Threshold optimization for tissue stimulation therapy

Information

  • Patent Grant
  • 7869885
  • Patent Number
    7,869,885
  • Date Filed
    Friday, April 28, 2006
    18 years ago
  • Date Issued
    Tuesday, January 11, 2011
    13 years ago
Abstract
Methods and systems for determining an optimal therapeutic window of parameter settings for nerve stimulation therapy are described herein. The disclosed techniques generally utilize one or more parameter sweeps to determine upper and lower threshold settings. The determination of the optimal therapeutic window may be performed during or after implantation.
Description
BACKGROUND

1. Technical Field


The disclosed subject matter relates generally to the field of nerve stimulation. More specifically, the invention relates to a method and system of optimizing parameter settings for nerve stimulation.


2. Background Information


Various diseases and disorders of the nervous system are associated with abnormal neural discharge patterns. One treatment regimen for such diseases and disorders includes drug therapy. Another treatment technique includes the implantation of an implantable medical device having a pulse generator for electrically stimulating (i.e., applying an electrical signal to) a target location of the patient's neural tissue, such as a cranial nerve. In one such available treatment for epilepsy, the vagus nerve (the tenth cranial nerve) is electrically stimulated by a neurostimulator device substantially as described in one or more of U.S. Pat. Nos. 4,702,254, 4,867,164, and 5,025,807, all of which are incorporated herein by reference.


Some implantable pulse generators used for electrical stimulation of neurological tissue operate according to a therapy algorithm programmed into the device by a physician or other health care provider. One or more therapy parameters or the actual software running on the neurostimulator may be changed after implantation by reprogramming the neurostimulator via transcutaneous communication between an external programming device and the implanted neurostimulator. The ability to program (and later re-program) the implanted medical device (“IMD”) permits a health care provider to customize the therapy provided by the IMD to the patient's needs, to update the therapy periodically should those needs change, and to update the software of the device, including the operating system, as improved and/or revised therapy regimens are developed.


However, in many cases, the physician will not know a suitable or optimal range of parameter settings within which to operate the neurostimulator. Each patient may have different levels of tolerance and reaction to nerve stimulation. Thus, some patients may have to be stimulated differently (e.g., different current levels, different frequencies, etc.) than other patients to respond to the therapy. Complicating selection of nerve stimulation therapies and parameters is the fact that many implantable medical devices are battery-operated. Different therapies may result in a different level of drain on the device's battery. All else being equal, one would prefer for the battery to last as long as possible.


BRIEF SUMMARY

Methods and systems for determining an optimal therapeutic window of parameter settings for nerve stimulation therapy are described herein. The disclosed techniques generally utilize one or more parameter sweeps to determine upper and lower threshold settings for an individual patient. The determination of the optimal therapeutic window may be performed during surgery to implant an implantable medical device. In one embodiment, this could be accomplished using a temporary electrode coupled to the nerve during the surgical procedure. The temporary electrode may be removed at the conclusion of the optimization process. Alternatively, a permanent electrode for sensing electrical activity on the nerve may be attached to the nerve and coupled to the implantable medical device for non-invasively optimizing therapeutic windows after surgery.


In at least one embodiment, a method comprises delivering an electrical signal to a nerve according to at least a first and second parameter. The method also comprises measuring an electrical response of the nerve to the electrical signal. In addition, the method comprises adjusting the first parameter while the second parameter remains constant. The method further comprises repeating the aforementioned acts to acquire a plurality of electrical responses and determining a lower threshold setting and an upper threshold setting from the plurality of electrical responses.


In another embodiment, a method comprises delivering a plurality of electrical signals to a nerve according to a plurality of current amplitudes and a constant pulse width. The method additionally comprises recording a plurality of electrical responses of the nerve to the plurality of electrical signals. Furthermore, the method comprises determining at least one lower threshold setting and at least one upper threshold setting from the plurality of electrical responses of the nerve.


In a further embodiment, a system comprises a processor and software executable on the processor. The software causes the processor to instruct an implantable medical device to deliver a plurality of electrical signals to a nerve according to at least first and second parameters. The first parameter is iteratively adjusted while the second parameter remains fixed. The software also instructs the processor to detect a plurality of electrical responses of the nerve to the plurality of electrical signals applied to the nerve, and to determine a lower threshold setting and an upper threshold setting from the plurality of electrical responses based on a fixed second parameter.


The described methods and systems provide a user with settings at which an implantable medical device can operate with improved (e.g., optimal) energy efficiency. As a result, a physician is provided with a known, and generally optimal, range of parameter settings for therapy for an individual patient without the need for extensive trial and error.


The foregoing has outlined rather broadly certain features and advantages of the disclosed embodiments in order that the detailed description that follows may be better understood. Additional features may be described hereinafter that form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and the specific embodiments disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS

For a detailed description of the preferred embodiments of the invention, reference will now be made to the accompanying drawings in which:



FIG. 1 depicts, in schematic form, an implantable medical device, in accordance with a preferred embodiment of the invention, implanted within a patient and programmable by an external programming system;



FIG. 2 is a block diagram of an embodiment of the programming system of FIG. 1;



FIG. 3 illustrates a flow diagram of an embodiment of a method for threshold optimization for nerve stimulation therapy; and



FIG. 4 illustrates a sample plot as a result of the disclosed method. Each curve represents a graph of sensed nerve responses (voltage) at different current (or other parameter) settings and at a constant pulse width.





NOTATION AND NOMENCLATURE

Certain terms are used throughout the following description and claims to refer to particular system components. This document does not intend to distinguish between components that differ in name but not function.


In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . ”. Also, the term “couple” or “couples” is intended to mean either an indirect or direct electrical connection. Thus, if a first device couples to a second device, that connection may be through a direct electrical connection, or through an indirect electrical connection via other devices and connections.


“Compound action potential” means a group of almost synchronous nerve fiber action potentials from the trunk of a motor, sensory, or mixed nerve. Compound action potentials may be evoked by nerve stimulation and are recorded as a multi-peaked summed action potential.


“Parameter sweep” means a test conducted employing at least two parameters that can be varied, the test progressively increasing or decreasing a first parameter within a specified range while keeping a second parameter constant.


DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention is susceptible to implementation in various embodiments. The disclosure of specific embodiments, including preferred embodiments, is not intended to limit the scope of the invention as claimed unless expressly specified in the claims. In addition, persons skilled in the art will understand that the invention has broad application. Accordingly, the discussion of particular embodiments is meant only to be exemplary, and does not imply that the scope of the disclosure, including the claims, is limited to specifically disclosed embodiments.


The following description is presented largely in terms of vagus nerve stimulation (“VNS”), in which the electrical signal is applied to the vagus nerve. However, the disclosure and claims that follow are not limited to VNS, and may be applied to the delivery of an electrical signal to modulate the electrical activity of other cranial nerves such as the trigeminal and/or glossopharyngeal nerves, or to other neural tissue such as one or more brain structures of the patient, spinal nerves, and other spinal structures. Further still, other embodiments of the invention can be implemented to stimulate tissue other than nerves or neural tissue, such as cardiac tissue.


It is recognized that a minimum level of stimulation by a battery-powered VNS device is required to evoke action potentials on a nerve. The minimum stimulation level may be a function of a number of different parameters and is generally unique to each patient. Further, as the level of stimulation is increased from the minimum level, the ability to invoke action potentials may also increase. There is, however, a point of “diminishing returns” in that, at some point, further increases to the level of stimulation does not produce a statistically significant increase in action potential response, and thus only serves to unnecessarily drain the battery that powers the VNS device.


The following embodiments assist in the determination, for a given patient, of a minimum level as well as a maximum level that generally corresponds to a point of diminishing returns. Measurements are made on the patient to facilitate these computations. In at least some embodiments, the measurements are made during surgery to implant the VNS device. The process comprises implanting the VNS device and employing a temporary cuff electrode assembly that is coupled to the target nerve. The cuff electrode assembly connects to an external system that initiates the process of stimulating the nerve and measuring the response. After the measurements are made, the cuff electrode assembly is removed from the patient and the implantation surgery can be completed.



FIG. 1 illustrates an implantable medical device (“IMD”) 110 implanted in a patient. The IMD 110 may be representative of any of a variety of medical devices. At least one preferred embodiment of the IMD 110 comprises a neurostimulator for applying an electrical signal to a neural structure in a patient, particularly a cranial nerve such as a vagus nerve 113. As used herein “stimulate” and “modulate” both refer to the delivery of such an electrical signal to a target body structure, regardless of whether the signal causes a particular effect such as an induction of an action potential in a stimulated nerve.


Referring still to FIG. 1, a lead assembly comprising one or more leads 116 is coupled to the IMD 110 and includes one or more electrodes, such as electrodes 112 and 114. Each lead 116 has a proximal end that connects to the IMD 110 and a distal end on which one or more electrodes are provided. The outer housing (or “can”) 129 of the IMD 110 preferably is electrically conductive and thus may also function as an electrode. The electrodes, such as electrodes 112, 114 and can 129, can be used to stimulate and/or sense the electrical activity of the associated tissue (e.g., the vagus nerve 113). Strain relief tether 115 comprises an attachment mechanism that attaches the lead assembly 116 to the nerve 113 to provide strain relief. An example of a suitable strain relief tether is described in U.S. Pat. No. 4,979,511, incorporated herein by reference.


In the embodiment of FIG. 1, a removable cuff assembly 130 is applied to the nerve 113, such as during surgery to implant the IMD 110, and coupled to an external programming system 120 to determine optimal parameter settings for the patient receiving the IMD 110. The removable cuff assembly 130 includes one or more electrodes 136. The removable cuff assembly 130 is easily attached to, and removed from, the nerve 113 during implantation and with minimal risk of damaging the nerve. In accordance with various preferred embodiments, the removable cuff assembly insulates the electrodes 136 from body tissues (other than nerve 113). Lead assembly 132 is coupled to a programming system 120. The electrodes 136 in the cuff assembly 130 are used to detect electrical activity, such as voltage or compound action potential response on the nerve 113 as a result of an electrical signal generated by the IMD 110 and applied to the nerve.


Referring still to FIG. 1, the programming system 120 comprises a programming device 124 coupled to a wand 128. The programming device 124 may comprise a personal computer, handheld computer, or other suitable computing devices consistent with the description contained herein. As explained below, the IMD 110 includes a transceiver (such as a coil) and the wand 128 also includes a transceiver. The transceivers in the IMD 110 and wand 128 permit signals to be communicated wirelessly and non-invasively between them. Via the wand 128, the programming system 120 provides one or more parameters to the IMD for the IMD to generate a programmed electrical signal. The programming system also commands the IMD 110 to apply electrical signal to the nerve in accordance with the programming system-specified parameter(s). Electrical activity on the nerve as a result of the IMD-provided electrical signal is sensed by the cuff assembly 130, and communicated to the programming system 120. Following implantation, the programming system 120 can be used to monitor the performance of the implanted IMD 110 and download new programming information into the device to alter its operation as desired.



FIG. 2 shows a block diagram of one embodiment of the programming system 120. As shown, the programming system 120 includes the programming device 124, the wand 128, an amplifier 244, and an analog-to-digital (A/D) converter 246. The programming device 124 preferably comprises a handheld computer. The programming system 120 generally assists, controls, and/or programs the IMD 110 and receives signals representative of the electrical activity on the target nerve 113 via electrodes 136. Under the control of the programming system 120, the IMD 110 generates an electrical pulse signal to stimulate nerve 113 in a patient.


Programming device 124 preferably includes a central processing unit (CPU) 236 such as a low-power, mixed-signal microcontroller. In general, any suitable processor can be used to implement the functionality performed by the programming device 124 as explained herein. It will be appreciated that some features of the programming system 120 may also be provided in whole, or in part, by the IMD 110, and vice versa. Thus, while certain features of the present invention may be described as being included as part of the IMD 110, it is not intended thereby to preclude embodiments in which the features are provided by the programming system 120. Likewise, describing certain features herein as part of the programming system 120 is not intended to preclude embodiments in which the features are included as part of the IMD 110.


The CPU 236 is preferably coupled to storage 250. The CPU 236 may interpret, manipulate, and/or analyze the data received from removable cuff assembly electrodes 136. The storage 250 may comprise volatile (e.g., random access memory) and/or non-volatile storage (e.g., read only memory (ROM), electrically-erasable programmable ROM (EEPROM), Flash memory, etc.). Storage 250 may comprise any suitable storage medium. Examples of suitable storage media include without limitation, USB flash drives, Compact Flash cards, memory sticks, Smart Media cards, Secure Digital (SD) cards, xD cards, CD-ROM, DVD-ROM, tape drives, Zip disks, floppy disk, RAM, hard drives, etc. The storage 250 may be used to store code (e.g., diagnostic software 380, discussed below) that is executed by the CPU 236. The executable code may be executed directly from the non-volatile memory or copied to the volatile memory for execution therefrom.


The storage 250 may also be used to store the parameter settings, any one or more of which can be programmed into the IMD 110 by the programming system 120. The parameters include, for example, pulse width, current amplitude, frequency, on time, off time, etc. The parameters define the nature of the electrical signal to be delivered to the nerve 113.


In accordance with certain embodiments, the programming device 124 includes the diagnostic program 380. During implantation, the programming system 120 can be used and the diagnostic software 380 executed to cause the IMD 110 to repeatedly stimulate the patient's nerve 113 in accordance with various programming system-provided parameters. Through cuff assembly 130, the programming system is informed of the electrical activity on the nerve that results from the various IMD-generated electrical signals. The resulting evoked electrical activity and sensed data are analyzed by, for example, the programming system 120 to determine lower and upper threshold settings. In at least one embodiment, the diagnostic software 280 causes a first stimulation parameter (e.g., current amplitude) to be iteratively adjusted while keeping a second parameter (e.g., pulse width) constant. This process is referred to as a parameter sweep. A lower threshold setting represents the parameter settings that correspond to a lower threshold. The term “lower threshold” is the minimum electrical stimulation level necessary to evoke a compound action potential response.


An upper threshold setting represents the parameter settings corresponding to an upper threshold. The upper threshold is an electrical stimulation level above which no statistically significant increase in action potential is obtainable by further increasing the level of stimulation (i.e., the point of diminishing returns).


As explained above, the diagnostic software 380 operates to adjust iteratively a first parameter (e.g., current amplitude) while holding a second parameter constant (e.g., pulse width). Once that parameter sweep is completed, the diagnostic software 380 may adjust the second parameter (e.g., pulse width) to one or more different settings and again perform a first parameter sweep for each subsequent second parameter setting. The diagnostic software 380 is described in more detail below.


The programming device also includes a display 232. Preferably, the programming device 124 is capable of displaying a waveform of a compound action potential from a nerve on the display 232. In preferred embodiments, a user may input parameter settings using an input device 238 through a graphical user interface on the display 232, or other input means. Storage 250 stores the measured compound action potential amplitudes received from sensing electrode 130 as well as the corresponding parameter settings which caused the compound action potential.


In certain embodiments, the programming system 120 comprises an amplifier 244 and an A/D converter 246. The amplifier 244 and A/D converter 246 may be part of the programming device 124 or separate from the programming device 124. The amplifier 244 amplifies analog signals received from sensing electrodes 136 while the A/D converter 246 converts the amplified analog signal from the electrodes 136 to a digital signal representation for the programming device 124 to process. In this embodiment, the parameter settings, lower threshold settings, upper threshold settings, and measured amplitudes are stored on storage 250.



FIG. 3 illustrates a flow chart depicting an embodiment of a method 300 for threshold optimization for nerve stimulation therapy. In this embodiment, the method 300 is performed intra-operatively i.e. during implantation of the IMD 100. Alternatively, with implantation of a permanent sensing electrode, method 300 may be performed after implantation of the IMD 110. Preferably, the method 300 is performed automatically (i.e., without the need for any user intervention) via diagnostic software 380. However, in some embodiments, the entire method or portions of the method are performed manually where certain actions require user input.


In block 302, the diagnostic software 380 is initiated. Typically, a user initiates the diagnostic software 380 by way of the programming device 124. The programming device 124 then instructs the IMD 110 to proceed and execute the diagnostic software 380. The diagnostic software 380 preferably is stored in storage 250 of programming device 124 and is executed by the CPU 236. Alternatively, the diagnostic software 380 is downloaded from the programming device 124 to the IMD 110 immediately before starting method 300. In another embodiment, the diagnostic software 380 is pre-loaded in the IMD 110. In yet other embodiments, method 300 is performed manually without the need for diagnostic software 380.


In general, the diagnostic software 380 contains one or more parameters at pre-programmed settings at which to stimulate the nerve to determine lower and upper threshold settings. The diagnostic software 380 may also define a preset range for each parameter. By way of example only, the diagnostic software may contain instructions to stimulate the nerve at three pulse widths in 100 μs increments (250 μsec, 350 μsec, and 450 μsec,) and at each pulse width, testing seven current levels ranging from 0.25 mA to 1.75 mA at 0.25 mA intervals (See Table 1).











TABLE 1





Pulse width 250 μsec
Pulse width 350 μsec
Pulse width 450 μsec


Output Current (mA)
Output Current (mA)
Output Current (mA)

















0.25
0.25
0.25


0.5
0.5
0.5


0.75
0.75
0.75


1.0
1.0
1.0


1.25
1.25
1.25


1.5
1.5
1.5


1.75
1.75
1.75









However, the diagnostic software 380 may comprise any number of settings for a particular parameter. In an actual implementation, a “sweep” could consist of any desired step change in current and pulse width, e.g., smaller or larger increments than the 0.25 mA and 100 μsec examples discussed above. By providing smaller step sizes, a better resolution of the threshold window may be provided. In alternative embodiments, before implantation, a user may enter the desired range, parameters, parameter settings, and/or parameter increments to be tested into the programming device 124.


The diagnostic software 380 also comprises an initial parameter setting which is incapable of evoking a compound action potential response in a nerve. In block 303, the programming device 124 instructs the IMD 110 to begin at the initial parameter setting by programming the IMD 110 with the initial parameter values. Once the IMD 110 has been set to the initial parameter values, the IMD 110 delivers the electrical signal to the nerve in block 304 according to the initial parameter setting in block 303. Typically, the programming device 124 instructs the IMD 110 to deliver the electrical signal, which preferably comprises one more pulses in accordance with the specified parameter settings (e.g., 10 pulses/sec at a specified current amplitude for 5 seconds).


In block 306, programming device 124 measures and stores the amplitudes of the response in data storage 250. In embodiments where a plurality of electrical pulses are delivered at a parameter setting, programming device 124 calculates, for example, an average amplitude from the plurality of responses caused by the plurality of electrical pulses. The programming device 124 then records the calculated average amplitude in storage 250. Further, in block 307, the present parameter setting programmed into the IMD 110 is recorded in data storage 250 and associated with stored response data.


In further embodiments, block 306 comprises detecting a trigger signal 180 from the IMD 110 (FIG. 1). The trigger signal 180 is asserted by the IMD 110 upon the IMD providing an electrical signal to the nerve 113. The trigger signal 180 thus indicates when the nerve is being stimulated by the IMD 110. The programming device 124 may ignore electrical activity sensed from the nerve until it receives a trigger signal 180 from the IMD 110 and then begin sensing the nerve's electrical activity for a period of time based on the assertion of the trigger signal. The trigger signal enables the programming device 124 to avoid recording shock artifacts and activity unrelated to the actual nerve response.


In block 308, the diagnostic software 380 checks to see if further first parameter settings (e.g., current amplitudes) are to be tested. If additional first parameter settings to be tested during the present parameter sweep, the method proceeds to block 309. At block 309, programming device 124 instructs the IMD 110 to adjust iteratively the first parameter (e.g., current) while keeping the second parameter (e.g., pulse width) constant. In other words, electrical signals are delivered at a plurality of different current amplitudes, but at a constant pulse width. Examples of parameters that may be varied include without limitation current amplitude, pulse-width, frequency, duty cycle, etc. Any combination and number of parameters may be tested. After adjusting the first parameter, the programming device 124 then instructs the IMD 110 to deliver the electrical signal at the new parameter setting at block 304.


If all first parameter settings have been tested for a given second parameter setting, the method 300 proceeds to block 311. If the diagnostic software 380 contains instructions for additional second parameters to be tested, the method proceeds to block 310. At block 310, the second parameter is adjusted. For example, the pulse width may be changed from 250 μsec to 350 μsec. The programming device 124 also instructs the IMD 110 to reset the first parameter to its initial setting. The process then proceeds to block 304 and the first parameter sweep is repeated, this time with a different second parameter.


Once the diagnostic software 380 has completed parameter sweeps for all of the second parameter settings, the method 300 proceeds to block 312. In block 312, the programming system 120 determines the lower and upper threshold settings for each second parameter setting. Thus, for example, if a current amplitude sweep is performed for each of three pulse widths, the programming system 120 determines three sets of lower/upper threshold settings—one for each pulse width. The lower threshold setting comprises the lowest first parameter setting (e.g., current amplitude) at which a compound action potential is detected via the electrodes 136 for a given second parameter setting. In an alternative embodiment (not shown), upper and/or lower thresholds may be determined at any desired point within a sweep of the first parameter or the second parameter. Such a method could be used to abort unnecessary parameter sweep settings and thereby avoid unnecessary electrical signals being delivered to the patient. For example, once an upper threshold has been determined during a first parameter sweep, the system may abort any programmed first parameter settings exceeding that for the determined upper threshold.


The upper threshold setting comprises a maximum first parameter setting above which, all else being equal, no statistically significant increase in action potential magnitude is observed for a given second parameter setting. In one embodiment, a current amplitude parameter sweep is performed for a given pulse width. The current amplitudes programmed into the IMD 110 start low and are increased by the programming system 120. For each IMD current amplitude, the programming system senses the resulting electrical response (voltage potential) induced on the nerve. At some point, the increase in nerve response voltage potential resulting from one current amplitude to the next (i.e. higher) current amplitude, while possibly increasing, ceases to increase very much. A determination can thus be made that, if the nerve response voltage potential does not increase more than a specified amount, the upper threshold setting has been reached. The specified amount can be expressed in terms of voltage potential or a percentage of a predetermined value of voltage potential. The specified amount can be hard-coded into the diagnostic software 380 or programmable.


Once the upper threshold and lower threshold settings have been determined, the parameter settings are stored in storage 250 and identified as the upper and lower threshold settings. In a preferred embodiment, the result of method 300 is, at least in part, the lower and upper threshold settings corresponding to each second parameter setting (pulse width). The result of method 300 may also include a set of parameter settings between the lower and upper threshold settings as well as the corresponding recorded compound action potential amplitudes. The upper and lower threshold settings may be downloadable or recorded on removable storage medium. A physician or user may utilize the information to plot customized operating curves for each patient on the display 232. An example of such a plot is shown in FIG. 4. FIG. 4 shows three curves 400, 402, and 404 with each curve plotting sensed nerve voltage versus signal current amplitude. The three curves 400, 402, and 404 illustrate progressively increasing pulse width settings from right to left, respectively. For each curve, the lower and upper threshold settings are illustrated.


In a variation of method 300, amplitudes and parameters may not be recorded until a lower threshold is reached. If a compound action potential response has not occurred in response to electrical stimulation, the method 300 may proceed to a separate lower threshold determining step (not shown). If a lower threshold has not been reached, blocks 304, 306 and 308 are repeated until the programming device 120 determines that a compound action potential response occurs. Once a lower threshold is reached, the data i.e. parameter setting, compound action potential amplitude, is recorded in data storage 250 and identified as a lower threshold setting. After a lower threshold has been reached, data may be continuously recorded in storage 250 until an upper threshold is reached.


In an embodiment, the programming device performs a separate upper threshold determining step after block 307 (not shown). If the programming device 124 has determined that an upper threshold has not been reached, then the method 300 may proceed to 308. However, if the programming device has determined that an upper threshold has been reached, the corresponding parameter settings may be identified and the method 300 may proceed to block 311.


The system and method described herein cause measurements to be made for a given patient to determine, for each of a plurality of pulse widths (or other parameter), the minimum amount of current (or other parameter) needed to evoke an electrical response on a nerve and an upper amount of current above which it is determined that no further therapeutic benefit is achieved and battery would simply be wasted. Healthcare providers can use this data to treat the patient. The data includes a suitable or optimal range of values to be programmed for that particular patient.


Although certain embodiments of the present invention have been described in detail, it should be understood that various changes, substitutions and alterations may be made herein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims
  • 1. A method, comprising: a) automatically delivering an electrical signal to a cranial nerve of a patient according to at least a first parameter and a second parameter;b) automatically measuring an electrical response of the nerve to the electrical signal;c) automatically adjusting the first parameter while keeping the second parameter at a first test setting;d) automatically repeating operations a) through c) to acquire a first plurality of electrical responses;e) determining a lower threshold for the first parameter with the second parameter at the first test setting and an upper threshold for the first parameter with the second parameter at the first test setting, based on the first plurality of electrical responses, wherein the upper threshold corresponds to an electrical signal level above which increasing the first parameter does not cause a significant increase in the electrical response;automatically adjusting the second parameter to at least one different test setting and then automatically repeating operations (a) through (e) to determine lower and upper thresholds for the first parameter with the second parameter at the different test setting;recording the determined lower and upper thresholds and the corresponding test settings for the first and second parameters;determining customized treatment parameters for the patient, based on the recorded information; andprogramming an implantable medical device (IMD) for the patient to treat the patient according to the customized treatment parameters.
  • 2. The method of claim 1, wherein the lower threshold corresponds to a minimum electrical signal level necessary to evoke a compound action potential response on the nerve.
  • 3. The method of claim 1, further comprising, prior to operation (a), defining an initial first and second parameter setting, wherein said initial first and second parameter setting defines an electrical signal that does not evoke a compound action potential response.
  • 4. The method of claim 1, wherein said first parameter comprises a parameter selected from the group consisting of current amplitude, frequency, pulse width, on time, off time, and duty cycle.
  • 5. The method of claim 1, further comprising: implanting the IMD into the patient; andwherein operations (a) through (d) are performed during implantation of the IMD into of the patient.
  • 6. The method of claim 1, wherein (b) further comprises measuring an electrical response of said nerve to a trigger signal received from an electrical signal generator, said trigger signal indicating an occurrence of said electrical signal.
  • 7. The method of claim 1, wherein operations (a) through (e) are performed after implantation of the IMD into the patient.
  • 8. The method of claim 1, further comprising attaching a temporary electrode to said nerve to measure said electrical response.
  • 9. A method according to claim 1, wherein: the first parameter pertains to current amplitude and the second parameter pertains to pulse width.
  • 10. The method of claim 9, further comprising defining a range of current amplitudes for the first parameter prior to operation (a).
  • 11. The method of claim 9, wherein the operation of recording the determined lower and upper threshold and the corresponding test settings for the first and second parameters comprises storing measurements of the electrical responses and the corresponding current amplitudes and pulse widths on a tangible storage medium.
  • 12. The method of claim 9, wherein the operation of determining a lower threshold comprises determining a current amplitude and a pulse width that corresponds to a minimum electrical signal level necessary to evoke a compound action potential.
  • 13. The method of claim 9, wherein determining an upper threshold comprises determining a current amplitude and a pulse width corresponding to an electrical signal level where increasing the current amplitude does not cause a significant increase in the electrical response.
  • 14. A method according to claim 1, further comprising: using the recoded information to plot multiple operating curves, wherein each operating curve depicts measured behavior of the cranial nerve of the patient at a different setting for the second parameter.
  • 15. A system, comprising: a processor;an amplifier and an analog-to-digital (A/D) converter coupled to the processor, the amplifier and A/D converter operable to convert data from a sensor electrode coupled to a cranial nerve of a patient into data for the processor;a transceiver coupled to the processor, the transceiver operable to communicate with an implantable medical device (IMD);a storage medium responsive to the processor; andsoftware stored in the storage medium and executable on the processor, wherein the software, when executed, causes the processor to perform operations comprising: a) instructing the IMD to deliver a plurality of electrical signals to the cranial nerve according to at least first and second parameters, wherein the first parameter is iteratively adjusted automatically, while the second parameter remains fixed at a first test setting;b) automatically detecting a first plurality of electrical responses of the nerve to the plurality of electrical signals;c) automatically determining a lower threshold for the first parameter with the second parameter at the first test setting and an upper threshold for the first parameter with the second parameter at the first test setting, based on the first plurality of electrical responses, wherein the upper threshold corresponds to an electrical signal level above which increasing the first parameter does not cause a significant increase in the electrical response;automatically executing one or more iterations of a process comprising: i) adjusting the second parameter to a different test setting and thenii) repeating operations (a) through (c) to determine a lower threshold and an upper threshold for the first parameter with the second parameter at the different test setting; andautomatically recording multiple sets of lower and upper thresholds and the corresponding test settings for the first and second parameters, with each set corresponding to a different setting for the second parameter;determining customized treatment parameters for the patient, based on the recorded information; andprogramming an implantable medical device (IMD) for the patient to treat the patient according to the customized treatment parameters.
  • 16. The system of claim 15, wherein the system comprises a programming device coupled to a removable cuff assembly comprising at least one sensing electrode.
  • 17. The system of claim 15, wherein the operations further comprise: detecting a trigger signal received by the system directly from said IMD; andautomatically detecting the first plurality of electrical responses of the nerve to the plurality of electrical signals, in response to detecting the trigger signal.
  • 18. A system according to claim 15, wherein the operations further comprise: using the recoded information to plot multiple operating curves, wherein each operating curve depicts measured behavior of the cranial nerve of the patient at a different setting for the second parameter.
US Referenced Citations (545)
Number Name Date Kind
3760812 Timm et al. Sep 1973 A
3796221 Hagfors Mar 1974 A
4107469 Jenkins Aug 1978 A
4305402 Katims Dec 1981 A
4338945 Kosugi et al. Jul 1982 A
4424812 Lesnick Jan 1984 A
4431000 Butler et al. Feb 1984 A
4459989 Borkan Jul 1984 A
4503863 Katims Mar 1985 A
4541432 Molina-Negro et al. Sep 1985 A
4573481 Bullara Mar 1986 A
4577316 Schiff Mar 1986 A
4590946 Loeb May 1986 A
4592339 Kuzmak et al. Jun 1986 A
4606349 Livingston et al. Aug 1986 A
4608985 Crish et al. Sep 1986 A
4612934 Borkan Sep 1986 A
4625308 Kim et al. Nov 1986 A
4628942 Sweeney et al. Dec 1986 A
4649936 Ungar et al. Mar 1987 A
4702254 Zarbara Oct 1987 A
4793353 Borkan Dec 1988 A
4867164 Zabara Sep 1989 A
4920979 Bullara May 1990 A
4949721 Toriu et al. Aug 1990 A
4977895 Tannenbaum Dec 1990 A
5025807 Zarbara Jun 1991 A
5081987 Nigam Jan 1992 A
5154172 Terry, Jr. et al. Oct 1992 A
5179950 Stanislaw Jan 1993 A
5186170 Varrichio et al. Feb 1993 A
5188104 Wernicke et al. Feb 1993 A
5205285 Baker, Jr. Apr 1993 A
5215086 Terry, Jr. et al. Jun 1993 A
5222494 Baker, Jr. Jun 1993 A
5231988 Wernicke et al. Aug 1993 A
5235980 Varrichio et al. Aug 1993 A
5263480 Wernicke et al. Nov 1993 A
5269303 Wernicke et al. Dec 1993 A
5299569 Wernicke et al. Apr 1994 A
5330507 Schwartz Jul 1994 A
5330515 Rutecki et al. Jul 1994 A
5334221 Bardy Aug 1994 A
5354320 Schaldach et al. Oct 1994 A
5411531 Hill et al. May 1995 A
5411540 Edell et al. May 1995 A
5423872 Cigaina Jun 1995 A
5507784 Hill et al. Apr 1996 A
5522862 Testerman et al. Jun 1996 A
5522865 Schulman et al. Jun 1996 A
5540730 Terry, Jr. et al. Jul 1996 A
5540734 Zabara Jul 1996 A
5571150 Wernicke et al. Nov 1996 A
5601617 Loeb et al. Feb 1997 A
5611350 John Mar 1997 A
5645570 Corbucci Jul 1997 A
5651378 Matheny et al. Jul 1997 A
5658318 Stroetmann et al. Aug 1997 A
5690681 Geddes et al. Nov 1997 A
5690688 Noren et al. Nov 1997 A
5690691 Chen et al. Nov 1997 A
5700282 Zabara Dec 1997 A
5702428 Tippey et al. Dec 1997 A
5702429 King Dec 1997 A
5707400 Terry, Jr. et al. Jan 1998 A
5755750 Petruska et al. May 1998 A
5792212 Weijand Aug 1998 A
5800474 Benabid et al. Sep 1998 A
5814092 King Sep 1998 A
5836994 Bourgeois Nov 1998 A
5861014 Familoni Jan 1999 A
5913882 King Jun 1999 A
5916239 Geddes et al. Jun 1999 A
5928272 Adkins et al. Jul 1999 A
5941906 Barreras, Sr. et al. Aug 1999 A
5995868 Dorfmeister et al. Nov 1999 A
6002966 Loeb et al. Dec 1999 A
6016449 Fischell et al. Jan 2000 A
6041258 Cigaina et al. Mar 2000 A
6083249 Familoni Jul 2000 A
6101412 Duhaylongsod Aug 2000 A
6104955 Bourgeois Aug 2000 A
6104956 Naritoku et al. Aug 2000 A
6115628 Stadler et al. Sep 2000 A
6132361 Epstein et al. Oct 2000 A
6141590 Renirie et al. Oct 2000 A
6161044 Silverstone Dec 2000 A
6167311 Rezai Dec 2000 A
6175764 Loeb et al. Jan 2001 B1
6188929 Giordano Feb 2001 B1
6219580 Faltys et al. Apr 2001 B1
6221908 Kilgard et al. Apr 2001 B1
6238423 Bardy May 2001 B1
6249704 Maltan et al. Jun 2001 B1
6253109 Gielen Jun 2001 B1
6266564 Hill et al. Jul 2001 B1
6269270 Boveja Jul 2001 B1
6295472 Rubinstein et al. Sep 2001 B1
6304775 Iasemidis et al. Oct 2001 B1
6308102 Sieracki Oct 2001 B1
6324421 Stadler et al. Nov 2001 B1
6327503 Familoni Dec 2001 B1
6339725 Naritoku et al. Jan 2002 B1
6341236 Osorio et al. Jan 2002 B1
6353762 Baudino et al. Mar 2002 B1
6356788 Boveja Mar 2002 B2
6358203 Bardy Mar 2002 B2
6366813 DiLorenzo Apr 2002 B1
6366814 Boveja Apr 2002 B1
6374140 Rise Apr 2002 B1
6381493 Stadler et al. Apr 2002 B1
6381496 Meadows et al. Apr 2002 B1
6381499 Taylor et al. Apr 2002 B1
6418344 Rezai et al. Jul 2002 B1
6425852 Epstein et al. Jul 2002 B1
6438423 Rezai et al. Aug 2002 B1
6449512 Boveja Sep 2002 B1
6453199 Kobozev Sep 2002 B1
6459936 Fischell et al. Oct 2002 B2
6463328 John Oct 2002 B1
6466822 Pless Oct 2002 B1
6473639 Fischell et al. Oct 2002 B1
6473644 Terry, Jr. et al. Oct 2002 B1
6477417 Levine Nov 2002 B1
6477418 Plicchi et al. Nov 2002 B2
6480743 Kirkpatrick et al. Nov 2002 B1
6484132 Hively et al. Nov 2002 B1
6487446 Hill et al. Nov 2002 B1
6505074 Boveja et al. Jan 2003 B2
6522928 Whitehurst et al. Feb 2003 B2
6532388 Hill et al. Mar 2003 B1
6549804 Osorio et al. Apr 2003 B1
6556868 Naritoku et al. Apr 2003 B2
6564102 Boveja May 2003 B1
6565503 Leysieffer et al. May 2003 B2
6579280 Kovach et al. Jun 2003 B1
6587719 Barrett et al. Jul 2003 B1
6587724 Mann Jul 2003 B2
6587726 Lurie et al. Jul 2003 B2
6587727 Osorio et al. Jul 2003 B2
6591138 Fischell et al. Jul 2003 B1
6594524 Esteller et al. Jul 2003 B2
6600953 Flesler et al. Jul 2003 B2
6609025 Barrett et al. Aug 2003 B2
6609030 Rezai et al. Aug 2003 B1
6609031 Law et al. Aug 2003 B1
6610713 Tracey Aug 2003 B2
6611715 Boveja Aug 2003 B1
6612983 Marchal Sep 2003 B1
6615081 Boveja Sep 2003 B1
6615084 Cigaina Sep 2003 B1
6615085 Boveja Sep 2003 B1
6622038 Barrett et al. Sep 2003 B2
6622041 Terry, Jr. et al. Sep 2003 B2
6622047 Barrett et al. Sep 2003 B2
6628987 Hill et al. Sep 2003 B1
6656960 Puskas Dec 2003 B2
6662053 Borkan Dec 2003 B2
6668191 Boveja Dec 2003 B1
6671547 Lyster et al. Dec 2003 B2
6671555 Gielen et al. Dec 2003 B2
6671556 Osorio et al. Dec 2003 B2
6684104 Gordon et al. Jan 2004 B2
6684105 Cohen et al. Jan 2004 B2
6690973 Hill et al. Feb 2004 B2
6690974 Archer et al. Feb 2004 B2
6708064 Rezai Mar 2004 B2
6721603 Zabara et al. Apr 2004 B2
6731979 MacDonald May 2004 B2
6731986 Mann May 2004 B2
6754536 Swoyer et al. Jun 2004 B2
6760626 Boveja Jul 2004 B1
6764498 Mische Jul 2004 B2
6768969 Nikitin et al. Jul 2004 B1
6775573 Schuler et al. Aug 2004 B2
6793670 Osorio et al. Sep 2004 B2
6819956 DiLorenzo Nov 2004 B2
6826428 Chen et al. Nov 2004 B1
6832114 Whitehurst et al. Dec 2004 B1
6853862 Marchal et al. Feb 2005 B1
6885888 Rezai Apr 2005 B2
6895278 Gordon May 2005 B1
6904390 Nikitin et al. Jun 2005 B2
6907295 Gross et al. Jun 2005 B2
6920357 Osorio et al. Jul 2005 B2
6934580 Osorio et al. Aug 2005 B1
6944501 Pless Sep 2005 B1
6961618 Osorio et al. Nov 2005 B2
7006859 Osorio et al. Feb 2006 B1
7006872 Gielen et al. Feb 2006 B2
7050856 Stypulkowski May 2006 B2
7054686 MacDonald May 2006 B2
7146217 Firlik et al. Dec 2006 B2
7167750 Knudson et al. Jan 2007 B2
7177678 Osorio et al. Feb 2007 B1
7188053 Nikitin et al. Mar 2007 B2
7204833 Osorio et al. Apr 2007 B1
7209787 DiLorenzo Apr 2007 B2
7231254 DiLorenzo Jun 2007 B2
7236830 Gliner Jun 2007 B2
7236831 Firlik et al. Jun 2007 B2
7242983 Frei et al. Jul 2007 B2
7242984 DiLorenzo Jul 2007 B2
7340302 Falkenberg et al. Mar 2008 B1
20010034541 Lyden Oct 2001 A1
20010037220 Merry et al. Nov 2001 A1
20020052539 Haller et al. May 2002 A1
20020065509 Lebel et al. May 2002 A1
20020072782 Osorio et al. Jun 2002 A1
20020082480 Riff et al. Jun 2002 A1
20020099412 Fischell et al. Jul 2002 A1
20020099417 Naritoku et al. Jul 2002 A1
20020116030 Rezai Aug 2002 A1
20020120310 Linden et al. Aug 2002 A1
20020133204 Hrdlicka Sep 2002 A1
20020143368 Bakels et al. Oct 2002 A1
20020151939 Rezai Oct 2002 A1
20020153901 Davis et al. Oct 2002 A1
20020188214 Misczynski et al. Dec 2002 A1
20030028226 Thompson et al. Feb 2003 A1
20030055457 MacDonald Mar 2003 A1
20030074032 Gliner Apr 2003 A1
20030083716 Nicolelis et al. May 2003 A1
20030088274 Gliner et al. May 2003 A1
20030095648 Kaib et al. May 2003 A1
20030097161 Firlik et al. May 2003 A1
20030109903 Berrang et al. Jun 2003 A1
20030125786 Gliner et al. Jul 2003 A1
20030130706 Sheffield et al. Jul 2003 A1
20030135248 Stypulkowski Jul 2003 A1
20030144711 Pless et al. Jul 2003 A1
20030144829 Geatz et al. Jul 2003 A1
20030181954 Rezai Sep 2003 A1
20030181958 Dobak Sep 2003 A1
20030181959 Dobak Sep 2003 A1
20030208212 Cigaina Nov 2003 A1
20030210147 Humbard Nov 2003 A1
20030212440 Boveja Nov 2003 A1
20030236558 Whitehurst et al. Dec 2003 A1
20040006278 Webb et al. Jan 2004 A1
20040015205 Whitehurst et al. Jan 2004 A1
20040036377 Mezinis Feb 2004 A1
20040039424 Merritt et al. Feb 2004 A1
20040088024 Firlik et al. May 2004 A1
20040111139 McCreery Jun 2004 A1
20040112894 Varma Jun 2004 A1
20040122484 Hatlestad et al. Jun 2004 A1
20040122485 Stahmann et al. Jun 2004 A1
20040122489 Mazar et al. Jun 2004 A1
20040133119 Osorio et al. Jul 2004 A1
20040138516 Osorio et al. Jul 2004 A1
20040138517 Osorio et al. Jul 2004 A1
20040138518 Rise et al. Jul 2004 A1
20040138647 Osorio et al. Jul 2004 A1
20040138711 Osorio et al. Jul 2004 A1
20040147969 Mann et al. Jul 2004 A1
20040147992 Bluger et al. Jul 2004 A1
20040153129 Pless et al. Aug 2004 A1
20040158119 Osorio et al. Aug 2004 A1
20040158165 Yonce et al. Aug 2004 A1
20040167583 Knudson et al. Aug 2004 A1
20040167587 Thompson Aug 2004 A1
20040172085 Knudson et al. Sep 2004 A1
20040172088 Knudson et al. Sep 2004 A1
20040172089 Whitehurst et al. Sep 2004 A1
20040172091 Rezai Sep 2004 A1
20040172094 Cohen et al. Sep 2004 A1
20040176812 Knudson et al. Sep 2004 A1
20040176831 Gliner et al. Sep 2004 A1
20040193231 David et al. Sep 2004 A1
20040199146 Rogers et al. Oct 2004 A1
20040199187 Loughran Oct 2004 A1
20040199212 Fischell et al. Oct 2004 A1
20040210270 Erickson Oct 2004 A1
20040210274 Bauhahn et al. Oct 2004 A1
20040249302 Donoghue et al. Dec 2004 A1
20040249416 Yun et al. Dec 2004 A1
20040260346 Overall et al. Dec 2004 A1
20040263172 Gray et al. Dec 2004 A1
20050004615 Sanders Jan 2005 A1
20050004621 Boveja et al. Jan 2005 A1
20050010262 Rezai et al. Jan 2005 A1
20050015128 Rezai et al. Jan 2005 A1
20050016657 Bluger Jan 2005 A1
20050020887 Goldberg Jan 2005 A1
20050021092 Yun et al. Jan 2005 A1
20050021103 DiLorenzo Jan 2005 A1
20050021104 DiLorenzo Jan 2005 A1
20050021105 Firlik et al. Jan 2005 A1
20050021106 Firlik et al. Jan 2005 A1
20050021107 Firlik et al. Jan 2005 A1
20050021118 Genau et al. Jan 2005 A1
20050027284 Lozano et al. Feb 2005 A1
20050028026 Shirley et al. Feb 2005 A1
20050033378 Sheffield et al. Feb 2005 A1
20050033379 Lozano et al. Feb 2005 A1
20050038326 Mathur Feb 2005 A1
20050038484 Knudson et al. Feb 2005 A1
20050049515 Misczynski et al. Mar 2005 A1
20050049655 Boveja et al. Mar 2005 A1
20050060007 Goetz Mar 2005 A1
20050060008 Goetz Mar 2005 A1
20050060009 Goetz Mar 2005 A1
20050060010 Goetz Mar 2005 A1
20050065562 Rezai Mar 2005 A1
20050065573 Rezai Mar 2005 A1
20050065574 Rezai Mar 2005 A1
20050065575 Dobak Mar 2005 A1
20050070971 Fowler et al. Mar 2005 A1
20050075679 Gliner et al. Apr 2005 A1
20050075680 Lowry et al. Apr 2005 A1
20050075681 Rezai et al. Apr 2005 A1
20050075691 Phillips et al. Apr 2005 A1
20050075701 Shafer Apr 2005 A1
20050075702 Shafer Apr 2005 A1
20050088145 Loch Apr 2005 A1
20050101873 Misczynski et al. May 2005 A1
20050102002 Salo et al. May 2005 A1
20050107753 Rezai et al. May 2005 A1
20050107842 Rezai May 2005 A1
20050107858 Bulger May 2005 A1
20050113705 Fischell et al. May 2005 A1
20050113744 Donoghue et al. May 2005 A1
20050119703 DiLorenzo Jun 2005 A1
20050124901 Misczynski et al. Jun 2005 A1
20050131467 Boveja et al. Jun 2005 A1
20050131485 Knudson et al. Jun 2005 A1
20050131486 Boveja et al. Jun 2005 A1
20050131493 Boveja et al. Jun 2005 A1
20050131506 Rezai et al. Jun 2005 A1
20050137480 Alt et al. Jun 2005 A1
20050143781 Carbunaru et al. Jun 2005 A1
20050143786 Boveja et al. Jun 2005 A1
20050148893 Misczynski et al. Jul 2005 A1
20050148894 Misczynski et al. Jul 2005 A1
20050148895 Misczynski et al. Jul 2005 A1
20050153885 Yun et al. Jul 2005 A1
20050154425 Boveja et al. Jul 2005 A1
20050154435 Stern et al. Jul 2005 A1
20050159789 Brockway et al. Jul 2005 A1
20050161052 Rezai et al. Jul 2005 A1
20050165458 Boveja et al. Jul 2005 A1
20050177192 Rezai et al. Aug 2005 A1
20050177200 George et al. Aug 2005 A1
20050177206 North et al. Aug 2005 A1
20050182389 LaPorte et al. Aug 2005 A1
20050187590 Boveja et al. Aug 2005 A1
20050187593 Housworth et al. Aug 2005 A1
20050187796 Rosenfeld et al. Aug 2005 A1
20050192644 Boveja et al. Sep 2005 A1
20050197590 Osorio et al. Sep 2005 A1
20050222631 Dalal et al. Oct 2005 A1
20050228693 Webb et al. Oct 2005 A1
20050240246 Lee et al. Oct 2005 A1
20050245944 Rezai Nov 2005 A1
20050245971 Brockway et al. Nov 2005 A1
20050245990 Roberson Nov 2005 A1
20050261542 Riehl Nov 2005 A1
20050267550 Hess et al. Dec 2005 A1
20050272280 Osypka Dec 2005 A1
20050277872 Colby et al. Dec 2005 A1
20050277998 Tracey et al. Dec 2005 A1
20050283200 Rezai et al. Dec 2005 A1
20050283201 Machado et al. Dec 2005 A1
20050283208 Von Arx et al. Dec 2005 A1
20050288600 Zhang et al. Dec 2005 A1
20050288736 Persen et al. Dec 2005 A1
20050288760 Machado et al. Dec 2005 A1
20060009815 Boveja Jan 2006 A1
20060020292 Goetz et al. Jan 2006 A1
20060020491 Mongeon et al. Jan 2006 A1
20060041222 Dewing et al. Feb 2006 A1
20060041223 Dewing et al. Feb 2006 A1
20060041287 Dewing et al. Feb 2006 A1
20060047205 Ludomirsky et al. Mar 2006 A1
20060052843 Elsner et al. Mar 2006 A1
20060058597 Machado et al. Mar 2006 A1
20060064133 Von Arx et al. Mar 2006 A1
20060064134 Mazar et al. Mar 2006 A1
20060064143 Von Arx et al. Mar 2006 A1
20060069322 Zhang et al. Mar 2006 A1
20060074450 Boveja Apr 2006 A1
20060079936 Boveja Apr 2006 A1
20060079942 Deno et al. Apr 2006 A1
20060079945 Libbus Apr 2006 A1
20060085046 Rezai et al. Apr 2006 A1
20060094971 Drew May 2006 A1
20060095081 Zhou et al. May 2006 A1
20060100667 Machado et al. May 2006 A1
20060106430 Fowler et al. May 2006 A1
20060106431 Wyler et al. May 2006 A1
20060111644 Guttag et al. May 2006 A1
20060122525 Shusterman Jun 2006 A1
20060122667 Chavan et al. Jun 2006 A1
20060122864 Gottesman et al. Jun 2006 A1
20060135877 Giftakis et al. Jun 2006 A1
20060135881 Giftakis et al. Jun 2006 A1
20060155495 Osorio et al. Jul 2006 A1
20060161459 Rosenfeld et al. Jul 2006 A9
20060167497 Armstrong et al. Jul 2006 A1
20060173493 Armstrong et al. Aug 2006 A1
20060173522 Osorio Aug 2006 A1
20060190056 Fowler et al. Aug 2006 A1
20060195155 Firlik et al. Aug 2006 A1
20060195163 KenKnight et al. Aug 2006 A1
20060200206 Firlik et al. Sep 2006 A1
20060212091 Lozano et al. Sep 2006 A1
20060217780 Gliner et al. Sep 2006 A1
20060220839 Fifolt et al. Oct 2006 A1
20060224067 Giftakis et al. Oct 2006 A1
20060224191 DiLorenzo Oct 2006 A1
20060241697 Libbus et al. Oct 2006 A1
20060241725 Libbus et al. Oct 2006 A1
20060253164 Zhang et al. Nov 2006 A1
20060253168 Wyler et al. Nov 2006 A1
20060253169 Wyler et al. Nov 2006 A1
20060253170 Wyler et al. Nov 2006 A1
20060253171 Wyler et al. Nov 2006 A1
20060259095 Wyler et al. Nov 2006 A1
20060264730 Stivoric et al. Nov 2006 A1
20060265018 Smith et al. Nov 2006 A1
20060271409 Rosenfeld et al. Nov 2006 A1
20060293720 DiLorenzo Dec 2006 A1
20070027486 Armstrong et al. Feb 2007 A1
20070032734 Najafi et al. Feb 2007 A1
20070032834 Gliner et al. Feb 2007 A1
20070038262 Kieval et al. Feb 2007 A1
20070043392 Gliner et al. Feb 2007 A1
20070043400 Donders et al. Feb 2007 A1
20070055320 Weinand et al. Mar 2007 A1
20070073150 Gopalsami et al. Mar 2007 A1
20070073346 Corbucci et al. Mar 2007 A1
20070073355 DiLorenzo Mar 2007 A1
20070078491 Siejko et al. Apr 2007 A1
20070088403 Wyler et al. Apr 2007 A1
20070088404 Wyler et al. Apr 2007 A1
20070088405 Jacobson et al. Apr 2007 A1
20070100278 Frei et al. May 2007 A1
20070100397 Seeberger et al. May 2007 A1
20070100398 Sloan May 2007 A1
20070112393 Gliner et al. May 2007 A1
20070123946 Masoud May 2007 A1
20070135855 Foshee et al. Jun 2007 A1
20070142862 DiLorenzo Jun 2007 A1
20070142873 Esteller et al. Jun 2007 A1
20070149952 Bland et al. Jun 2007 A1
20070150011 Meyer et al. Jun 2007 A1
20070150014 Kramer et al. Jun 2007 A1
20070150024 Leyde et al. Jun 2007 A1
20070150025 DiLorenzo et al. Jun 2007 A1
20070156179 S.E. Jul 2007 A1
20070156450 Roehm et al. Jul 2007 A1
20070156626 Roehm et al. Jul 2007 A1
20070161919 DiLorenzo Jul 2007 A1
20070162086 DiLorenzo Jul 2007 A1
20070167991 DiLorenzo Jul 2007 A1
20070173901 Reeve Jul 2007 A1
20070179534 Firlik et al. Aug 2007 A1
20070179558 Gliner et al. Aug 2007 A1
20070179584 Gliner Aug 2007 A1
20070203548 Pawelzik et al. Aug 2007 A1
20070208212 DiLorenzo Sep 2007 A1
20070208390 Von Arx et al. Sep 2007 A1
20070213785 Osorio et al. Sep 2007 A1
20070233192 Craig Oct 2007 A1
20070238939 Giftakis et al. Oct 2007 A1
20070239210 Libbus et al. Oct 2007 A1
20070239211 Lorincz et al. Oct 2007 A1
20070239220 Greenhut et al. Oct 2007 A1
20070244407 Osorio Oct 2007 A1
20070249953 Frei et al. Oct 2007 A1
20070249954 Virag et al. Oct 2007 A1
20070250130 Ball et al. Oct 2007 A1
20070250145 Kraus et al. Oct 2007 A1
20070255147 Drew et al. Nov 2007 A1
20070255155 Drew et al. Nov 2007 A1
20070255330 Lee et al. Nov 2007 A1
20070255337 Lu Nov 2007 A1
20070260147 Giftakis et al. Nov 2007 A1
20070260289 Giftakis et al. Nov 2007 A1
20070265489 Fowler et al. Nov 2007 A1
20070265508 Sheikhzadeh-Nadjar et al. Nov 2007 A1
20070265536 Giftakis et al. Nov 2007 A1
20070272260 Nikitin et al. Nov 2007 A1
20070282177 Pilz Dec 2007 A1
20070287931 DiLorenzo Dec 2007 A1
20070288072 Pascual-Leone et al. Dec 2007 A1
20070299349 Alt et al. Dec 2007 A1
20070299473 Matos Dec 2007 A1
20070299480 Hill Dec 2007 A1
20080015651 Ettori et al. Jan 2008 A1
20080015652 Maile et al. Jan 2008 A1
20080021332 Brainard, III Jan 2008 A1
20080021341 Harris et al. Jan 2008 A1
20080021517 Dietrich Jan 2008 A1
20080021520 Dietrich Jan 2008 A1
20080027347 Harris et al. Jan 2008 A1
20080027348 Harris et al. Jan 2008 A1
20080027515 Harris et al. Jan 2008 A1
20080033502 Harris et al. Feb 2008 A1
20080033503 Fowler et al. Feb 2008 A1
20080033508 Frei et al. Feb 2008 A1
20080039895 Fowler et al. Feb 2008 A1
20080046035 Fowler et al. Feb 2008 A1
20080046037 Haubrich et al. Feb 2008 A1
20080046038 Hill et al. Feb 2008 A1
20080051852 Dietrich et al. Feb 2008 A1
20080058884 Matos Mar 2008 A1
20080064934 Frei et al. Mar 2008 A1
20080071323 Lowry et al. Mar 2008 A1
20080077028 Schaldach et al. Mar 2008 A1
20080081962 Miller et al. Apr 2008 A1
20080082132 Annest et al. Apr 2008 A1
20080103548 Fowler et al. May 2008 A1
20080114417 Leyde May 2008 A1
20080119900 DiLorenzo May 2008 A1
20080125820 Stahmann et al. May 2008 A1
20080139870 Gliner et al. Jun 2008 A1
20080146890 LeBoeuf et al. Jun 2008 A1
20080146959 Sheffield et al. Jun 2008 A1
20080161712 Leyde Jul 2008 A1
20080161713 Leyde et al. Jul 2008 A1
20080161879 Firlik et al. Jul 2008 A1
20080161880 Firlik et al. Jul 2008 A1
20080161881 Firlik et al. Jul 2008 A1
20080161882 Firlik et al. Jul 2008 A1
20080183096 Snyder et al. Jul 2008 A1
20080183097 Leyde et al. Jul 2008 A1
20080183245 Van Oort et al. Jul 2008 A1
20080195175 Balzer et al. Aug 2008 A1
20080200925 Johnson Aug 2008 A1
20080208013 Zhang et al. Aug 2008 A1
20080208074 Snyder et al. Aug 2008 A1
20080208285 Fowler et al. Aug 2008 A1
20080208291 Leyde et al. Aug 2008 A1
20080208781 Snyder Aug 2008 A1
20080215112 Firlik et al. Sep 2008 A1
20080215114 Stuerzinger et al. Sep 2008 A1
20080221644 Vallapureddy et al. Sep 2008 A1
20080234598 Snyder et al. Sep 2008 A1
20080249591 Gaw et al. Oct 2008 A1
20080255582 Harris Oct 2008 A1
20090018610 Gharib et al. Jan 2009 A1
20090054795 Misczynski et al. Feb 2009 A1
20090076567 Fowler et al. Mar 2009 A1
Foreign Referenced Citations (43)
Number Date Country
2339971 Jun 2004 CA
0402683 Dec 1990 EP
0713714 May 1996 EP
1139861 Dec 1999 EP
1070518 Jan 2001 EP
0944411 Apr 2001 EP
1145736 Oct 2001 EP
1483020 Dec 2004 EP
1486232 Dec 2004 EP
1595497 Nov 2005 EP
1120130 Dec 2005 EP
1647300 Apr 2006 EP
1202775 Sep 2006 EP
2026870 Feb 1980 GB
2079610 Jan 1982 GB
9302744 Feb 1993 WO
9417771 Aug 1994 WO
0064336 Nov 2000 WO
0108749 Feb 2001 WO
0064336 Jun 2002 WO
03085546 Oct 2003 WO
2004036377 Apr 2004 WO
2004064918 Aug 2004 WO
2004069330 Aug 2004 WO
2004071575 Aug 2004 WO
2004075982 Sep 2004 WO
2004112894 Dec 2004 WO
2005007120 Jan 2005 WO
2005007232 Jan 2005 WO
2005028026 Mar 2005 WO
2005053788 Jun 2005 WO
2005067599 Jul 2005 WO
2005101282 Oct 2005 WO
2006014760 Feb 2006 WO
2006019822 Feb 2006 WO
2006050144 May 2006 WO
2006122148 Nov 2006 WO
2007066343 Jun 2007 WO
2007072425 Jun 2007 WO
2007124126 Nov 2007 WO
2007124190 Nov 2007 WO
2007124192 Nov 2007 WO
2007142523 Dec 2007 WO
Related Publications (1)
Number Date Country
20070255351 A1 Nov 2007 US