the door panel 38 at a connection point 132 between the inlay 130 and the door panel. Any fluid 53 that infiltrates the door panel 38 at the connection point 132 will migrate to the lower surface 114 of the door panel 38, which has the potential to become trapped between the door sweep 112 and the door panel 38.
The door sweep 112 may include a third segment 134 extending between the first and second segments 118, 120. The third segment 134 is spaced vertically from the first and second segments 118, 120 to define a trough 138 between the first and second segments 118, 120. As such, the third segment 134 is also spaced vertically from the lower surface 114. The trough 136 is configured to collect any fluid 53 that infiltrates to the lower surface 114 of the door panel 38.
With reference to FIGS. 13 and 15-17, the third segment 134 may define at least one drainage port 138 for providing positive drainage from the door sweep 112 such that any fluid 53 that infiltrates into the trough 136 is free to flow through the drainage port 138 to exit the door sweep 112. Said differently, the drainage port 138 defines a drainage path from the door sweep 112 to allow fluid 53 to escape from the door sweep 112. Therefore, any fluid 53 that infiltrates beyond the outside and inside seals 126, 128 and/or infiltrates the door panel 38 at the connection point 132 of the inlay 130 and the door panel 38 can escape the door sweep 112 without being trapped. Typically, the drainage port 138 is spaced from the rail 72 such that any fluid 53 that infiltrates into the trough 136 is free to flow through the drainage port 138 in the third segment 134 to exit the door sweep 112 and onto the rail 72.
Generally, the third segment 134 includes a base portion 142 and a pair of walls 144 extending from the base portion 142 to connect the third segment 134 with the first and second segments 118, 120. In such an embodiment, the base portion 142 of the third segment 134 defines the drainage port 138. It is to be appreciated that the walls 144 of the third segment 134 may each present a sloped configuration between the base portion 142 of the third segment 134 and the first and second segments 118, 120 for collecting any fluid 53 that infiltrates into the trough 136. The sloped configuration of the walls 144 directs any fluid 53 in the trough 136 towards the drainage port 138 so that the fluid 53 can exit the door sweep 112.
It is to be appreciated that the at least one drainage port 138 may comprise a plurality of drainage ports 138 with each of the drainage ports 138 spaced laterally from each other along said door sweep 112. The plurality of drainage ports 138 provides multiple drainage paths along a length of the door sweep 112 for allowing any fluid 53 that enters the trough 136 to exit the door sweep 112 at multiple locations Likewise, the walls 144 may define an additional drainage port 146 for allowing the fluid 53 to exit the door sweep 112. As with the drainage port 138 of the third segment 134, the additional drainage port 146 may be further defined as a plurality of additional drainage ports 146 spaced laterally from each other along the door sweep 112.
As shown in
As described above, the door panel 38 may define a hole 115 and the door sweep 112 may include the boss 116 for coupling the door sweep 112 to the door panel 38. As shown in
With reference to
It is to be appreciated that the inside seal 128 may be a continuous component or comprise segments. When the inside seal 128 comprises segments, some of the segments may be rigid. Additionally, the inside seal 128 may include a flap 153 extending from the inside seal 128 toward the sill base 42. The flap 153 covers a gap between the second segment 120 and the sill base 42. When present, the flap 153 extends longitudinally along the lower surface 114 of the door panel 38. The flap 153 may be substantially coplanar with the interior side 46 of the sill base 42 when the door panel 38 in the completely closed position. The flap 153 may further seal between the door panel 38 and the sill base 42 to prevent negative drainage of the fluid 53 toward the interior side 46 of the sill base 42. Furthermore, the flap 153 may create an aesthetic transition between the door panel 38 and the sill base 42.
With reference to
Typically, the inside seal 128 can be characterized as a bulb seal, that engages the body portion 74 of the rail 72 when the door panel 38 is in the sealed position. It is also to be appreciated that the inside seal 128 may include multiple inside seals 128 connected to the second segment 120. The sealed position typically refers to any position of the rail 72 when the door panel 38, or the door sweep 112 of the door panel 38, engages the rail 72. As illustrated in
As the lower surface 114 of the door panel 38, and door sweep 112 coupled to the lower surface 114, extends further toward the threshold assembly 40, the body portion 74 of the pivots further toward the drainage element 56. The second distance D2 of the rail 72 in the sealed position may be any one of a plurality of distances.
As described above, the rail 72 may extend between first and second ends 48, 50 of the sill base 42. The second distance D2 of the rail 72 may vary longitudinally along the rail 72. More specifically, changes in the proximity of the lower surface 114 of the door panel 38 and door sweep 112 toward threshold assembly 40 longitudinally along the rail 72 facilitates varying pivoting of the body portion 74 about the hinge portion 76 along the sill base 42 and varying second distances D2 along the sill base 42. The varying to the second distance D2 of the rail 72 along the door sweep 112 disposed on the lower surface 114 of the door panel 38 ensures engagement of the rail 72 with the door panel 38 longitudinally along the threshold assembly 40.
It is to be appreciated that door sweep 112 described above can be used with any threshold assembly capable. For example, the door sweep 112 can be used with a threshold assembly having a fixed rail or an adjustable rail.
The operation of moving of the door panel 38 from the open position, as shown in
Beginning with the door panel 38 in the open position and the rail 72 in the initial position, as shown in
The inside seal 128 abuts and seals against the body portion 74 of the rail 72. The body portion 74 of the rail 72 is further pivoted about the hinge portion 76 into the sealed position. With the door panel 38 in the completely closed position, the entire rail 72 is disposed in the sealed position with the second distance D2 of the rail 72 varying longitudinally along the rail 72 to accommodate engagement of the rail 72 with the inside seal 128 of the door sweep 112. Engagement of the rail 72 with the inside seal 128 seals the opening 34 between the threshold assembly 40 and the door panel 38.
The invention has been described in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. As is now apparent to those skilled in the art, many modifications and variations of the subject invention are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the appended claims, wherein reference numerals are merely for convenience and are not to be in any way limiting, the invention may be practiced otherwise than as specifically described.
This application claims priority to and all advantages of United States Provisional Patent Application No. 61/648,388, which was filed on May 17, 2012, the disclosure of which is specifically incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61648388 | May 2012 | US |