The teachings herein are directed generally to medical devices and methods, including devices and methods for performing thrombectomies.
A thrombectomy is the removal of a blood clot from a blood vessel. Blood clots are made up of platelets and a meshwork of protein strands called fibrin. Clots in arteries have a different composition than clots in veins, in which clots in arteries contain mostly platelets and clots in veins contain mostly fibrin. Common applications for thrombectomies include any location in a blood vessel where a thrombus may occur. The thrombectomy removes the blood clot from the wall of a blood vessel to help alleviate symptoms of the condition, as well as the downstream complications that can include further vasculature complications, and perhaps even death from the release of an embolus.
State-of-the-art thrombectomy devices leave much to be desired, as many problems remain to be solved in the art, including (i) dragging expanded baskets along veins which can injure the vein walls or valves, (ii) clogging suction in the operation of the devices; (iii) removing too much blood while removing the thrombus; (iv) failing in the removal of tough or mature thrombi; and (v) failing to be versatile enough to handle each of the variety of soft, tough, fibrous, and hard tissue effectively, either not cutting all types of tissue or breaking up the tissue into pieces that can become dangerous emboli that can clog blood vessels downstream and, in some cases, cause death.
A versatile device that can handle each of the variety of soft, tough, fibrous, and hard tissue effectively, can also be useful in removing an atheroma from the lumen of an artery. Atherosclerosis is also referred to as plaque on the luminal wall of an artery. Plaque includes deposits of fatty substances, cholesterol, cellular waste products, calcium, and fibrin. Both the atherosclerosis and thrombus pose a risk of fragmenting into the blood stream, and moving to the heart, brain, or lungs, causing health complications and often proving to be fatal.
One of skill will appreciate the devices and systems taught herein that (i) can effectively cut and remove all types of thrombus and atheroma tissue, whether soft, tough, or hard; (ii) can safely collect and remove such while avoiding the release of tissue fragments, such as emboli; and (iii) can effectively treat a blood vessel with a reduced risk of suffering vessel injuries that can lead to increased stenosis. Of particular interest herein, among the several indications taught for the technologies, is (i) the removal of a venous thrombus, and (ii) the removal of a pulmonary arterial thrombus, also referred to as a pulmonary embolism.
Thrombectomy systems, devices, and methods of using them are provided. Several embodiments are taught for the technologies herein, and these embodiments include systems, methods, and devices for (i) the removal of arterial and venous thrombus, and (ii) the removal of a pulmonary arterial thrombus, also referred to as a pulmonary embolism. In some embodiments, the systems, devices, and methods taught herein can be used in atherectomies. The technologies taught herein can effectively cut and remove all types of thrombus and atheroma tissue, whether soft, tough, or hard, which will be appreciated by those of skill.
A thrombectomy device is provided. In some embodiments, the thrombectomy device includes
In some embodiments, the devices include a delivery sheath for a safe delivery of the cutter to the target site for the tissue removal. The proviso, however, is that in some embodiments, the devices do not include a delivery sheath by preference or by design.
In some embodiments, the cutter is deflected from the axis of rotation to create a deflection distance between the leading edge of the cutter and the axis of rotation.
In some embodiments, the axis of the head is at a vertical angle, ϕ, with the axis of rotation, wherein ϕ ranges from 0° to 90° to create a deflection distance between the leading edge of the cutter and the axis of rotation.
In some embodiments, the axis of the head is at a lateral angle, θo, with the axis of rotation, wherein θo ranges from 0° to 90° to create a deflection distance between the leading edge of the cutter and the axis of rotation.
In some embodiments, the flexible rotating shaft is deflected at an angle, θm, with the axis of rotation to form a curve region in the flexible rotating shaft, wherein θm ranges from 0-90 degrees to create a deflection distance between the leading edge of the cutter and the axis of rotation.
In some embodiments, the mouth has a cross-sectional area that is equal to, or less than, the lumen of the flexible, rotating shaft.
In some embodiments, the z-axis of the mouth is an angle, θr, from a plane containing the curve region to open the mouth toward the target site for the tissue for removal.
In some embodiments, the device further includes a straightening sheath.
Systems are also provided. In some embodiments, a system includes the devices taught herein, along with a handle that includes a motor operably connected to a drive assembly that includes the flexible rotating shaft and the cutter, the motor configured to provide a rotational movement to the flexible, rotating shaft for rotating the cutter.
In some embodiments, a system includes the devices taught herein, and the delivery sheath is a straightening sheath.
In some embodiments, a system includes the devices taught herein, wherein the z-axis of the mouth is an angle, θr, from a plane containing the curve region to open the mouth toward the target site for the tissue for removal.
In some embodiments, a system includes the devices taught herein, along with a vacuum source, and wherein the vacuum port is in operable connection with the vacuum for removal of the tissue from the system.
In some embodiments, the systems include a delivery sheath for a safe delivery of the cutter to the target site for the tissue removal. The proviso, however, is that in some embodiments, the systems do not include a delivery sheath by preference or by design.
In some embodiments, a system includes the devices taught herein, wherein the delivery sheath is a straightening sheath, the system further comprising a vacuum source; wherein the vacuum port is in operable connection with the vacuum for removal of the tissue from the system.
Methods of treatment are also provided, and any blood vessel can be treated using the devices and systems taught herein. In some embodiments, a method of performing a thrombectomy using any device taught herein is provided. The method can include:
In some embodiments, the methods include using a delivery sheath for a safe delivery of the cutter to the target site for the tissue removal. The proviso, however, is that in some embodiments, the methods do not include using a delivery sheath by preference or by design.
In some embodiments, the method further includes inserting a guidewire in the point of entry and delivering the guidewire to the target location of the thrombus, and guiding the thrombectomy device to the location of the thrombus on the guidewire.
In some embodiments, the method further includes discharging the tissue from the vascular lumen with a vacuum.
In some embodiments, the method includes:
In some embodiments, the method includes inserting a guidewire in the point of entry and delivering the guidewire to the target location of the tissue, and guiding the cutter to the location of the thrombus on the guidewire.
In some embodiments, the method includes discharging the tissue from the vascular lumen with a vacuum.
In the course of the teachings of the above in the following detailed description, methods of making thrombectomy tubular cutters, thrombectomy devices, and thrombectomy systems are also provided. Methods of treating any vein or artery is provided including, for example, (i) the removal of a venous thrombus, (ii) the removal of a pulmonary arterial thrombus, also referred to as a pulmonary embolism, and (iii) the removal of arterial plaque.
Thrombectomy devices, and methods of using them are provided, namely devices and methods that (i) can effectively cut and remove thrombus tissue; (ii) can safely collect and remove plaque particles to avoid release of emboli; (iii) can effectively treat a blood vessel with a reduced risk of suffering vessel injuries. And, importantly, one of skill will certainly appreciate having a thrombectomy device that, (iv) can also handle tight or tough lesions having little to no luminal opening in the lesion. The thrombectomy devices can have a cutting head that includes the shape of a tubular cutter with a cutting edge that removes thrombus tissue from a blood vessel when rotating the head in the lumen of the blood vessel. Several embodiments are taught for the technologies herein, and these embodiments include systems, methods, and devices for (i) the removal of a venous thrombus, and (ii) the removal of a pulmonary arterial thrombus, also referred to as a pulmonary embolism.
One of skill will appreciate that a “subject” receiving a thrombectomy can be a “patient” that is receiving the thrombectomy. As such, the term “subject” and “patient” can be used interchangeably and refer to an animal such as a mammal including, but not limited to, non-primates such as, for example, a cow, pig, horse, cat, dog, rabbit, rat and mouse; and primates such as, for example, a monkey or a human. The subject can also be a cadaver, in some embodiments, or a portion of a cadaver.
The devices, systems, and methods taught herein can remove blood clots from arteries or veins, for example, in your heart, brain, lungs, abdomen, arms, and legs. Arterial clots can also take root in your kidneys, intestines, or eyes, although considered rare. In some embodiments, the blood clot is stationary, which is a “thrombosis” that can block blood flow, and the devices, systems, and methods taught herein can remove the thrombosis. If the blood clot breaks loose and moves in the blood vessel, it becomes an “embolism” which can travel to other parts of the body and become dangerous and even fatal.
Arterial thrombi can be referred to as white thrombi, and are characterized by predominance of platelets. Venous thrombi can be referred to as red thrombi, and are characterized by predominance of red blood cells. A thrombus can start soft and become more fibrous and harder over time. Thrombus formation can play a major role in the formation and histopathologic disorders of in arteries and old saphenous vein grafts (SVGs). A non-occlusive thrombus can be formed by silent plaque rupture or erosion. As the thrombus increases in size to become flow occlusive, a provisional matrix forms at healed lesions as an organized thrombus which may contain fibrin and be infiltrated by smooth muscle cell granulation tissue with proteoglycans and type III collagen. The thrombus proximal and distal to the site of a plaque rupture, for example, can be replaced by fibrous plaque in some embodiments. In some embodiments, the devices, systems, and methods can be used to treat SVGs. In some embodiments, the devices, systems, and methods can be used to inhibit the onset of plaque formation that would follow the development of the thrombus.
The devices, systems, and methods taught herein can be used, for example, to treat, or inhibit the onset of, symptoms by removing the blood clots from arteries or veins of a subject. As such, the devices, systems, and methods taught herein can remove arterial clots or venous clots. In some embodiments, the devices, systems, and methods treat, or inhibit the onset of, symptoms from a clot in the arms or legs including redness and warmth with swelling, tenderness, intense cramping, or any combination thereof. In some embodiments, the devices, systems, and methods treat, or inhibit the onset of, symptoms from a clot in the abdomen including stomach pain, diarrhea, vomiting, or any combination thereof. In some embodiments, the devices, systems, and methods treat, or inhibit the onset of, symptoms from a clot in the heart including breathing problems, nausea, dizziness, sweating, pain and heaviness in the chest, or any combination thereof. In some embodiments, the devices, systems, and methods treat, or inhibit the onset of, symptoms from a clot in the lungs including coughing-up of blood and a racing heart, shortness of breath, sweating, fever, sharp chest pain, or any combination thereof. In some embodiments, the devices, systems, and methods treat, or inhibit the onset of, symptoms from a clot in the brain including a headache; dizziness; difficulty talking; difficulty seeing clearly; weakness in the subject's face, arms, or legs; or any combination thereof.
The devices, systems, and methods taught herein can be used, for example, to remove three types of blood clots that form in the veins. In some embodiments, the devices, systems, and methods taught herein can be used, to remove (i) a superficial venous thrombosis close to the surface of skin; (ii) a deep vein thrombosis (DVT) that forms deep in the body including in the lower leg, thigh, pelvis, arm, intestines, liver, kidney, or brain; and, (iii) a pulmonary embolism (PE) in the lungs.
The thrombectomy devices taught herein can include a flexible rotating shaft with a proximal end, a distal end, and a lumen; a tubular cutter at the distal end of the rotating shaft, the tubular cutter having a proximal end and a distal end, and a top and a bottom, the tubular cutter configured with a mouth having a rim with a cutting edge, the mouth having (i) an inlet; and (ii) an outlet in communication with the lumen of the flexible rotating shaft; and, a neck having a central axis, the neck configured to operably connect and communicate with the lumen of the flexible rotating shaft. The systems can also include a vacuum port configured for operable communication with a vacuum source.
In some embodiments, methods of treating a thrombosis are provided. These methods can include creating a point of entry into the vasculature of the subject, advancing a thrombectomy device taught herein to the site of the thrombus through the point of entry, removing the thrombus with the thrombectomy device, and removing the thrombectomy device from the subject. In some embodiments, the methods include advancing a guidewire to the site of the thrombus, advancing the thrombectomy device to the thrombus over the guidewire, and removing the guidewire from the subject. In some embodiments, the method is used to treat a venous thrombosis. In some embodiments, the method is used to treat a superficial vein thrombosis. In some embodiments, the method is used to treat a deep vein thrombosis (DVT). In some embodiments, the method is used to treat a saphenous vein thrombosis. In some embodiments, the method is used to treat a renal vein thrombosis. In some embodiments, the method is used to treat an arterial thrombosis.
The thrombectomy tubular cutter can be referred to as a “tubular cutter”, “cutter”, “cutting head”, or the like, in some embodiments.
In some embodiments, the rim 221 can have a trailing edge 210, noting that the relationship between the cutting edge 205 and the trailing edge 210 is a design feature that can vary in the cutters taught herein. For example, the cutting edge 205 can be referred to as “the leading edge”, the leading edge 205 configured to reach the target site of tissue excision first, before the trailing edge 210, upon a rotation of the cutting head 200. The top and bottom of the cutter are shown in
A desirable design feature that can be included in the configuration of the cutter is a “bias” of the cutting surface. The “bias” can be defined as an imbalance of distances between the leading edge 205 from the axis of rotation 270, referred to as BL and the trailing edge 210 from the axis of rotation 270, referred to as BT. In some embodiments BL is greater than BT. BL is measured at the furthest point away from and normal to the axis of rotation on the leading edge. Br is measured at the furthest point away from and normal to the axis of rotation on the trailing edge. Since the actual relative differences between BL and BT can depend on the size of the cutting head, it should be appreciated that the bias, a can be expressed as a ratio, which can be referred as a “lateral bias” ratio in some embodiments. In some embodiments, the ratio of BL/BT can range from 1.00 to 2.00, 1.05 to 2.00, 1.10 to 2.00, 1.15 to 2.00, 1.20 to 2.00, 1.25 to 2.00, 1.30 to 2.00, 1.35 to 2.00, 1.40 to 2.00, 1.45 to 2.00, 1.50 to 2.00, from 1.00 to 1.95, from 1.00 to 1.90, from 1.00 to 1.85, from 1.00 to 1.80, from 1.00 to 1.75, from 1.00 to 1.70, from 1.00 to 1.65, from 1.00 to 1.60, from 1.00 to 1.55, from 1.00 to 1.50, from 1.00 to 1.45, from 1.00 to 1.40, from 1.00 to 1.35, from 1.00 to 1.30, from 1.00 to 1.25, from 1.00 to 1.20, from 1.00 to 1.15, from 1.00 to 1.10, from 1.00 to 1.05, or any ratio or range therein in increments of 0.01. In some embodiments, the BL is greater than BT by 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, or any amount or range therein in increments of 0.1%. In some embodiments, the BL is greater than BT by 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 100%, or any amount or range therein in increments of 0.1%. In some embodiments, the BL is greater than BT by 1.0×, 2.0×, 3.0×, 4.0×, or any amount or range therein in amounts of 0.1×.
A cutting head 200 configured for the right-hand, or clockwise rotation from a proximal viewpoint of the user is illustrated in
The z-axis of the mouth is defined as a line (i) orthogonal to a line connecting the most distal point of the mouth to the most proximal point of the mouth on the y-axis and (ii) orthogonal to the median plane on the x-axis, referring to
It should be appreciated that the angle, Θz, between the z-axis of the mouth and the central axis 270 of the neck or throat 230 can be configured independent of the angle of the curve of tube, merely by angling the cut of the tube on the dash to form the rim. Such variations in the fabricating methods can be used to form rims and mouths of varying desirable configurations.
The thrombectomy tubular cutter 200 can be made of any medical grade material that is known be useful in the making of cutting devices that are used in vivo in a subject in a sterile surgical environment. In some embodiments, the thrombectomy tubular cutter 200 can be made polymers such as PEEK, polycarbonate, PET, polyacrylamide, PEBAX, polyethylene, or a fluoropolymer such as FEP, PTFE, or PVDF. In some embodiments, the thrombectomy tubular cutter 200 can be made of a surgical grade metal such as stainless steel, titanium alloys, or cobalt alloys. In some embodiments the cutter can be made of ceramic or glass. In some embodiments, the thrombectomy tubular cutter 200 can be coated with a lubricious coating such as silicone oil, parylene, a hydrophilic coating, a diamond coating, a fluoropolymer coating, a ceramic coating, or any combination thereof. Such coatings can facilitate trouble free use of the thrombectomy tubular cutter. For example, such coatings can help to reduce friction in engulfing and conveying clot into shaft.
In some embodiments, the angle, θz, between the central axis of the neck and the z-axis of the mouth can range from 0° to 180°, from 0° to 90°, from 90° to 180°, from 120° to 180°, or any amount or range therein in increments of 1°. In some embodiments, the angle, θz, between the central axis of the neck and the z-axis of the mouth can range from 1° to 30°, from 2° to 30°, from 3° to 30°, from 4° to 30°, from 5° to 30°, 6° to 30°, from 7° to 30°, from 8° to 30°, from 9° to 30°, from 10° to 30°, from 15° to 30°, from 20° to 30°, from 25° to 30°, or any range or amount therein in increments of 1°. In some embodiments, the angle, θz, between the central axis of the neck and the z-axis of the mouth can range from 1° to 45°, from 2° to 45°, from 3° to 45°, from 4° to 45°, from 5° to 45°, 6° to 45°, from 7° to 45°, from 8° to 45°, from 9° to 45°, from 10° to 45°, from 15° to 45°, from 20° to 45°, from 25° to 45°, from 30° to 45°, from 35° to 45°, from 40° to 45°, from, or any range or amount therein in increments of 1°. In some embodiments, the angle, θz, can range from 1° to 60°, from 2° to 60°, from 3° to 60°, from 4° to 60°, from 5° to 60°, 6° to 60°, from 7° to 60°, from 8° to 60°, from 9° to 60°, from 10° to 60°, from 15° to 60°, from 20° to 60°, from 25° to 60°, from 30° to 60°, from 35° to 60°, from 40° to 60°, from 45° to 60°, from 50° to 60°, from 55° to 60°, or any range or amount therein in increments of 1°. In some embodiments, the angle, θz, between the central axis of the neck and the z-axis of the mouth can range from 1° to 90°, from 2° to 90°, from 3° to 90°, from 4° to 90°, from 5° to 90°, 6° to 90°, from 7° to 90°, from 8° to 90°, from 9° 90°, from 10° to 90°, from 15° to 90°, from 20° to 90°, from 25° to 90°, from 30° to 90°, from 35° to 90°, from 40° to 90°, from 45° to 90°, from 50° to 90°, from 55° to 90°, from 60° to 90°, from 65° to 90°, from 70° to 90°, from 75° to 90°, from 80° to 90°, from 85° to 90°, or any range or amount therein in increments of 1°. In some embodiments, the angle, θz, between the central axis of the neck and the z-axis of the mouth can range from 1° to 120°, from 2° to 120°, from 3° to 120°, from 4° to 120°, from 5° to 120°, 6° to 120°, from 7° to 120°, from 8° to 120°, from 9° 120°, from 10° to 120°, from 15° to 120°, from 20° to 120°, from 25° to 120°, from 30° to 120°, from 35° to 120°, from 40° to 120°, from 45° to 120°, from 50° to 120°, from 55° to 120°, from 60° to 120°, from 65° to 120°, from 70° to 120°, from 75° to 120°, from 80° to 120°, from 85° to 120°, from 90° to 120°, from 95° to 120°, from 100° to 120°, from 110° to 120°, from 115° to 120°, or any range or amount therein in increments of 1°.
In some embodiments, the angle, θz, between the central axis of the neck and the z-axis of the mouth can range from 25° to 55°, from 10° to 110°, from 20° to 110°, from 25° to 110°, from 30° to 110°, from 35° to 110°, from 40° to 110°, from 45° to 110°, from 10° to 100°, from 20° to 100°, from 25° to 100°, from 30° to 100°, from 35° to 100°, from 40° to 100°, from 45° to 100°, or any range therein in increments of 1°. In some embodiments, the angle, θz, between the central axis of the neck and the z-axis of the mouth can range from 2° to 40°, from 3° to 35°, from 4° to 30°, from 5° to 25°, from 5° to 40°, from 5° to 35°, from 10° to 40°, from 10° to 35°, from 10° to 25°, from 15° to 40°, from 15° to 35°, from 15° to 25°, or any range or amount therein in increments of 1°. In some embodiments, the angle, θz, between the central axis of the neck and the z-axis of the mouth can be 0°, 1.0°, 2.0°, 3.0°, 4.0°, 5.0°, 6.0°, 7.0°, 8.0°, 9.0°, 10.0°, 11.0°, 12.0°, 13.0°, 14.0°, 15.0°, 16.0°, 17.0°, 18.0°, 19.0°, 20.0°, 21.0°, 22.0°, 23.0°, 24.0°, 25.0°, 26.0°, 27.0°, 28.0°, 29.0°, 30.0°, 31.0°, 32.0°, 33.0°, 34.0°, 35.0°, 36.0°, 37.0°, 38.0°, 39.0°, 40.0°, 41.0°, 42.0°, 43.0°, 44.0°, 50.0°, 55.0°, 60.0°, 65.0°, 70.0°, 75.0°, 80.0°, 85.0°, 90.0°, 95.0°, 100.0°, 105.0°, 110.0°, 115.0°, 120.0°, 125.0°, 130.0°, 135.0°, 140.0°, 145.0°, 150.0°, 155.0°, 160.0°, 165.0°, 170.0°, 175.0°, 180.0°, or any angle, θz, or range therein in 1° increments.
Blood vessel lumen diameters range considerably in size, becoming quite large, perhaps larger than practical for vascular entry to a subject in some embodiments. In larger vessels, the skilled artisan can opt for eccentric cutting to remove a larger region than the diameter of the cutter assembly without adding or exchanging the cutter for other larger tools for removal. The cutter can be biased off-center within the larger blood vessels to create added sweep. Inducing a deflection into the systems and devices can be used to induce a “sweep”, and this produces an effective “sweep diameter” to help the cutter 200 reach the lumen walls of large blood vessels and increase the centrifugal force realized by an excised tissue against the wall of the cutter, helping to ensure the tissue remains in the cutter head 220. As the deflection increases, the sweep increases and centrifugal force increases. Likewise, as the deflection decreases, the sweep decreases and centrifugal force decreases. As such, the sweep can be selected and designed into the systems and devices by the user to obtain the desired function of increasing reach and centrifugal force.
In some embodiments, the length of deflection, or sweep, can be referred to as the “deflection distance” and can be used to define the sweep that is induced in the thrombectomy device. The sweep can be obtained in any manner devisable by the skilled artisan and can be defined, in some embodiments, as the distance of the cutter head from the axis of rotation 270. The sweep can be defined, in some embodiments, as the deflection distance, which is the point on the leading edge 205 that is at the greatest distance from the axis of rotation 270.
In some embodiments, the sweep can be adjustable, such that the systems and devices can be equipped with a gauge on a handle of the systems and devices that indicate the sweep diameter obtained through an angle induced on a component of the system to create sweep. The inducing of a curve on a component of the system can be done in variety of methods, including those known to one of skill, such as through the use of a tendon to tension a component to induce the curve, or through the use of a material having a memory that contains the curve as a built-in shape during it's formation.
Cutting Heads can be Configured to Induce Sweep and Centrifugal Force
Sweep, So, can be designed into a cutting head by selecting an angle, ¢, between the head 220 and neck 225 of the cutter 200, providing a desired deflection distance from axis of rotation 270. The sweep increases the reach of the device within a vessel, or the diameter that can be reached by the cutting edge 205 of the tubular cutting head 220 of the device 200. In addition, the sweep can add centrifugal force to the cutting head, so that excised tissue receives additional force to aid in it's retention in the cutter head 220. In some embodiments, the sweep, So, can be easily estimated using the equation So=LD sin ϕ. The sweep adds a “deflection distance” of the cutting edge 205 from the axis of rotation 270, where the sweep is 0 where ϕ=0°, and the sweep is a maximum of LD, the length of the deflected portion of the cutting device, where ϕ=90°.
The angle, θz, correlates with an angle, ϕ, which creates the sweep in the head 220 of the cutter 200. In some embodiments, the angle, ϕ, can range from 0° to 90°, from 1° to 90°, from 2° to 90°, from 3° to 90°, from 4° to 90°, from 5° to 90°, from 6° to 90°, from 7° to 90°, from 8° to 90°, from 9° to 90°, from 10° to 90°, from 15° to 90°, from 20° to 90°, from 25° to 90°, from 30° to 90°, from 35° to 90°, from 40° to 90°, from 45° to 90°, from 50° to 90°, or any amount or range therein in increments of 1°. In some embodiments, the angle, ϕ, can range from 60° to 90°, from 70° to 90°, from 80° to 90°, or any amount or range therein in increments of 1°. In some embodiments, the angle, ϕ, can range from 0° to 60°, from 5° to 60°, from 10° to 60°, from 15° to 60°, from 20° to 60°, from 25° to 60°, from 30° to 60°, from 35° to 60°, from 40° to 60°, from 45° to 60°, from 50° to 60°, from 55° to 60°, or any amount or range therein in increments of 1°. In some embodiments, the angle, ϕ, can range from 0° to 45°, from 5° to 45°, from 10° to 45°, from 15° to 45°, from 20° to 45°, from 25° to 45°, from 30° to 45°, from 35° to 45°, from 40° to 45°, or any amount or range therein in increments of 1°. In some embodiments, the angle, ϕ, can range from 5° to 30°, from 10° to 30°, from 15° to 30°, from 20° to 30°, from 25° to 30°, or any amount or range therein in increments of 1°. In some embodiments, the angle, ϕ, can be 0°. In some embodiments, the angle, ϕ, can be 0°, 1.0°, 2.0°, 3.0°, 4.0°, 5.0°, 6.0°, 7.0°, 8.0°, 9.0°, 10.0°, 11.0°, 12.0°, 13.0°, 14.0°, 15.0°, 16.0°, 17.0°, 18.0°, 19.0°, 20.0°, 21.0°, 22.0°, 23.0°, 24.0°, 25.0°, 26.0°, 27.0°, 28.0°, 29.0°, 30.0°, 31.0°, 32.0°, 33.0°, 34.0°, 35.0°, 36.0°, 37.0°, 38.0°, 39.0°, 40.0°, 41.0°, 42.0°, 43.0°, 44.0°, 50.0°, 55.0°, 60.0°, 65.0°, 70.0°, 75.0°, 80.0°, 85.0°, 90.0°, 95.0°, 100.0°, 105.0°, 110.0°, 115.0°, 120.0°, 125.0°, 130.0°, 135.0°, 140.0°, 145.0°, 150.0°, 155.0°, 160.0°, 165.0°, 170.0°, 175.0°, 180.0°, or any angle or range therein in 1° increments.
The thrombectomy devices drive the cutters with a flexible rotating shaft having a proximal end, a distal end, and a lumen, the tubular cutter operably connected with the distal end of the flexible rotating shaft. In some embodiments, the tubular cutter can be configured with
The cutter 200 is attached to a flexible rotating shaft 305. In some embodiments, the cutter can be operably attached to the flexible rotating shaft using a friction fitting. In some embodiments, the flexible rotating shaft can be allowed slip on the base of the cutter when engaged with a thrombus and meeting a maximum torque limit.
In some embodiments, an outer sheath 307 or outer catheter 307 can be used for safely delivering the flexible rotating shaft 305 and cutting head 200 to a target site in a subject for tissue removal. In some embodiments, any outer sheath used can be used to deliver the flexible rotating shaft and cutting head and can be referred to as a “delivery sheath”, “delivery catheter”, “guide sheath”, “guide catheter”, and the like. In some embodiments, the delivery catheter has a bending stiffness that is greater than the bending stiffness of the flexible rotating shaft. In some embodiments, the combined stiffness of the flexible rotating shaft and the delivery catheter are minimized to help guide the flexible rotating shaft to the target site of the thrombus in the blood vessel.
The devices, systems, and methods taught herein can also include an annulus between the outer sheath and the flexible rotating shaft to allow for a step of introducing a fluid including, for example, a contrast agent, a drug, saline, or a combination thereof, to visualize the procedure, remove air, aid in clot removal, lubricate the spinning of the flexible rotating shaft in the outer sheath, or a combination thereof.
Flexible Rotating Shafts can be Configured to Induce Sweep and Centrifugal Force
Another way to create sweep, or a deflection distance, is to induce an angle, θm, on the flexible rotating shaft. The angle, θm, can be induced on the flexibly rotating shaft 305 using a tendon, in some embodiments, or perhaps a memory curve, in some embodiments, and can range from 0° to 180°, or any amount or range therein in increments of 1°.
As shown in
In some embodiments, the angle, θm, induced on the flexible rotating shaft can range from 0° to 180°, from 0° to 170°, from 0° to 160°, from 0° to 150°, from 0° to 140°, from 0° to 130°, from 0° to 120°, from 0° to 110°, from 0° to 100°, from 0° to 90°, from 0° to 45°, or any amount or range therein in increments of 1°. In some embodiments, the angle, θm, induced on the flexibly rotating shaft 305 can range from 0° to 30°, from 1° to 30°, from 2° to 30°, from 3° to 30°, from 4° to 30°, from 5° to 30°, 6° to 30°, from 7° to 30°, from 8° to 30°, from 9° to 30°, from 10° to 30°, from 15° to 30°, from 20° to 30°, from 25° to 30°, or any range or amount therein in increments of 1°. In some embodiments, the angle, θm, induced on the flexibly rotating shaft 305 can range from 0° to 45°, from 1° to 45°, from 2° to 45°, from 3° to 45°, from 4° to 45°, from 5° to 45°, 6° to 45°, from 7° to 45°, from 8° to 45°, from 9° to 45°, from 10° to 45°, from 15° to 45°, from 20° to 45°, from 25° to 45°, from 30° to 45°, from 35° to 45°, from 40° to 45°, from, or any range or amount therein in increments of 1°. In some embodiments, the angle, θm, induced on the flexibly rotating shaft 305 can range from 0° to 60°, from 1° to 60°, from 2° to 60°, from 3° to 60°, from 4° to 60°, from 5° to 60°, 6° to 60°, from 7° to 60°, from 8° to 60°, from 9° to 60°, from 10° to 60°, from 15° to 60°, from 20° to 60°, from 25° to 60°, from 30° to 60°, from 35° to 60°, from 40° to 60°, from 45° to 60°, from 50° to 60°, from 55° to 60°, or any range or amount therein in increments of 1°. In some embodiments, the angle, θm, induced on the flexibly rotating shaft 305 can range from 0° to 90°, from 1° to 90°, from 2° to 90°, from 3° to 90°, from 4° to 90°, from 5° to 90°, 6° to 90°, from 7° to 90°, from 8° to 90°, from 9° 90°, from 10° to 90°, from 15° to 90°, from 20° to 90°, from 25° to 90°, from 30° to 90°, from 35° to 90°, from 40° to 90°, from 45° to 90°, from 50° to 90°, from 55° to 90°, from 60° to 90°, from 65° to 90°, from 70° to 90°, from 75° to 90°, from 80° to 90°, from 85° to 90°, or any range or amount therein in increments of 1°. In some embodiments, the angle, θm, induced on the flexibly rotating shaft 305 can be 0°, 1.0°, 2.0°, 3.0°, 4.0°, 5.0°, 6.0°, 7.0°, 8.0°, 9.0°, 10.0°, 11.0°, 12.0°, 13.0°, 14.0°, 15.0°, 16.0°, 17.0°, 18.0°, 19.0°, 20.0°, 21.0°, 22.0°, 23.0°, 24.0°, 25.0°, 26.0°, 27.0°, 28.0°, 29.0°, 30.0°, 31.0°, 32.0°, 33.0°, 34.0°, 35.0°, 36.0°, 37.0°, 38.0°, 39.0°, 40.0°, 41.0°, 42.0°, 43.0°, 44.0°, 50.0°, 55.0°, 60.0°, 65.0°, 70.0°, 75.0°, 80.0°, 85.0°, 90.0°, 95.0°, 100.0°, 105.0°, 110.0°, 115.0°, 120.0°, 125.0°, 130.0°, 135.0°, 140.0°, 145.0°, 150.0°, 155.0°, 160.0°, 165.0°, 170.0°, 175.0°, 180.0°, or any angle or range therein in 1° increments.
As such, where there is an angle induced in the flexible rotating shaft, the outer sheath can be designed to straighten the flexible rotating shaft for delivery into a subject. In some embodiments, the outer sheath can be referred to as a “straightening-sheath”, “straightening-catheter”, and the like, as well as “delivery sheath”, “delivery catheter”, “guiding sheath”, “guiding catheter”, and the like. In some embodiments, the straightening catheter can have a bending stiffness that is the same, or similar to, the bending stiffness of the flexible rotating shaft.
The straightening-sheath has the function of straightening the memory C-curve of the memory-shaped rotating shaft 305C for delivery into a blood vessel of a subject. The straightening-sheath/catheter 307 has a proximal end (not shown) and a distal end. A distal slide of the straightening-sheath/catheter 307 from a position in which the distal end of the straightening-sheath/catheter 307 is proximal to the induced angle to gradually removes curvature from the C-curve. Likewise, a proximal slide of the straightening-sheath/catheter 307 from a position in which the distal end of the straightening-sheath/catheter 307 is distal to the memory C-curve gradually re-establishes curvature to the C-curve.
A braid-pattern construction can be used, in some embodiments, to achieve a desired material strength in the delivery catheter, flexible rotating shaft, or a combination thereof. In some embodiments, a spiral pattern construction can be used to achieve a desired material strength in the delivery catheter, flexible rotating shaft, or a combination thereof. In some embodiments, the straightening-sheath can include a braid-pattern construction which can be fabricated using any material known to be suitable to the skilled artisan. The braid-pattern construction, for example, can be selected to include any sort of braiding material deemed acceptable by one of skill for the intended use. For example, the braid-pattern or the spiral pattern can be include use of a metal, a polymer braiding, a fiber, or a combination thereof. An suitable medical grade material known to be suitable to the skilled artisan can be used.
Regardless of how the angle, θm, may be induced on the flexible rotating shaft, the tubular cutter 200 can have it's z-axis 260 rotated at an angle, θr, from an orthogonal position of the z-axis with respect to the plane, maintaining an orthogonal relationship with curved axis 370C, such that the cutting edge 205 leads the trailing edge 210 in the amount of the angle, θr, relative to the plane upon which the curved axis 370C lies. To clarify, the rotation of the cutter 200 to open the mouth to the target site is a rotating of the median plane 227 away from the plane shared by the curve in the deflection, where θr=0 is where the median plane 227 is coincident with the plane shared by the axis of the curve formed by the deflection. A rotation of θr>0 is a rotation of the median plane away from it's coincident relationship with the plane shared by the axis of the curve formed by the deflection, and the rotation of θr>0 functions to open the mouth of the head 220 toward the target site.
The amount of the angle θr is 0° where the position of the z-axis 260 is orthogonal to the plane upon which the curved axis 370C lies. The angle increases as the z-axis 260 is rotated relative to the 0° orthogonal position of the z-axis with respect to the plane, while maintaining an orthogonal relationship with curved axis 370C. As the angle increases the cutting edge 205 leads the trailing edge 210 in the amount of the angle θr. In some embodiments, the angle θr can range from 1° to 90°, from 2° to 90°, from 3° to 90°, from 4° to 90°, from 5° to 90°, 6° to 90°, from 7° to 90°, from 8° to 90°, from 9° 90°, from 10° to 90°, from 15° to 90°, from 20° to 90°, from 25° to 90°, from 30° to 90°, from 35° to 90°, from 40° to 90°, from 45° to 90°, from 50° to 90°, from 55° to 90°, from 60° to 90°, or any range or amount therein in increments of 1°. In some embodiments, the angle θr can range from 1° to 60°, from 2° to 60°, from 3° to 60°, from 4° to 60°, from 5° to 60°, 6° to 60°, from 7° to 60°, from 8° to 60°, from 9° to 60°, from 10° to 60°, from 15° to 60°, from 20° to 60°, from 25° to 60°, from 30° to 60°, from 35° to 60°, from 40° to 60°, from 45° to 60°, from 50° to 60°, from 55° to 60°, or any range or amount therein in increments of 1°. In some embodiments, the angle θr can range from 1° to 45°, from 2° to 45°, from 3° to 45°, from 4° to 45°, from 5° to 45°, 6° to 45°, from 7° to 45°, from 8° to 45°, from 9° 45°, from 10° to 45°, from 15° to 45°, from 20° to 45°, from 25° to 45°, from 30° to 45°, from 35° to 45°, from 40° to 45°, or any range or amount therein in increments of 1°. In some embodiments, the angle θr can range from 1° to 45°, from 2° to 40°, from 3° to 35°, from 4° to 30°, from 5° to 25°, 5° to 45°, from 5° to 40°, from 5° to 35°, from 5° to 30°, from 10° to 45°, 10° to 40°, from 10° to 35°, from 10° to 30°, from 10° to 25°, from 15° to 45°, 15° to 40°, from 15° to 35°, from 15° to 30°, from 15° to 25°, or any range or amount therein in increments of 1°. In some embodiments, the angle θr can be 1.0°, 2.0°, 3.0°, 4.0°, 5.0°, 6.0°, 7.0°, 8.0°, 9.0°, 10.0°, 11.0°, 12.0°, 13.0°, 14.0°, 15.0°, 16.0°, 17.0°, 18.0°, 19.0°, 20.0°, 21.0°, 22.0°, 23.0°, 24.0°, 25.0°, 26.0°, 27.0°, 28.0°, 29.0°, 30.0°, 31.0°, 32.0°, 33.0°, 34.0°, 35.0°, 36.0°, 37.0°, 38.0°, 39.0°, 40.0°, 41.0°, 42.0°, 43.0°, 44.0°, 45.0°, 55°, 60°, 65°, 70°, 75°, 80°, 85°, 90°, or any range or amount therein in increments of 1°.
The angle, θm, deflects a distal portion of the thrombectomy device, the distal portion beginning at the apex of the angle formed by the memory C-curve. As can be seen from
It should be appreciated that the sweep facilitates the use of the thrombectomy devices in larger vasculature. As such, any method of obtaining sweep to extend the reach of the cutter and add centrifugal force is contemplated in the embodiments. For example, more than one angle, θm, can be used to deflect a flexible rotating shaft. In some embodiments, the memory curve can be S-shaped, including an angle, θm1, and an angle, θm2, and the total sweep, So, is the total effect of the angle, θm1, and the angle, θm2, on the deflection distance.
The teachings provided herein include methods of creating a deflection distance, in which the configuration of a device taught herein deflects the leading edge of the cutter away from the axis of rotation. As can be seen, the deflection distance can be created using any manner devised by one of skill to deflect the leading edge away from the axis of rotation, so that a sweep that increases the cutting diameter of the cutter results. Just as BL is measured at the furthest point away from and normal to the axis of rotation on the leading edge, the deflection distance can be measured as Δ BL=BL (after deflection, or BLAD)−BL (before deflection, or BLBD), Referring to
In some embodiments, the deflection distance can range from 0.1 mm-30.0 mm, from 0.2 mm-30.0 mm, from 0.3 mm-30.0 mm, from 0.4 mm-30.0 mm, from 0.5 mm-30.0 mm, from 1.0 mm-30.0 mm, from 2.0 mm-30.0 mm, from 3.0 mm-30.0 mm, from 4.0 mm-30.0 mm, from 5.0 mm-30.0 mm, from 6.0 mm-30.0 mm, from 7.0 mm-30.0 mm, from 8.0 mm-30.0 mm, from 9.0 mm-30.0 mm, from 10.0 mm-30.0 mm, from 11.0 mm-30.0 mm, from 12.0 mm-30.0 mm, from 13.0 mm-30.0 mm, from 14.0 mm-30.0 mm, from 15.0 mm-30.0 mm, from 16.0 mm-30.0 mm, from 17.0 mm-30.0 mm, from 18.0 mm-30.0 mm, from 19.0 mm-30.0 mm, or any range or amount therein in increments of 0.1 mm. In some embodiments, the deflection distance can range from 0.1 mm-20.0 mm, from 0.2 mm-20.0 mm, from 0.3 mm-20.0 mm, from 0.4 mm-20.0 mm, from 0.5 mm-20.0 mm, from 1.0 mm-20.0 mm, from 2.0 mm-20.0 mm, from 3.0 mm-20.0 mm, from 4.0 mm-20.0 mm, from 5.0 mm-20.0 mm, from 6.0 mm-20.0 mm, from 7.0 mm-20.0 mm, from 8.0 mm-20.0 mm, from 9.0 mm-20.0 mm, from 10.0 mm-20.0 mm, from 11.0 mm-20.0 mm, from 12.0 mm-20.0 mm, from 13.0 mm-20.0 mm, from 14.0 mm-20.0 mm, from 15.0 mm-20.0 mm, from 16.0 mm-20.0 mm, from 17.0 mm-20.0 mm, from 18.0 mm-20.0 mm, from 19.0 mm-20.0 mm, or any range or amount therein in increments of 0.1 mm. In some embodiments, the deflection distance can range from 0.5 mm-19.0 mm, from 1.0 mm-18.0 mm, from 2.0 mm-17.0 mm, from 3.0 mm-16.0 mm, from 4.0 mm-15.0 mm, from 5.0 mm-14.0 mm, from 6.0 mm-13.0 mm, from 7.0 mm-12.0 mm, from 8.0 mm-10.0 mm, or any range or amount therein in increments of 0.1 mm. In some embodiments, the deflection distance can be 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 1.0 mm, 2.0 mm, 3.0 mm, 4.0 mm, 5.0 mm, 6.0 mm, 7.0 mm, 8.0 mm, 9.0 mm, 10.0 mm, 11.0 mm, 12.0 mm, 13.0 mm, 14.0 mm, 15.0 mm, 16.0 mm, 17.0 mm, 18.0 mm, 19.0 mm, 20.0 mm, 21.0 mm, 22.0 mm, 23.0 mm, 24.0 mm, 25.0 mm, 26.0 mm, 27.0 mm, 28.0 mm, 29.0 mm, 30.0 mm, or any amount or range therein in increments of 0.1 mm.
Component Characteristics
The components of the devices and systems can be designed to have desirable characteristics. The desirable characteristics can be obtained from material selection and the design of the materials to obtain a desired range of functions.
In some embodiments, the flexible rotating shaft may be fabricated from a polymer tube, a metal tube with slots for flexibility (for example, a type 304 stainless steel tube or the like), or a composite of polymer and metal. For a composite material, a metal coil, mesh, or braid can be laminated, using perhaps a polymer coating or molecular coating, for increased corrosion resistance, contamination control, and heat stability. In some embodiments, the polymer may be PEBAX, nylon, polyimide, PEEK, polyethylene, fluoropolymer (PTFE, ETFE, PVDF, FEP), or any combination thereof. The single molecule may be fluoro silane, in some embodiments. The dimensions of the tube may depend at least partially on the intended use of the thrombectomy device/apparatus/system.
It should be appreciated that, in some embodiments, the flexible, rotating shaft 305 can have a bending stiffness that is suitable for directing the cutting head to the target sight of the thrombus in a blood vessel. In some embodiments, the flexible, rotating shaft 305 can have an axial stiffness that is sufficient to transfer an axial force to the tubular cutter during operation of the thrombectomy device. Likewise, In some embodiments, the flexible, rotating shaft 305 can have a torsional stiffness that is sufficient to transfer torque from the proximal end of the flexible rotating shaft to the distal end of the flexible rotating shaft to rotate the tubular cutter during operation of the thrombectomy device.
The sheath/delivery catheter 307 can be “relatively stiff” compared to the flexible rotating shaft, in some embodiments, in that it can be designed to be substantially stiffer than the flexible rotating shaft 305C. As such, the sheath/delivery catheter 307 is relatively stiffer than the flexible rotating shaft 305C, such that a tendon (bold dashed line) can be pulled proximally to induce the memory curve region. The sheath/delivery catheter 307 can have the same or similar stiffness compared to the flexible rotating shaft.
One of skill will appreciate that control of the flexural stiffness of the device will allow additional control of the cutter to the user of the device. As such, in some embodiments, any device taught herein can be designed to obtain a desired amount of deflection to direct the cutter a desired surface of the vascular lumen wall. One of skill will appreciate that there are methods to vary the flexural stiffness of the flexible rotating shaft, the delivery sheath, or a combination thereof. The stiffness or flexibility of the components may be adjusted, for example, by varying the composition and/or structure of materials. In some embodiments, to increase flexural stiffness, the filaments on the flexible rotating shaft, the delivery sheath, or a combination thereof, can be bound together with stiffer material, or the flexural stiffness can be increased (or reduced) by increasing (or decreasing) the filament size.
In addition to providing the proper flexural stiffness and torsional stiffness for maneuverability and function, the devices also need the required axial tensile stiffness for a better response of the thrombectomy devices to push and pull. Axial tensile stiffness is the resistance to stretch or contraction of along the length of the component under axial loading and is in units of N/mm. Key components in the design, in some embodiments, include a desired axial tensile stiffness in the delivery sheath and the flexible rotating shaft.
The flexural stiffness of the delivery catheter could be similar to, equal to, or greater than the flexible rotating shaft, in some embodiments. The ratio of flexural stiffness of the flexible rotating shaft to the flexural stiffness of the delivery catheter can range from 0.03 to 1.0 in some embodiments, 0.03 to 0.30 in some embodiments, 0.05 to 0.25 in some embodiments, 0.06 to 0.30 in some embodiments, from 0.5 to 1.0, from 0.6 to 1.0, from 0.7 to 1.0, from 0.8 to 1.0, from 0.9 to 1.0, or any range or amount therein in increments of 0.01. In some embodiments, the ratio of flexural stiffness of the flexible rotating shaft to the flexural stiffness of the delivery catheter can be 0.10, 0.20, 0.30, 0.40, 0.40, 0.40, 0.40, 0.40, 0.40, 0.40 or any ratio or range therein in increments of 0.01. In some embodiments, however, the flexural stiffness of the delivery catheter is 2× 3×, or 4× greater than the flexural stiffness of the flexible rotating shaft, or any range or amount therein in increments of 0.1×.
In some embodiments, a straightening-sheath is merely configured to have a minimal stiffness suitable to straighten the flexible rotating shaft for delivery to a target site in a subject. In some embodiments, the force required to bend the straightening-sheath is greater than the force required to bend the flexible rotating shaft, for example, perhaps to bend memory-shaped C-curve portion of the flexible rotating shaft. In some embodiments, the force required to bend the straightening-sheath is greater than the force required to bend the flexible rotating shaft, and in some embodiments the memory C-curve, by 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, or any amount or range therein in amounts of 0.1%. In some embodiments, the force required to bend the straightening-sheath is greater than the force required to bend the flexible rotating shaft, and in some embodiments the memory C-curve, by a range of 1%-50%, 2%-50%, 3%-50%, 4%-50%, 5%-50%, 6%-50%, 7%, 8%-50%, 9%-50%, 10%-50%, 11%-50%, 12%-50%, 13%-50%, 14%-50%, 15%-50%, 16%-50%, 17%-50%, 18%-50%, 19%-50%, 20%-50%, 21%-50%, 22%-50%, 23%-50%, 24%-50%, 25%-50%, or any amount or range therein in amounts of 0.1 In some embodiments, the force required to bend the straightening-sheath is greater than the force required to bend the flexible rotating shaft, and in some embodiments the memory C-curve, can be 2×, 3×, or 4× greater than the force required to bend the memory-shaped C-curve, or any amount or range therein in amounts of 0.1×.
The stiffness of the straightening-sheath can affect the ability of the straightening-sheath to remove the memory-C-curve of the flexible rotating shaft, but it should be appreciated that the stiffness needs to be limited due to the adverse effects of the stiffness of the combination of device components on the friction applied to the vascular lumen wall. As such, it is desirable to minimize device stiffness to target a tissue location for treatment and direct the tubular head to the target area.
In some embodiments, a desirable stiffness of the straightening-sheath can range from 15 Nmm2 to 900 Nmm2, 30 Nmm2 to 800 Nmm2, from 20 Nmm2 to 200 Nmm2, 400 Nmm2 to 800 Nmm2, or any amount or range therein in increments of 1 Nmm2. In some embodiments, a desirable stiffness of the straightening-sheath can be dependent on the location of the stiffness measurement along the sheath, for example, to add flexibility at a distal region of the sheath and a relative stiffness at a proximal region of the sheath, where the border between distal and proximal is at the midpoint of the sheath as defined by the length of the sheath in the subject during an interventional procedure. In some embodiments, a desired stiffness in a distal region of a straightening sheath can range from 20 Nmm2 to 200 Nmm2, from 30 Nmm2 to 100 Nmm2, or any amount or range therein in increments of 1 Nmm2. In some embodiments, a desired stiffness in a proximal region of a sheath can range from 300 Nmm2 to 900 Nmm2, from 400 Nmm2 to 800 Nmm2, or any amount or range therein in increments of 1 Nmm2. In some embodiments, a desired combined stiffness at any point on the thrombectomy device, whether in proximal or distal portion of the device, can be 10 Nmm2, 20 Nmm2, 30 Nmm2, 40 Nmm2, 50 Nmm2, 60 Nmm2, 70 Nmm2, 80 Nmm2, 90 Nmm2, 100 Nmm2, 200 Nmm2, 300 Nmm2, 400 Nmm2, 500 Nmm2, 600 Nmm2, 700 Nmm2, 800 Nmm2, 900 Nmm2, or any amount or range therein in increments of 1 Nmm2.
The axial strength of the flexible rotating shaft, delivery catheter, or the combination thereof, is also a design feature. In some embodiments, the flexible rotating shaft, delivery catheter, or the combination thereof, can be configured to have a column strength suitable to withstand pushing into a subject without increasing the diameter of In some embodiments, the flexible rotating shaft, delivery catheter, or the combination thereof, to an undesirable amount. As such, In some embodiments, the flexible rotating shaft, delivery catheter, or the combination thereof, can be configured to have a column strength suitable to withstand pulling out of a subject without reducing the diameter of the flexible rotating shaft, delivery catheter, or the combination thereof, to an undesirable amount. In some embodiments, the undesirable amount of increase in diameter of the flexible rotating shaft, delivery catheter, or the combination thereof, upon pushing into a subject is less than 1%, less than 2%, less than 3%, less than 4%, less than 5%, less than 6%, less than 7%, less than 8%, less than 9%, less than 10%, less than 11%, less than 12%, less than 13%, less than 14%, less than 15%, less than 16%, less than 17%, less than 18%, less than 19%, less than 20%, or any amount or range therein in amounts of 0.1%; and, in some embodiments, the increase in diameter of the flexible rotating shaft, delivery catheter, or the combination thereof, upon pushing into a subject can range from 0%-20%, 1%-20%, 2%-20%, 3%-20%, 4%-20%, 5%-20%, 6%-20%, 7%-20%, 8%-20%, 9%-20%, 10%-20%, or any amount or range therein in amounts of 0.1%. In some embodiments, the undesirable amount of decrease in diameter of the flexible rotating shaft, delivery catheter, or the combination thereof, upon pulling out of a subject is less than 1%, less than 2%, less than 3%, less than 4%, less than 5%, less than 6%, less than 7%, less than 8%, less than 9%, less than 10%, less than 11%, less than 12%, less than 13%, less than 14%, less than 15%, less than 16%, less than 17%, less than 18%, less than 19%, less than 20%, or any amount or range therein in amounts of 0.1%; and, in some embodiments, the decrease in diameter of the flexible rotating shaft, delivery catheter, or the combination thereof, upon pulling out of a subject can range from 0%-20%, 1%-20%, 2%-20%, 3%-20%, 4%-20%, 5%-20%, 6%-20%, 7%-20%, 8%-20%, 9%-20%, 10%-20%, or any amount or range therein in amounts of 0.1%.
Generally speaking, in some embodiments, the outer diameter of the tubular cutter and/or flexible rotating shaft can range from 2.0 mm-10.0 mm, from 2.5 mm-9.5 mm, from 3.0 mm-9.0 mm, from 3.5 mm-8.5 mm, from 4.0 mm-8.0 mm, from 4.5 mm-7.5 mm, from 5.0 mm-7.0 mm, or any amount or range therein in increments of 0.1 mm. In some embodiments, the outer diameter of the tubular cutter can be 2.0 mm, 2.2 mm, 2.4 mm, 2.6 mm, 2.8 mm, 3.0 mm, 3.2 mm, 3.4 mm, 3.6 mm, 3.8 mm, 4.0 mm, 4.2 mm, 4.4 mm, 4.6 mm, 4.8 mm, 5.0 mm, 5.2 mm, 5.4 mm, 5.6 mm, 5.8 mm, 6.0 mm, 6.2 mm, 6.4 mm, 6.6 mm, 6.8 mm, 7.0 mm, 7.2 mm, 7.4 mm, 7.6 mm, 7.8 mm, 8.0 mm, 8.2 mm, 8.4 mm, 8.6 mm, 8.8 mm, 9.0 mm, 9.2 mm, 9.4 mm, 9.6 mm, 9.8 mm, 10.0 mm, or any amount or range therein in increments of 0.1 mm.
For example, in some variations the outer diameter of the tube may be limited to about 2.2 mm, while in other variations the outer diameter of the tube may be limited to about 1.6 mm, and others can range from as much as 2.0 mm to 10.0 mm, 3.0 mm to 9.0 mm, 4.0 mm to 8.0 mm, 5.0 mm to 7.0 mm, or any amount or range therein in increments of 0.1 mm. In some embodiments, the wall thickness of the tube may be limited to about 0.05 to 1 mm. In some embodiments, the wall thickness of the tube may be limited to 0.1 mm to 0.2 mm. In some embodiments, the overall length of the tube of the flexible rotating shaft may range from about 500 mm to 1500 mm (about 20 inches to about 60 inches), from about 500 mm to 1400 mm, from about 500 mm to 1300 mm, from about 500 mm to 1200 mm, from about 500 mm to 1100 mm, from about 500 mm to 1000 mm, or any amount or range therein in increments of 1 mm.
One of skill should appreciate that the rim 221 of the mouth 220 can have any shape that facilitates thrombus removal, and often the shape can be undulating, helical, serrated, sinusoidal, straight, or some combination of such features. In some embodiments, all surfaces of the rim 221 can contact the same plane. However, in some embodiments, some surfaces of the rim 221 do not contact the same plane as other surfaces of the rim 221. In some embodiments only a select few surfaces of the rim 221 of the mouth 220 contact the same plane. For example, in some embodiments, only 2, 3, or 4 surfaces of the rim 221 of the mouth 220 contact the same plane.
Mouth Orientation can Add to Sweep by Providing Bias
The inlet of the mouth has a major axis that can oriented at an angle, θB, from the orientation of the central axis of the neck of the tubular cutter. The angle, θB, can be measured on a horizontal plane that bisects the central axis of the neck of the tubular cutter to separate the top of the tubular cutter from the bottom of the tubular cutter.
In some embodiments, the major axis of the ellipse can be rotated about the mathematical center point. In some embodiments, the inlet of the mouth has a major axis that is oriented at an angle, θB, from the orientation of the central axis of the neck of the tubular cutter, wherein θB is measured on a horizontal plane that bisects the central axis of the neck of the tubular cutter to separate the top of the tubular cutter from the bottom of the tubular cutter.
In some embodiments, the angle or rotation of the mouth, θB, can range from 1° to 90°, from 2° to 90°, from 3° to 90°, from 4° to 90°, from 5° to 90°, 6° to 90°, from 7° to 90°, from 8° to 90°, from 9° 90°, from 10° to 90°, from 15° to 90°, from 20° to 90°, from 25° to 90°, from 30° to 90°, from 35° to 90°, from 40° to 90°, from 45° to 90°, from 50° to 90°, from 55° to 90°, from 60° to 90°, or any range or amount therein in increments of 1°. In some embodiments, the angle, θB, can range from 1° to 60°, from 2° to 60°, from 3° to 60°, from 4° to 60°, from 5° to 60°, 6° to 60°, from 7° to 60°, from 8° to 60°, from 9° to 60°, from 10° to 60°, from 15° to 60°, from 20° to 60°, from 25° to 60°, from 30° to 60°, from 35° to 60°, from 40° to 60°, from 45° to 60°, from 50° to 60°, from 55° to 60°, or any range or amount therein in increments of 1°. In some embodiments, the angle, θB, can range from 1° to 45°, from 2° to 45°, from 3° to 45°, from 4° to 45°, from 5° to 45°, 6° to 45°, from 7° to 45°, from 8° to 45°, from 9° 45°, from 10° to 45°, from 15° to 45°, from 20° to 45°, from 25° to 45°, from 30° to 45°, from 35° to 45°, from 40° to 45°, or any range or amount therein in increments of 1°. In some embodiments, the angle, θB, can range from 1° to 45°, from 2° to 40°, from 3° to 35°, from 4° to 30°, from 5° to 25°, 5° to 45°, from 5° to 40°, from 5° to 35°, from 5° to 30°, from 10° to 45°, 10° to 40°, from 10° to 35°, from 10° to 30°, from 10° to 25°, from 15° to 45°, 15° to 40°, from 15° to 35°, from 15° to 30°, from 15° to 25°, or any range or amount therein in increments of 1°. In some embodiments, the angle, θB, can be 1.0°, 2.0°, 3.0°, 4.0°, 5.0°, 6.0°, 7.0°, 8.0°, 9.0°, 10.0°, 11.0°, 12.0°, 13.0°, 14.0°, 15.0°, 16.0°, 17.0°, 18.0°, 19.0°, 20.0°, 21.0°, 22.0°, 23.0°, 24.0°, 25.0°, 26.0°, 27.0°, 28.0°, 29.0°, 30.0°, 31.0°, 32.0°, 33.0°, 34.0°, 35.0°, 36.0°, 37.0°, 38.0°, 39.0°, 40.0°, 41.0°, 42.0°, 43.0°, 44.0°, 45.0°, 55.0°, 60.0°, 65.0°, 70.0°, 75.0°, 80.0°, 85.0°, 90.0°, or any range or amount therein in increments of 1°. The angle, θB, alters the mouth orientation and can add to sweep by providing bias as described herein. As the angle, θB, is increased, bias increases and sweep increases.
In some embodiments, as shown in
Head Tilt to Add Sweep
A protractor is shown in
In some embodiments, the lateral offset angle, θO, can range from 0° to 90°, from 1° to 90°, from 2° to 90°, from 3° to 90°, from 4° to 90°, from 5° to 90°, from 6° to 90°, from 7° to 90°, from 8° to 90°, from 9° to 90°, from 10° to 90°, from 15° to 90°, from 20° to 90°, from 25° to 90°, from 30° to 90°, from 35° to 90°, from 40° to 90°, from 45° to 90°, from 50° to 90°, or any amount or range therein in increments of 1°. In some embodiments, the lateral offset angle, θO, can range from 60° to 90°, from 70° to 90°, from 80° to 90°, or any amount or range therein in increments of 1°. In some embodiments, the lateral offset angle, θO, can range from 0° to 60°, from 5° to 60°, from 10° to 60°, from 15° to 60°, from 20° to 60°, from 25° to 60°, from 30° to 60°, from 35° to 60°, from 40° to 60°, from 45° to 60°, from 50° to 60°, from 55° to 60°, or any amount or range therein in increments of 1°. In some embodiments, the lateral offset angle, θO, can range from 0° to 45°, from 5° to 45°, from 10° to 45°, from 15° to 45°, from 20° to 45°, from 25° to 45°, from 30° to 45°, from 35° to 45°, from 40° to 45°, or any amount or range therein in increments of 1°. In some embodiments, the lateral offset angle, θO, can range from 5° to 30°, from 10° to 30°, from 15° to 30°, from 20° to 30°, from 25° to 30°, or any amount or range therein in increments of 1°. In some embodiments, the lateral offset angle, θO, can be 0°, 1 degree, 2 degrees, 3 degrees, 4 degrees, 5 degrees, 6 degrees, 7 degrees, 8 degrees, 9 degrees, 10 degrees, 11 degrees, 12 degrees, 13 degrees, 14 degrees, 15 degrees, 16 degrees, 17 degrees, 18 degrees, 19 degrees, 20 degrees, 21 degrees, 22 degrees, 23 degrees, 24 degrees, 25 degrees, 26 degrees, 27 degrees, 28 degrees, 29 degrees, 30 degrees, 31 degrees, 32 degrees, 33 degrees, 34 degrees, 35 degrees, 36 degrees, 37 degrees, 38 degrees, 39 degrees, 40 degrees, 41 degrees, 42 degrees, 43 degrees, 44 degrees, 45 degrees, or any amount or range therein in increments of 0.1 degrees. In some embodiments, the offset angle, Bo, can be selected to range from 1 degree to 45 degrees, from 1 degree to 40 degrees, from 1 degree to 35 degrees, from 1 degree to 30 degrees, from 1 degree to 25 degrees, from 1 degree to 20 degrees, from 1 degree to 15 degrees, from 1 degree to 10 degrees, from 1 degree to 5 degrees, or any amount or range therein in increments of 0.1 degrees.
Design of the Cutting Edge
Since the actual relative differences between DM and DL can depend on the size of the cutting head, it should be appreciated that the sizing of the mouth and the lumen can be expressed as a ratio, where the ratio of DM/DL can range from 0.20 to 1.00, from 0.30 to 1.00, from 0.40 to 1.00, from 0.50 to 1.00, from 0.60 to 1.00, from 0.70 to 1.00, from 1.00 to 2.00, from 1.00 to 1.90, from 1.00 to 1.80, from 1.00 to 1.70, from 1.00 to 1.60, from 1.00 to 1.50, from 1.00 to 1.45, from 1.00 to 1.40, from 1.00 to 1.35, from 1.00 to 1.30, from 1.00 to 1.25, from 1.00 to 1.20, from 1.00 to 1.15, from 1.00 to 1.10, from 1.00 to 1.05, or any ratio or range therein in increments of 0.01. In some embodiments, the DM is greater than DL by 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, or any amount or range therein in increments of 0.1%. In some embodiments, the DM is greater than DL by 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 100%, or any amount or range therein in increments of 0.1%.
The lumen of the flexible rotating shaft can be approximated by the lumen of the neck of the thrombectomy tubular cutter 200 in some embodiments. It is reasonable that the diameter of the lumen of the neck of the thrombectomy tubular cutter can be, perhaps, smaller than the lumen of the flexible rotating shaft and, as such, can also be limited for thrombus size. As such, the diameter of the lumen DL, of the neck 225 of the thrombectomy tubular cutter 200 can be sized as equal to or greater than the diameter of the inlet of the thrombectomy tubular cutter DM. In some embodiments, DM<DL. In some embodiments, DM=DL. In some embodiments, DM>DL.
One of skill will appreciate that the “cleared diameter” of a vessel can be used to describe the diameter of the lumen of the blood vessel after passage of the thrombectomy tubular cutter through the lumen of the vessel. Since the vessel is often elastic, the cleared diameter of the lumen of a blood vessel may or may not be equal to the diameter of the cutter 200, namely the diameter of the head/mouth 220. The cleared diameter of the head/mouth 220 can be greater than the outer diameter of the neck 225 and, in some embodiments, the cleared diameter of the head/mouth 220 can be equal to than the outer diameter of the neck 225. In some embodiments, the cleared diameter of the head/mouth 220 can be less than the outer diameter of the neck 225.
In some embodiments, the relative sizes of the device components can have a significant impact on the movement of the device within a vessel lumen. In some embodiments, the cutter diameter can be configured to be greater than, and in some embodiments at least 10% greater, at least 20% greater, or at least 30% greater than the diameter of the flexible rotating shaft. The ratio of cutter diameter to the diameter of the flexible rotating shaft can range from 1.1 to 1.6 in some embodiments, 1.3 to 1.5 in some embodiments, 1.2 to 1.4 in some embodiments, 1.3 to 1.4 in some embodiments, or any range therein. In some embodiments, the ratio of cutter diameter to the diameter of the flexible rotating shaft can be 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, or any ratio therein in increments of 0.05, in some embodiments. In some embodiments, however, the cutter diameter is 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, or any percent therein in increments of 0.5%, greater than, or less than, the diameter of the flexible rotating shaft.
It should be appreciated that systems can also be assembled to include any devices taught herein. In some embodiments, a system can include a thrombectomy device taught herein and a delivery catheter. In some embodiments, a system can include a thrombectomy device taught herein and a guidewire. In some embodiments, a system can include a thrombectomy device taught herein, a guidewire, and a delivery catheter.
In some embodiments, a system can include a thrombectomy device taught herein and a vacuum port for connecting to a vacuum source. In some embodiments, a system can include a thrombectomy device taught herein, a guidewire, a delivery catheter, a vacuum port for connecting to a vacuum source, and the vacuum source. In some embodiments, the thrombectomy devices can include a vacuum port configured for operable communication with any vacuum source to facilitate transport of an excised tissue out of the subject. In some embodiments, a system can include a thrombectomy device taught herein having a vacuum port, wherein the vacuum port is in operable connection with an aspiration manifold for removal of a thrombus from the system, the aspiration manifold including a vented shaft with an aspiration hole configured for the removal of the thrombus away from the target site and out of the subject.
In some embodiments, the thrombectomy devices can have a handle that includes a motor operably connected to the flexible rotating shaft to turn the flexible rotating shaft to excise a tissue from a subject. In some embodiments, the thrombectomy devices can have a handle that includes a motor operably connected to a positive displacement pump having a flexible driveshaft, the motor configured to provide a rotational torque to the flexible driveshaft that actuates the positive displacement pump to transport thrombus tissue away from the target site and out of the subject.
In some embodiments, the thrombectomy devices can have a handle that includes a motor operably connected to a screw pump having a flexible driveshaft operably connected to a helical screw, the motor configured to provide a rotational torque to the flexible driveshaft that actuates the helical screw to transport thrombus tissue away from the target site and out of the subject.
In some embodiments, the thrombectomy devices can have a handle with a motor; and a flexible driveshaft operably connected to a helical screw; wherein, the motor is operably connected to
In some embodiments, the thrombectomy device can have a handle that includes a motor operably connected to a drive assembly that includes the flexible rotating shaft and the tubular cutter, the motor can be configured to provide a rotational torque to the flexible, rotating shaft for rotating the tubular cutter. The position of the cutting edge on the tubular cutter will determine whether the cutting head is rotated clockwise or counterclockwise as viewed from a position of the user that is proximal to the cutting head.
In some embodiments, the blood filtration ports can have a diameter ranging from about 20 um to 2 mm, from about 20 um to 1 mm, from about 20 um to 0.5 mm, from about 20 um to 0.2 mm, from about 20 um to 0.1 mm, from about 20 um to 90 um, from about 20 um to 80 um, from about 20 um to 70 um, from about 20 um to 60 um, from about 20 um to 50 um, from about 20 um to 40 um, from about 20 um to 30 um, or any diameter or range therein in amounts of 1 um. In some embodiments, the shape of the blood filtration ports are not circular or elliptical, for example, and the minimum dimension is at least 20 um, the diameter possibly ranging from at least 20 um to 200 um, 20 um to 100 um, 50 um to 100 um, 50 um to 150 um, 75 um to 125 um, or any amount or range therein in increments of 1 um.
In some embodiments, the blood filtration ports can have a diameter ranging from about 40 um to 2 mm, from about 40 um to 1 mm, from about 40 um to 0.5 mm, from about 40 um to 0.2 mm, from about 40 um to 0.1 mm, from about 40 um to 90 um, from about 40 um to 80 um, from about 40 um to 70 um, from about 40 um to 60 um, from about 40 um to 50 um, or any diameter or range therein in amounts of 1 um. In some embodiments, the shape of the blood filtration ports are not circular or elliptical, for example, and the diameter is at least 40 um and can range from at least 40 um to 200 um, 40 um to 100 um, or any amount or range therein in increments of 1 um. In some embodiments, the blood filtration ports can have a minimum dimension of 10 um, 15 um, 20 um, 25 um, 30 um, 35 um, 40 um, 45 um, 50 um, 55 um, 60 um, 65 um, 70 um, 75 um, 80 um, 85 um, 90 um, 95 um, 100 um, 105 um, 110 um, 115 um, 120 um, 125 um, 130 um, 135 um, 140 um, 145 um, 150 um, or any dimension or range therein in increments of 1 um. The maximum dimension of a blood filtration port can be, for example, 100 um, 150 um, 200 um, 250 um, 300 um, 350 um, 400 um, 450 um, 500 um, or any amount therein in increments of 10 um.
In some embodiments, the blood filtration ports can be placed closer to the cutting edge of the thrombectomy tubular cutter than the trailing edge of the thrombectomy tubular cutter. In some embodiments, the blood filtration ports can be placed closer to the trailing edge of the thrombectomy tubular cutter than the cutting edge of the thrombectomy tubular cutter. In some embodiments, the blood filtration ports can cover the head 220 of the thrombectomy tubular cutter in an amount of 1, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, or any amount or range therein in increments of 0.1%. In some embodiments, the blood filtration ports can cover the head 220 of the thrombectomy tubular cutter in a range of 1% to 10%, 1% to 15%, 1% to 20%, 1% to 25%, 1% to 30%, 1% to 40%, 1% to 50%, or any amount or range therein in increments of 0.1%. In some embodiments, the blood filtration ports can cover the head 220 of the thrombectomy tubular cutter in a range of 3% to 10%, 3% to 15%, 3% to 20%, 3% to 25%, 3% to 30%, 3% to 40%, 3% to 50%, or any amount or range therein in increments of 0.1%. In some embodiments, the blood filtration ports can cover the head 220 of the thrombectomy tubular cutter in a range of 5% to 10%, 5% to 15%, 5% to 20%, 5% to 25%, 5% to 30%, 5% to 40%, 5% to 50%, or any amount or range therein in increments of 0.1%. Any number of blood filtration ports can be used. In some embodiments, this percent coverage can translate to 1 port, 2 ports, 3 ports, 4 ports, 5 ports, 6 ports, 7 ports, 8 ports, 9 ports, 10 ports, 11 ports, 12 ports, 13 ports, 14 ports, 15 ports, 16 ports, 17 ports, 18 ports, 19 ports, 20 ports, 25 ports, 30 ports, 35 ports, 40 ports, 45 ports, 50 ports, or more, and any range of number of ports therein.
The blood filtration ports can be open ports in some embodiments, and one-way valves in some embodiments. The one-way valves would be operable to allow blood to leave the lumen of the thrombectomy tubular cutter through the ports, but not enter the lumen of the thrombectomy tubular cutter through the ports. In some embodiments, the one-way valve can be a flap valve, or a butterfly valve. In some embodiments, the one-way valve can be referred to as a non-return valve and can be selected from the group consisting of duckbill valves, cross slit valves, dispensing valves, flange valves, flap valves, and combinations thereof. Any one-way valve known to one of skill to work in such a micro environment can be used.
Those of skill understand that guidewires can be used to locate a diseased region, or target region, in a blood vessel. Also, a guidewire can be used to direct the thrombectomy devices taught herein over the target region. In some embodiments, the guidewire lumen diameter can range in size from 0.01 to 0.20 inches, from 0.01 to 0.18 inches, from 0.01 to 0.15 inches, from 0.01 to 0.10 inches, or any range therein in some embodiments. In some embodiments, the guidewire lumen diameter can range from 0.01 to 0.14 inches. In some embodiments, the guidewire lumen diameter is 0.01 inches (0.254 mm), 0.02 inches (0.508 mm), 0.04 inches (1.016 mm), 0.06 inches (1.524 mm), 0.08 inches (2.032 mm), 0.10 inches (2.540 mm), 0.12 inches (3.048 mm), 0.14 inches (3.556 mm), 0.16 inches (4.064 mm), 0.18 inches (4.572 mm). 0.20 inches (5.080 mm), or any diameter therein in increments of 0.01 inches (0.254 mm).
The tissue removed by the devices taught herein can be removed mechanically, by vacuum displacement, by a positive displacement pump, or some combination thereof. In some embodiments, the thrombectomy device has a handle that includes a motor operably connected to a positive displacement pump having a flexible driveshaft, the motor configured to provide a rotational torque to the flexible rotating shaft that actuates the positive displacement pump to transport thrombus tissue away from the tubular cutter.
In some embodiments, the thrombectomy devices can have a screw pump with a rotating helical screw for removing thrombus tissue from the blood vessel, and the right hand or left hand direction of the helix will determine whether the screw pump is rotated clockwise or counterclockwise as viewed from a proximal position of the user that is proximal to the cutting head. The cutting head and the screw pump can be rotated in the same direction in some embodiments, or opposite directions in other embodiments. A right-hand helical screw could be used for a clockwise rotation of the screw when viewed from a position proximal to the head of the cutter, whereas a left-hand helical screw (not shown) could be used for a counterclockwise rotation of the screw when viewed from a position proximal to the head of the cutter.
As shown in
In some embodiments, the thrombectomy device has a handle that includes a motor operably connected to a screw pump having a drive assembly (not shown) operably connected to the thrombectomy tubular cutter 200 to turn the head 200 to cut the thrombus tissue 100, and concurrently turn the helical screw 1050 that is fixably attached to the lumen of the neck 225 of the thrombectomy tubular cutter 200. The motor can be configured to provide a rotational torque to the thrombectomy tubular cutter that actuates the cutting of the thrombus tissue and the transport of the thrombus tissue proximally with the helical screw. The helical-shaped wire can be a right-handled helix much like a right-handed drillbit, or a left-handed helix, much like a left-handed drillbit, where the right-handed helix is used when turning the thrombectomy tubular cutter 200 clockwise when viewed from a position proximal to the thrombectomy tubular cutter 200, and the left-handed helix is used when turning the thrombectomy tubular cutter 200 counterclockwise when viewed from a position proximal to the thrombectomy tubular cutter 200. As noted, a source of vacuum can be used to facilitate removal of the excised tissue from the subject.
As such, the thrombectomy devices can have a handle with a motor; and a flexible driveshaft operably connected to a helical screw; wherein, the motor is operably connected to a drive assembly that includes the flexible rotating shaft and the tubular cutter, the motor configured to provide a rotational torque to the flexible rotating shaft for rotating the tubular cutter and cutting the thrombus; and, a flexible driveshaft 1030 within the flexible rotating shaft 305 for rotating the helical screw to transport thrombus tissue away from the tubular cutter.
Indications and Design of Devices
The versatile devices, systems, and methods taught herein can handle each of the variety of soft, tough, fibrous, and hard tissue effectively, and as such, can be used in thrombectomies and atherectomies. A thrombectomy is the removal of a blood clot from a blood vessel. Blood clots are made up of platelets and a meshwork of protein strands called fibrin. Clots in arteries have a different composition than clots in veins, in which clots in arteries contain mostly platelets and clots in veins contain mostly fibrin. Common applications for thrombectomies include any location in a blood vessel where a thrombus may occur. The thrombectomy removes the blood clot from the wall of a blood vessel to help alleviate symptoms of the condition, as well as the downstream complications that can include further vasculature complications, and perhaps even death from the release of an embolus. Atherosclerosis is also referred to as plaque on the luminal wall of an artery, and plaque includes deposits of fatty substances, cholesterol, cellular waste products, calcium, and fibrin. Both the atherosclerosis and thrombus pose a risk of fragmenting into the blood stream, and moving to the heart, brain, or lungs, causing health complications and often proving to be fatal. The devices, systems, and methods taught herein can be used to treat all such indications that involve the removal of tissue from a blood vessel.
The thrombus can be in a vein as a venous thrombosis, or an artery as an arterial thrombosis. An indication of particular importance is the removal of a thrombus from a pulmonary artery, also referred to as a pulmonary embolism. The size of the artery or vein can be used to select the size, or diameter of the head 220, of the thrombectomy tubular cutter 200. Peripheral vascular disease in the legs is an example of a condition that can be treated using the thrombectomy devices taught herein.
In some embodiments, the diameter of a target blood vessel can be used to size the diameter, DS, of the head of the tubular cutter 200. In some embodiments, the diameter of the target blood vessel can be a reference point as the maximum diameter to use as the diameter of the head 220 of the tubular cutter. However, in some embodiments, the blood vessel is much larger than the diameter, DS, of the tubular cutter 200.
It should be appreciated blood vessels of a wide range of lumen diameters can be treated. The lumen diameters can range for example, from about 2.0 mm to about 30.0 mm, from about 3.0 mm to about 25.0 mm, from about 4.0 mm to about 24.0 mm, from about 5.0 mm to about 23.0 mm, from about 6.0 mm to about 25.0 mm, from about 7.0 mm to about 21.0 mm, from about 8.0 mm to about 20.0 mm, or any range or amount therein in increments of 0.1 mm. In some embodiments, the lumen diameters of the blood vessels treated can be 2.0 mm, 3.0 mm, 4.0 mm, 5.0 mm, 6.0 mm, 7.0 mm, 8.0 mm, 9.0 mm, 10.0 mm, 11.0 mm, 12.0 mm, 13.0 mm, 14.0 mm, 15.0 mm, 16.0 mm, 17.0 mm, 18.0 mm, 19.0 mm, 20.0 mm, 21.0 mm, 22.0 mm, 23.0 mm, 24.0 mm, 25.0 mm, 26.0 mm, 27.0 mm, 28.0 mm, 29.0 mm, 30.0 or any range or amount therein in increments of 1.0 mm.
In some embodiments, the diameter, DS, of the head 220 of the tubular cutter 200 is selected to be reduced from the diameter of the target vessel in an amount of at least 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, or any amount or range therein in increments of 1%. In some embodiments, the diameter, DS, of the head 220 of the tubular cutter is selected to be reduced from the diameter of the target vessel in an amount ranging from 1% to 10%, from 1% to 15%, from 1% to 20%, from 1% to 25%, from 1% to 30%, from 1% to 40%, from 1% to 50%, or any amount or range therein in increments of 1%. In some embodiments, the diameter, DS, of the head 220 of the tubular cutter is selected to be reduced from the diameter of the target vessel in an amount ranging from 5% to 10%, from 5% to 15%, from 5% to 20%, from 5% to 25%, from 5% to 30%, from 5% to 40%, from 5% to 50%, or any amount or range therein in increments of 0.1%.
The main targets and indications for use with the devices, systems, and methods taught herein includes the removal of venous thrombus. In some embodiments, the systems, devices, and methods can be configured for removal of a venous thrombus, and the lumen diameters of the blood vessels treated can range, for example, from about 4.0 mm to about 16.0 mm, or any amount or range therein in increments of 1.0 mm. In these embodiments, the outer diameter of the tubular cutter and/or the flexible rotating tube can range from about 4 mm to about 8 mm, or any amount or range therein in increments of 1.0 mm.
In some embodiments, the systems, devices, and methods taught herein can be configured for removal of a pulmonary arterial thrombus, and the lumen diameters of the blood vessels treated can range, for example, from about 6.0 mm to about 25.0 mm, or any amount or range therein in increments of 0.1 mm. In these embodiments, the outer diameter of the tubular cutter and/or the flexible rotating tube can range from about 4 mm to about 8 mm, or any amount or range therein in increments of 0.1 mm.
Table 1 provides examples of some venous lumen diameters in mm for veins which can be treated with the devices taught herein.
In some embodiments, a treated vein can have a lumen diameter ranging from 4 mm to 18 mm. In some embodiments, the diameter of the vein can range from 1 mm to 10 mm, from 2.0 mm to 10 mm, from 3.0 mm to 10 mm, from 4.0 mm to 10 mm, from 5.0 mm to 10 mm, from 6.0 mm to 10 mm, from 7.0 mm to 10.0 mm, from 8.0 mm to 10.0 mm or any range or amount therein in increments of 1.0 mm. In some embodiments, the treated vein can have a lumen diameter selected from the group consisting of 2.0 mm, 3.0 mm, 4.0 mm, 5.0 mm, 6.0 mm, 7.0 mm, 8.0 mm, 9.0 mm, 10.0 mm, or any amount or range therein in increments of 1.0 mm. In some embodiments, the treated vein can have a lumen diameter selected from the group consisting of 11.0 mm, 12.0 mm, 13.0 mm, 14.0 mm, 15.0 mm, 16.0 mm, 17.0 mm, 18.0 mm, 19.0 mm, 20.0 mm, 21.0 mm, 22.0 mm, 23.0 mm, 24.0 mm, 25.0 mm, 26.0 mm, 27.0 mm, 28.0 mm, 29.0 mm, 30.0 mm or any amount or range therein in increments of 1.0 mm.
Clots in the venous system can vary greatly in size, and the thrombectomy tubular cutter will need to be sized accordingly. In some embodiments, a thrombus can have a clot diameter ranging from about 1.0 mm to about 18.0 mm. In embodiments involving deep vein thrombosis, for example, a thrombus can be found in larger veins and have a clot diameter ranging from about 3.0 mm to about 8.0 mm. In some embodiments, a thrombus can be found in the common iliac veins and the inferior vena cava having a clot diameter ranging from about 7.0 mm to about 17.0 mm. In some embodiments, a thrombus can be found in the external iliac veins and common femoral veins having a clot diameter ranging from about 5 mm to about 14 mm. In some embodiments, a thrombus can be found in the superficial femoral, deep femoral and popliteal veins having a clot diameter ranging from about 4 mm to about 10 mm. And, in some embodiments, a thrombus can be found in the calf veins ranging from about 4 mm to about 8 mm.
Any vein can be treated using the devices, systems, and methods taught herein. In some embodiments, the devices, systems, and methods are designed for treating the iliac veins. And, in some embodiments, the devices, systems, and methods are designed for treating the popliteal veins. In some embodiments, the devices, systems, and methods are designed for treating any veins from the popliteal veins to the iliacs.
As noted, the devices, systems, and methods are directed mainly toward thrombectomies. However, in some embodiments, the systems, devices, and methods can be configured for treatment of arteries, or atherectomies. Table 1 provides examples of some arterial lumen diameters in mm for arteries which can be treated with the devices taught herein.
The superior femoral artery, located about mid-femur, generally has a diameter of about 5 to 7 mm, or about 0.2 to 0.25 inch. As the artery descends below the knee, the popliteal artery generally has a diameter of about 4 to 4.5 mm (0.157 inch to 0.177 inch), and then reduces to about 3.5 mm (0.137 inch) as you move in the direct of the subject's foot. The popliteal artery branches again into the anterior tibial artery and the tibioperoneal trunk, reducing further in diameter to about 3.0 mm and then about 2.5 mm or about 0.118 inch to 0.098 inch. The tibioperoneal trunk further subdivides into the posterior tibial and peroneal arteries, further reducing in diameter to about 2.0 mm (0.078 inch). In some embodiments, the diameters of the peripheral arteries of the leg can vary, typically, from about 2 mm to about 7 mm. Any blood vessel can contain plaque and be a prospective target area for the thrombectomy devices taught herein. For example, coronary arteries are about 3 mm in size, varies from 2.5-4.5 in diameter, and coronary arteries can be prospective target areas for the devices taught herein if designed for use in an atherectomy.
For smaller clots, the diameter of the cutter can range from about 1.0 mm to about 3.0 mm in some embodiments, 1.5 mm to 4.0 mm in some embodiments, or any range therein in increments of 0.10 mm. In some embodiments, the diameter of the cutter can be about 1.0 mm, about 2.0 mm, about 3.0 mm, about 4.0 mm, about 5.0 mm, or any diameter therein, or range therein, in increments of 0.1 mm.
For larger clots, the diameter of the cutter can range from about 3.0 mm to 9.0 mm in some embodiments, 4.0 mm to 8.0 mm in some embodiments, and 5.0 mm to 7.0 mm in some embodiments, or any amount or range therein in increments of 0.1 mm. In some embodiments, the diameter of a larger cutter can be about 3.0 mm, about 4.0 mm, about 5.0 mm, about 6.0 mm, about 7.0 mm, about 8.0 mm, about 9.0 mm, 10.0 mm or any diameter therein, or range therein, in increments of 0.1 mm.
Although it seems reasonable to simply increase the diameter of the cutter for larger blood vessels, the skilled artisan will realize that the diameter of the cutter can also be limited by physical complications of the patient's anatomy. For example, there can be complications that occur during surgery due to bleeding at the puncture access, tortuous vessels, vessel size variations, and the like. The skilled artisan can use the teachings herein, including cutter size, cutter bias, ratio of leading edge to trailing edge, cutter deflection, selection of stiffness, and any combination thereof, to design a desired thrombectomy device to obtain the desired treatment results.
The skilled artisan will also realize that the length of the cutter has to be limited to have the maneuverability needed. One of skill will realize that the size of the head of the cutter can be any length known to be suitable in the art for the particular treatment. In some embodiments, the length of the head of the cutter can range from about 4.0 mm to about 20.00 mm, from about 4.0 mm to about 18.0 mm, from about 4.0 mm to about 16.0 mm, from about 4.0 mm to about 12.0 mm, or any range or amount therein in increments of 0.10 mm. In some embodiments, the length of the head of the cutter can range from about 6.0 mm to about 20.00 mm, from about 6.0 mm to about 18.0 mm, from about 6.0 mm to about 16.0 mm, from about 6.0 mm to about 12.0 mm, or any range or amount therein in increments of 0.10 mm. In some embodiments, the length of the head of the cutter can range from about 8.0 mm to about 20.00 mm, from about 8.0 mm to about 18.0 mm, from about 8.0 mm to about 16.0 mm, from about 8.0 mm to about 12.0 mm, or any range or amount therein in increments of 0.10 mm. In some embodiments, the length of the head of the cutter can be about 1.0 mm, about 2.0 mm, about 3.0 mm, about 4.0 mm, about 5.0 mm, about 6.0 mm, about 7.0 mm, about 8.0 mm, or any diameter therein, or range therein, in increments of 0.1 mm.
Given the relative sizes of the vessels and devices taught herein, it should be appreciated by the skilled artisan that a thrombectomy device can have a shaft diameter that 2× the size of a shaft used in an atherectomy device. In some embodiments, this is why the torsional stiffness of a thrombectomy device can be 16× that of the atherectomy device, and the flexural stiffness of the thrombectomy devices can be 8× that of the atherectomy device. Likewise, the axial stiffness of the thrombectomy device can be about 2× that of the atherectomy device.
As discussed the devices, systems and methods can be used in thrombectomies and atherectomies, although thrombectomies are the focus. As such, methods of using thrombectomy devices and systems, and methods of using atherectomy devices and systems are provided.
In some embodiments, the teachings are directed to a method of removing tissue from a blood vessel in a subject using a device taught herein, the method comprising:
In some embodiments, the teachings are directed to a method of performing a thrombectomy in a subject using a thrombectomy device taught herein, the method comprising:
In some embodiments, the teachings are directed to a method of performing a atherectomy in a subject using a device taught herein, the method comprising:
In some embodiments, the methods further include inserting a guidewire in the point of entry and delivering the guidewire to a target location in the vascular lumen of a subject, and guiding the device to the target location on the guidewire.
In some embodiments, the methods further include discharging excised tissue from the vascular lumen with a vacuum.
The devices taught herein include several methods of removing a vascular lesion from within a subject. In fact the lesion can be removed from any blood vessel. In some embodiments, the methods can include creating a point of entry in a vascular lumen of the subject; inserting a thrombectomy device taught herein into the vascular lumen; telescoping the flexible rotating shaft; cutting a thrombus from a wall of a vascular lumen with the cutter of the device; discharging the cut tissue from the vascular lumen which in some embodiments can be facilitated with a vacuum pump; and, removing the device from the vascular lumen of the subject.
In some embodiments, the method of removing a thrombus can include obtaining a thrombectomy device taught herein, creating an opening into the vasculature of a subject having a thrombus, inserting the device in the vasculature of the subject, moving the distal end of the thrombectomy device to the site of the thrombus, removing the thrombus from the subject with the thrombectomy device, and removing the thrombectomy device from the subject.
In some embodiments, the method includes
This application claims the benefit of U.S. Provisional Application No. 63/520,029, filed Aug. 16, 2023, which is hereby incorporated by reference herein in it's entirety.
| Number | Name | Date | Kind |
|---|---|---|---|
| 3358472 | Klipping et al. | Dec 1967 | A |
| 4167944 | Banko | Sep 1979 | A |
| 4306570 | Matthews | Dec 1981 | A |
| 4445509 | Auth | May 1984 | A |
| 4598710 | Kleinberg et al. | Jul 1986 | A |
| 4598716 | Hileman | Jul 1986 | A |
| 4631052 | Kensey | Dec 1986 | A |
| 4669469 | Gifford, III et al. | Jun 1987 | A |
| 4690140 | Mecca | Sep 1987 | A |
| 4696667 | Masch | Sep 1987 | A |
| 4732154 | Shiber | Mar 1988 | A |
| 4770652 | Mahurkar | Sep 1988 | A |
| 4781186 | Simpson et al. | Nov 1988 | A |
| 4790812 | Hawkins et al. | Dec 1988 | A |
| 4804364 | Dieras et al. | Feb 1989 | A |
| 4808153 | Parisi | Feb 1989 | A |
| 4844064 | Thimsen | Jul 1989 | A |
| 4857045 | Rydell | Aug 1989 | A |
| 4857046 | Stevens et al. | Aug 1989 | A |
| 4867157 | Gurk-Burleson | Sep 1989 | A |
| 4886490 | Shiber | Dec 1989 | A |
| 4887599 | Muller | Dec 1989 | A |
| 4894051 | Shiber | Jan 1990 | A |
| 4911148 | Sosnowski | Mar 1990 | A |
| 4950277 | Farr | Aug 1990 | A |
| 4994067 | Summers | Feb 1991 | A |
| 4994087 | Konrad et al. | Feb 1991 | A |
| 5041082 | Shiber | Aug 1991 | A |
| 5047040 | Simpson et al. | Sep 1991 | A |
| 5074841 | Ademovic | Dec 1991 | A |
| 5100426 | Nixon | Mar 1992 | A |
| 5114399 | Kovalcheck | May 1992 | A |
| 5122134 | Borzone et al. | Jun 1992 | A |
| 5231989 | Middleman et al. | Aug 1993 | A |
| 5242461 | Kortenbach et al. | Sep 1993 | A |
| 5267955 | Hanson | Dec 1993 | A |
| 5282813 | Redha | Feb 1994 | A |
| 5282821 | Donahue | Feb 1994 | A |
| 5284128 | Hart | Feb 1994 | A |
| 5304189 | Goldberg et al. | Apr 1994 | A |
| 5312427 | Shturman | May 1994 | A |
| 5314438 | Shturman | May 1994 | A |
| 5320635 | Smith | Jun 1994 | A |
| 5332329 | Hill et al. | Jul 1994 | A |
| 5334211 | Shiber | Aug 1994 | A |
| 5356418 | Shturman | Oct 1994 | A |
| 5358472 | Vance et al. | Oct 1994 | A |
| 5360432 | Shturman | Nov 1994 | A |
| 5370609 | Drasler et al. | Dec 1994 | A |
| 5372587 | Hammerslag et al. | Dec 1994 | A |
| 5409454 | Fischell et al. | Apr 1995 | A |
| 5417703 | Brown et al. | May 1995 | A |
| 5423799 | Shiu | Jun 1995 | A |
| 5429604 | Hammersmark et al. | Jul 1995 | A |
| 5429617 | Hammersmark et al. | Jul 1995 | A |
| 5431173 | Chin et al. | Jul 1995 | A |
| 5456680 | Taylor et al. | Oct 1995 | A |
| 5474532 | Steppe | Dec 1995 | A |
| 5489291 | Wiley | Feb 1996 | A |
| 5501653 | Chin | Mar 1996 | A |
| 5520609 | Moll et al. | May 1996 | A |
| 5529580 | Kusunoki et al. | Jun 1996 | A |
| 5540706 | Aust | Jul 1996 | A |
| 5554163 | Shturman | Sep 1996 | A |
| 5556408 | Farhat | Sep 1996 | A |
| 5569197 | Helmus | Oct 1996 | A |
| 5569275 | Kotula | Oct 1996 | A |
| 5584843 | Wulfman | Dec 1996 | A |
| 5618294 | Aust | Apr 1997 | A |
| 5626562 | Castro | May 1997 | A |
| 5632755 | Nordgren | May 1997 | A |
| 5634178 | Sugiura | May 1997 | A |
| 5634883 | Moll | Jun 1997 | A |
| 5643178 | Moll | Jul 1997 | A |
| 5643251 | Hillsman | Jul 1997 | A |
| 5643297 | Nordgren | Jul 1997 | A |
| 5643298 | Nordgren | Jul 1997 | A |
| 5649941 | Lary | Jul 1997 | A |
| 5656562 | Wu | Aug 1997 | A |
| 5665062 | Houser | Sep 1997 | A |
| 5665098 | Kelly | Sep 1997 | A |
| 5669926 | Aust | Sep 1997 | A |
| 5690634 | Muller | Nov 1997 | A |
| 5690643 | Wijay | Nov 1997 | A |
| 5695506 | Pike | Dec 1997 | A |
| 5716327 | Warner | Feb 1998 | A |
| 5725543 | Redha | Mar 1998 | A |
| 5728129 | Summers | Mar 1998 | A |
| 5733297 | Wang | Mar 1998 | A |
| 5743456 | Jones | Apr 1998 | A |
| 5746758 | Nordgren | May 1998 | A |
| 5749885 | Sjostrom | May 1998 | A |
| 5755731 | Grinberg | May 1998 | A |
| 5766196 | Griffiths | Jun 1998 | A |
| 5772329 | Bardon | Jun 1998 | A |
| 5779721 | Nash | Jul 1998 | A |
| 5782834 | Lucey | Jul 1998 | A |
| 5820592 | Hammerslag | Oct 1998 | A |
| 5826582 | Sheehan | Oct 1998 | A |
| 5828582 | Conklen | Oct 1998 | A |
| 5843103 | Wulfman | Dec 1998 | A |
| 5851208 | Trott | Dec 1998 | A |
| 5851212 | Zirps | Dec 1998 | A |
| 5865082 | Cote | Feb 1999 | A |
| 5865098 | Anelli | Feb 1999 | A |
| 5873882 | Straub | Feb 1999 | A |
| 5876414 | Straub | Mar 1999 | A |
| 5882329 | Patterson | Mar 1999 | A |
| 5882333 | Schaer | Mar 1999 | A |
| 5885098 | Witkowski | Mar 1999 | A |
| 5890643 | Razon | Apr 1999 | A |
| 5895399 | Barbut | Apr 1999 | A |
| 5895508 | Halow | Apr 1999 | A |
| 5897566 | Shturman | Apr 1999 | A |
| 5902263 | Patterson | May 1999 | A |
| 5902283 | Darouiche | May 1999 | A |
| 5902313 | Redha | May 1999 | A |
| 5910150 | Saadat | Jun 1999 | A |
| 5941869 | Patterson | Aug 1999 | A |
| 5941893 | Saadat | Aug 1999 | A |
| 6001112 | Taylor | Dec 1999 | A |
| 6015420 | Wulfman | Jan 2000 | A |
| 6027450 | Brown | Feb 2000 | A |
| 6027514 | Stine | Feb 2000 | A |
| 6042593 | Storz | Mar 2000 | A |
| 6048339 | Zirps | Apr 2000 | A |
| 6053923 | Veca | Apr 2000 | A |
| 6066153 | Lev | May 2000 | A |
| 6080170 | Nash | Jun 2000 | A |
| 6086153 | Heidmann | Jul 2000 | A |
| 6090118 | McGuckin | Jul 2000 | A |
| 6113615 | Wulfman | Sep 2000 | A |
| 6132444 | Shturman | Oct 2000 | A |
| 6139557 | Passafaro | Oct 2000 | A |
| 6142955 | Farascioni | Nov 2000 | A |
| 6146395 | Kanz | Nov 2000 | A |
| 6152938 | Curry | Nov 2000 | A |
| 6156046 | Passafaro | Dec 2000 | A |
| 6165209 | Patterson | Dec 2000 | A |
| 6183487 | Barry | Feb 2001 | B1 |
| 6206898 | Honeycutt | Mar 2001 | B1 |
| 6237405 | Leslie | May 2001 | B1 |
| 6238405 | Findlay | May 2001 | B1 |
| 6241744 | Imran | Jun 2001 | B1 |
| 6258098 | Taylor | Jul 2001 | B1 |
| 6258109 | Barry | Jul 2001 | B1 |
| 6264630 | Mickley | Jul 2001 | B1 |
| 6284830 | Gottschalk | Sep 2001 | B1 |
| 6299622 | Snow | Oct 2001 | B1 |
| 6319242 | Patterson | Nov 2001 | B1 |
| 6325067 | Sterman et al. | Dec 2001 | B1 |
| 6355027 | Le | Mar 2002 | B1 |
| 6371928 | Mcfann | Apr 2002 | B1 |
| 6406422 | Landesberg | Jun 2002 | B1 |
| 6406442 | McFann | Jun 2002 | B1 |
| 6451036 | Heitzmann | Jun 2002 | B1 |
| 6454779 | Taylor | Sep 2002 | B1 |
| 6482215 | Shiber | Nov 2002 | B1 |
| 6482217 | Pintor | Nov 2002 | B1 |
| 6494890 | Shturman | Dec 2002 | B1 |
| 6497711 | Plaia | Dec 2002 | B1 |
| 6554846 | Hamilton | Apr 2003 | B2 |
| 6554848 | Boylan | Apr 2003 | B2 |
| 6562049 | Norlander | May 2003 | B1 |
| 6565195 | Blair | May 2003 | B2 |
| 6565588 | Clement | May 2003 | B1 |
| 6572630 | McGucin | Jun 2003 | B1 |
| 6578851 | Bryant | Jun 2003 | B1 |
| 6579298 | Johnson | Jun 2003 | B1 |
| 6579299 | McGuckin | Jun 2003 | B2 |
| 6596005 | Kanz | Jul 2003 | B1 |
| 6602264 | McGuckin | Aug 2003 | B1 |
| 6610077 | Hancock et al. | Aug 2003 | B1 |
| 6620148 | Tsugita | Sep 2003 | B1 |
| 6623495 | Findlay | Sep 2003 | B2 |
| 6629953 | Boyd | Oct 2003 | B1 |
| 6638233 | Corvi | Oct 2003 | B2 |
| 6638288 | Shturman | Oct 2003 | B1 |
| RE38335 | Aust | Nov 2003 | E |
| 6652548 | Evans et al. | Nov 2003 | B2 |
| 6656195 | Peters | Dec 2003 | B2 |
| 6658195 | Senshu | Dec 2003 | B1 |
| 6666854 | Lange | Dec 2003 | B1 |
| 6666874 | Heitzmann | Dec 2003 | B2 |
| 6682545 | Kester | Jan 2004 | B1 |
| 6702830 | Demarais | Mar 2004 | B1 |
| 6746422 | Noriega | Jun 2004 | B1 |
| 6758851 | Shiber | Jul 2004 | B2 |
| 6790215 | Findlay | Sep 2004 | B2 |
| 6800085 | Selmon | Oct 2004 | B2 |
| 6802284 | Hironaka | Oct 2004 | B2 |
| 6808531 | Lafontaine | Oct 2004 | B2 |
| 6818001 | Wulfman et al. | Nov 2004 | B2 |
| 6818002 | Shiber | Nov 2004 | B2 |
| 6830577 | Nash | Dec 2004 | B2 |
| 6843797 | Nash | Jan 2005 | B2 |
| 6860235 | Anderson | Mar 2005 | B2 |
| 6866854 | Chang | Mar 2005 | B1 |
| 6868854 | Kempe | Mar 2005 | B2 |
| 6876414 | Hara | Apr 2005 | B2 |
| 6899704 | Sterman et al. | May 2005 | B2 |
| 6936056 | Nash | Aug 2005 | B2 |
| 6991409 | Noland et al. | Jan 2006 | B2 |
| 6997934 | Snow | Feb 2006 | B2 |
| 7008375 | Weisel | Mar 2006 | B2 |
| 7025751 | Silva | Apr 2006 | B2 |
| 7033357 | Baxter | Apr 2006 | B2 |
| 7037316 | McGuckin | May 2006 | B2 |
| RE39152 | Aust | Jun 2006 | E |
| 7122017 | Moutafis et al. | Oct 2006 | B2 |
| 7169161 | Bonnette et al. | Jan 2007 | B2 |
| 7172610 | Heitzmann | Feb 2007 | B2 |
| 7172810 | Hashimoto | Feb 2007 | B2 |
| 7179269 | Welch et al. | Feb 2007 | B2 |
| 7235088 | Pintor | Jun 2007 | B2 |
| 7316697 | Shiber | Jan 2008 | B2 |
| 7344546 | Wulfman | Mar 2008 | B2 |
| 7344548 | Toyota | Mar 2008 | B2 |
| 7381198 | Noriega | Jun 2008 | B2 |
| 7399307 | Evans | Jul 2008 | B2 |
| 7479147 | Honeycutt | Jan 2009 | B2 |
| 7501114 | Sehgal et al. | Mar 2009 | B2 |
| 7534249 | Nash | May 2009 | B2 |
| 7645290 | Lucas | Jan 2010 | B2 |
| 7655016 | Demarais et al. | Feb 2010 | B2 |
| 7666161 | Nash | Feb 2010 | B2 |
| 7670597 | Sehgal et al. | Mar 2010 | B2 |
| 7734332 | Sher | Jun 2010 | B2 |
| 7771445 | Heitzmann | Aug 2010 | B2 |
| 7875018 | Tockman | Jan 2011 | B2 |
| 7879022 | Bonnette | Feb 2011 | B2 |
| 7892230 | Woloszko | Feb 2011 | B2 |
| 7955345 | Kucharczyk et al. | Jun 2011 | B2 |
| 7981128 | To | Jul 2011 | B2 |
| 8007500 | Lin | Aug 2011 | B2 |
| 8007506 | To | Aug 2011 | B2 |
| 8015420 | Cherian | Sep 2011 | B2 |
| 8052704 | Olson | Nov 2011 | B2 |
| 8057395 | Lenker et al. | Nov 2011 | B2 |
| 8057497 | Raju et al. | Nov 2011 | B1 |
| 8070762 | Escudero et al. | Dec 2011 | B2 |
| 8070791 | Ferrera et al. | Dec 2011 | B2 |
| 8197493 | Ferrera et al. | Jun 2012 | B2 |
| 8226679 | Johnson et al. | Jul 2012 | B2 |
| 8236016 | To et al. | Aug 2012 | B2 |
| 8252010 | Raju et al. | Aug 2012 | B1 |
| 8298244 | Garcia et al. | Oct 2012 | B2 |
| 8337516 | Escudero | Dec 2012 | B2 |
| 8361094 | To et al. | Jan 2013 | B2 |
| 8469979 | Olson | Jun 2013 | B2 |
| 8475483 | Schmitz et al. | Jul 2013 | B2 |
| 8517994 | Li | Aug 2013 | B2 |
| 8535662 | Chen et al. | Sep 2013 | B2 |
| 8545447 | Demarais | Oct 2013 | B2 |
| 8568432 | Straub | Oct 2013 | B2 |
| 8572630 | Woundy | Oct 2013 | B2 |
| 8574262 | Ferrera et al. | Nov 2013 | B2 |
| 8579926 | Pintor | Nov 2013 | B2 |
| 8585726 | Yoon | Nov 2013 | B2 |
| 8613721 | Wulfman et al. | Dec 2013 | B2 |
| 8622992 | Baxter et al. | Jan 2014 | B2 |
| 8628549 | To et al. | Jan 2014 | B2 |
| 8628790 | To et al. | Jan 2014 | B2 |
| 8632560 | Pal et al. | Jan 2014 | B2 |
| 8647355 | Escudero | Feb 2014 | B2 |
| 8715150 | Creighton | Apr 2014 | B2 |
| 8721676 | Janardhan et al. | May 2014 | B1 |
| 8747350 | Chin | Jun 2014 | B2 |
| 8777976 | Brady et al. | Jul 2014 | B2 |
| 8783151 | Janardhan et al. | Jul 2014 | B1 |
| 8784434 | Rosenbluth et al. | Jul 2014 | B2 |
| 8795278 | Schmitz et al. | Aug 2014 | B2 |
| 8795306 | Smith et al. | Aug 2014 | B2 |
| 8803030 | Janardhan et al. | Aug 2014 | B1 |
| 8845675 | Johnson et al. | Sep 2014 | B2 |
| 8845678 | Janardhan et al. | Sep 2014 | B1 |
| 8852205 | Brady et al. | Oct 2014 | B2 |
| 8852227 | Janardhan et al. | Oct 2014 | B1 |
| 8859934 | Janardhan et al. | Oct 2014 | B1 |
| 8866049 | Janardhan et al. | Oct 2014 | B1 |
| 8872068 | Janardhan et al. | Oct 2014 | B1 |
| 8876414 | Taniguchi | Nov 2014 | B2 |
| 8881849 | Shen et al. | Nov 2014 | B2 |
| 8888801 | To et al. | Nov 2014 | B2 |
| 8895891 | Janardhan et al. | Nov 2014 | B2 |
| 8926491 | Creighton | Jan 2015 | B2 |
| 8926680 | Ferrera et al. | Jan 2015 | B2 |
| 8932208 | Kendale et al. | Jan 2015 | B2 |
| 8932321 | Janardhan et al. | Jan 2015 | B1 |
| 8951201 | Mesallum | Feb 2015 | B2 |
| 8979793 | Hofmann | Mar 2015 | B2 |
| 9005649 | Ho et al. | Apr 2015 | B2 |
| 9050127 | Bonnette et al. | Jun 2015 | B2 |
| 9095371 | Escudero et al. | Aug 2015 | B2 |
| 9107590 | Hansmann et al. | Aug 2015 | B2 |
| 9179931 | Janardhan et al. | Nov 2015 | B2 |
| 9179995 | Janardhan et al. | Nov 2015 | B2 |
| 9198679 | To et al. | Dec 2015 | B2 |
| 9198687 | Fulkerson et al. | Dec 2015 | B2 |
| 9204893 | Rizk et al. | Dec 2015 | B2 |
| 9220522 | Fulkerson et al. | Dec 2015 | B2 |
| 9220530 | Moberg | Dec 2015 | B2 |
| 9238122 | Malhi et al. | Jan 2016 | B2 |
| 9254144 | Nguyen et al. | Feb 2016 | B2 |
| 9308016 | Escudero et al. | Apr 2016 | B2 |
| 9314263 | Escudero et al. | Apr 2016 | B2 |
| 9345511 | Smith | May 2016 | B2 |
| 9393035 | Yu | Jul 2016 | B2 |
| 9445828 | Turjman et al. | Sep 2016 | B2 |
| 9492192 | To et al. | Nov 2016 | B2 |
| 9492193 | To et al. | Nov 2016 | B2 |
| 9498247 | Patel et al. | Nov 2016 | B2 |
| 9498600 | Rosenthal et al. | Nov 2016 | B2 |
| 9526863 | Baxter et al. | Dec 2016 | B2 |
| 9526865 | Quick et al. | Dec 2016 | B2 |
| 9604291 | Kountanya et al. | Mar 2017 | B2 |
| 9656008 | Wulfman et al. | May 2017 | B2 |
| 9668767 | To et al. | Jun 2017 | B2 |
| 9675376 | To et al. | Jun 2017 | B2 |
| 9700332 | Marchand et al. | Jul 2017 | B2 |
| 9717520 | Zeroni et al. | Aug 2017 | B2 |
| 9737318 | Monstadt et al. | Aug 2017 | B2 |
| 9770258 | Smith et al. | Sep 2017 | B2 |
| 9808277 | Nash et al. | Nov 2017 | B2 |
| 9855071 | Shaltis | Jan 2018 | B2 |
| 9883873 | Kulas et al. | Feb 2018 | B2 |
| 9931166 | Sauro et al. | Apr 2018 | B2 |
| 9968371 | Todd et al. | May 2018 | B2 |
| 9976356 | Burhan et al. | May 2018 | B2 |
| 9993325 | Ren et al. | May 2018 | B2 |
| 10004531 | Rosenbluth et al. | Jun 2018 | B2 |
| 10016211 | Ferrera et al. | Jul 2018 | B2 |
| 10022145 | Simpson et al. | Jul 2018 | B2 |
| 10028759 | Wallace et al. | Jul 2018 | B2 |
| 10028767 | Germain et al. | Jul 2018 | B2 |
| 10045790 | Cox et al. | Aug 2018 | B2 |
| 10098651 | Marchand et al. | Oct 2018 | B2 |
| 10154853 | To et al. | Dec 2018 | B2 |
| 10154854 | To et al. | Dec 2018 | B2 |
| 10172638 | Palme et al. | Jan 2019 | B2 |
| 10226275 | Escudero et al. | Mar 2019 | B2 |
| 10226277 | Smith et al. | Mar 2019 | B2 |
| 10238406 | Cox et al. | Mar 2019 | B2 |
| 10251667 | Cohen et al. | Apr 2019 | B2 |
| 10258358 | Ulm, III | Apr 2019 | B2 |
| 10258409 | Ben-Oren et al. | Apr 2019 | B2 |
| 10278719 | Ulm, III | May 2019 | B2 |
| 10292677 | Johnson et al. | May 2019 | B2 |
| 10292722 | Brady et al. | May 2019 | B2 |
| 10292803 | Monstadt et al. | May 2019 | B2 |
| 10299811 | Brady et al. | May 2019 | B2 |
| 10307175 | McGuckin et al. | Jun 2019 | B2 |
| 10321925 | Ulm, III | Jun 2019 | B2 |
| 10335260 | Janardhan et al. | Jul 2019 | B2 |
| 10342655 | Janardhan et al. | Jul 2019 | B2 |
| 10349974 | Patel et al. | Jul 2019 | B2 |
| 10357275 | Majercak et al. | Jul 2019 | B2 |
| 10376275 | Nguyen et al. | Aug 2019 | B2 |
| 10376678 | Levine | Aug 2019 | B2 |
| 10383751 | Ferrera et al. | Aug 2019 | B2 |
| 10413310 | Ferrera et al. | Sep 2019 | B2 |
| 10420572 | Ulm, III | Sep 2019 | B2 |
| 10426512 | Avneri et al. | Oct 2019 | B2 |
| 10441311 | Smith et al. | Oct 2019 | B2 |
| 10449269 | Fahmy et al. | Oct 2019 | B2 |
| 10456236 | Nguyen et al. | Oct 2019 | B2 |
| 10463389 | McGuckin et al. | Nov 2019 | B2 |
| 10470797 | Rai et al. | Nov 2019 | B1 |
| 10492822 | Chen et al. | Dec 2019 | B2 |
| 10507036 | Schuman et al. | Dec 2019 | B2 |
| 10512479 | Nguyen et al. | Dec 2019 | B2 |
| 10524824 | Rottenberg et al. | Jan 2020 | B2 |
| 10531883 | Deville et al. | Jan 2020 | B1 |
| 10555752 | Robertson et al. | Feb 2020 | B2 |
| 10555753 | Moberg et al. | Feb 2020 | B2 |
| 10568655 | Simpson et al. | Feb 2020 | B2 |
| 10569049 | Garrison et al. | Feb 2020 | B2 |
| 10588649 | Brady et al. | Mar 2020 | B2 |
| 10588656 | Trosper et al. | Mar 2020 | B2 |
| 10595818 | Levine | Mar 2020 | B2 |
| 10603467 | Alvarez et al. | Mar 2020 | B2 |
| 10624659 | Gamba et al. | Apr 2020 | B2 |
| 10646247 | Wilson et al. | May 2020 | B2 |
| 10667833 | Vale et al. | Jun 2020 | B2 |
| 10682152 | Vale et al. | Jun 2020 | B2 |
| 10702367 | Sachar et al. | Jul 2020 | B2 |
| 10722253 | Deville et al. | Jul 2020 | B2 |
| 10743894 | Brady et al. | Aug 2020 | B2 |
| 10743895 | Losordo et al. | Aug 2020 | B2 |
| 10751159 | Janardhan et al. | Aug 2020 | B2 |
| 10765446 | Higgins et al. | Sep 2020 | B2 |
| 10774596 | Zhang et al. | Sep 2020 | B2 |
| 10779843 | Wallace et al. | Sep 2020 | B2 |
| 10799331 | Hauser et al. | Oct 2020 | B2 |
| 10835268 | Wallace et al. | Nov 2020 | B2 |
| 10835271 | Ma | Nov 2020 | B2 |
| 10842498 | Vale et al. | Nov 2020 | B2 |
| 10842513 | Greenhalgh et al. | Nov 2020 | B2 |
| 10856894 | Wallace et al. | Dec 2020 | B2 |
| 10863999 | Wallace et al. | Dec 2020 | B2 |
| 10888342 | Wallace et al. | Jan 2021 | B2 |
| 10888343 | Wallace et al. | Jan 2021 | B2 |
| 10932799 | Sirivong | Mar 2021 | B2 |
| 10939934 | Lockard et al. | Mar 2021 | B2 |
| 10952760 | Brady et al. | Mar 2021 | B2 |
| 10960178 | Savastano et al. | Mar 2021 | B2 |
| 11000682 | Merritt et al. | May 2021 | B2 |
| 11026709 | Greenhalgh et al. | Jun 2021 | B2 |
| 11058451 | Marchand et al. | Jul 2021 | B2 |
| 11065018 | Buck et al. | Jul 2021 | B2 |
| 11071733 | Zaidi et al. | Jul 2021 | B1 |
| 11076808 | Levine | Aug 2021 | B2 |
| 11077188 | Kauvar et al. | Aug 2021 | B2 |
| 11103265 | Wallace et al. | Aug 2021 | B2 |
| 11154314 | Quick | Oct 2021 | B2 |
| 11160572 | Ulm, III | Nov 2021 | B2 |
| 11191558 | Nguyen et al. | Dec 2021 | B2 |
| 11197684 | Ngo et al. | Dec 2021 | B1 |
| 11197771 | Ferrera et al. | Dec 2021 | B2 |
| 11207096 | To et al. | Dec 2021 | B2 |
| 11224449 | Chou et al. | Jan 2022 | B2 |
| 11229445 | Ogle | Jan 2022 | B2 |
| 11246965 | Chen et al. | Jan 2022 | B2 |
| 11253291 | Wallace et al. | Feb 2022 | B2 |
| 11259824 | Brady et al. | Mar 2022 | B2 |
| 11259835 | Smith et al. | Mar 2022 | B2 |
| 11291463 | Atchaneeyasakul et al. | Apr 2022 | B2 |
| 11304723 | To et al. | Apr 2022 | B1 |
| 11317940 | Smith et al. | May 2022 | B2 |
| 11337714 | Ferrera et al. | May 2022 | B2 |
| 11369405 | Vardi et al. | Jun 2022 | B2 |
| 11376028 | Saadat et al. | Jul 2022 | B1 |
| 11382652 | Wasdyke et al. | Jul 2022 | B2 |
| 11383068 | Tran et al. | Jul 2022 | B2 |
| 11395675 | Echarri et al. | Jul 2022 | B2 |
| 11399711 | Cooper et al. | Aug 2022 | B2 |
| 11406403 | Casey et al. | Aug 2022 | B2 |
| 11406404 | Griffin | Aug 2022 | B2 |
| 11433218 | Quick et al. | Sep 2022 | B2 |
| 11446045 | Vale et al. | Sep 2022 | B2 |
| 11458286 | Bajema et al. | Oct 2022 | B2 |
| 11471183 | Deaton et al. | Oct 2022 | B1 |
| 11478262 | Ngo et al. | Oct 2022 | B2 |
| 11497512 | Wallace et al. | Nov 2022 | B2 |
| 11497514 | Greenhalgh et al. | Nov 2022 | B2 |
| 11497521 | Mallaby | Nov 2022 | B2 |
| 11529157 | Brady et al. | Dec 2022 | B2 |
| 11529158 | Hauser | Dec 2022 | B2 |
| 11529331 | Zeligs et al. | Dec 2022 | B2 |
| 11534593 | Franano et al. | Dec 2022 | B2 |
| 11547415 | Chou et al. | Jan 2023 | B2 |
| 11553935 | Buck et al. | Jan 2023 | B2 |
| 11553942 | Bonnette et al. | Jan 2023 | B2 |
| 11559382 | Merritt et al. | Jan 2023 | B2 |
| 11576724 | Ben-Oren et al. | Feb 2023 | B2 |
| 11596438 | Walzman | Mar 2023 | B2 |
| 11596769 | Walzman | Mar 2023 | B2 |
| 11617592 | Nayak et al. | Apr 2023 | B2 |
| 11627973 | Wallace et al. | Apr 2023 | B2 |
| 11628282 | Casey | Apr 2023 | B2 |
| 11633201 | Girdhar et al. | Apr 2023 | B2 |
| 11642145 | Vale et al. | May 2023 | B2 |
| 11666350 | Nguyen et al. | Jun 2023 | B2 |
| 11712256 | Vale et al. | Aug 2023 | B2 |
| 11730924 | Saadat et al. | Aug 2023 | B2 |
| 11730925 | Saadat et al. | Aug 2023 | B2 |
| 11737770 | Fitz et al. | Aug 2023 | B2 |
| 11737771 | Whelan | Aug 2023 | B2 |
| 11751893 | Bowman et al. | Sep 2023 | B2 |
| 11751900 | Vetter et al. | Sep 2023 | B2 |
| 11771450 | Wallace et al. | Oct 2023 | B2 |
| 11771875 | Malek et al. | Oct 2023 | B2 |
| 11779364 | Casey et al. | Oct 2023 | B2 |
| 11779406 | Sganga et al. | Oct 2023 | B2 |
| 11786269 | Escudero et al. | Oct 2023 | B2 |
| 11786699 | Ogle et al. | Oct 2023 | B2 |
| 11793400 | Patel et al. | Oct 2023 | B2 |
| 11793531 | Nguyen et al. | Oct 2023 | B2 |
| 11793542 | Pons | Oct 2023 | B2 |
| 11801114 | Lang | Oct 2023 | B2 |
| 11812980 | Wallace et al. | Nov 2023 | B2 |
| 11819228 | Buck et al. | Nov 2023 | B2 |
| 11864779 | Dinh | Jan 2024 | B2 |
| 12089867 | To et al. | Sep 2024 | B2 |
| 20010004700 | Honeycutt | Jun 2001 | A1 |
| 20010005909 | Findlay | Jun 2001 | A1 |
| 20020004680 | Plaia | Jan 2002 | A1 |
| 20020007190 | Wulfman | Jan 2002 | A1 |
| 20020029057 | McGuckin | Mar 2002 | A1 |
| 20020077642 | Patel | Jun 2002 | A1 |
| 20020077842 | Charisius | Jun 2002 | A1 |
| 20020107479 | Bates | Aug 2002 | A1 |
| 20020151918 | Lafontaine | Oct 2002 | A1 |
| 20020168467 | Puech | Nov 2002 | A1 |
| 20020169467 | Heitzmann | Nov 2002 | A1 |
| 20020169487 | Graindorge | Nov 2002 | A1 |
| 20020198550 | Nash | Dec 2002 | A1 |
| 20030018346 | Follmer | Jan 2003 | A1 |
| 20030078606 | Lafontaine | Apr 2003 | A1 |
| 20030100911 | Nash | May 2003 | A1 |
| 20030114869 | Nash | Jun 2003 | A1 |
| 20030125758 | Simpson | Jul 2003 | A1 |
| 20030139751 | Evans | Jul 2003 | A1 |
| 20030139802 | Wulfman | Jul 2003 | A1 |
| 20040006358 | Wulfman | Jan 2004 | A1 |
| 20040238312 | Sudau | Mar 2004 | A1 |
| 20040243162 | Wulfman | Mar 2004 | A1 |
| 20040087988 | Heitzmann | May 2004 | A1 |
| 20040097995 | Nash | May 2004 | A1 |
| 20040102772 | Baxter | May 2004 | A1 |
| 20040103516 | Bolduc | Jun 2004 | A1 |
| 20040147934 | Kiester | Jul 2004 | A1 |
| 20040167533 | Wilson | Aug 2004 | A1 |
| 20040167553 | Simpson | Aug 2004 | A1 |
| 20040167554 | Simpson | Aug 2004 | A1 |
| 20040181249 | Torrance | Sep 2004 | A1 |
| 20040199051 | Weisel | Oct 2004 | A1 |
| 20040202772 | Matsuda | Oct 2004 | A1 |
| 20040220519 | Wulfman | Nov 2004 | A1 |
| 20040230212 | Wulfman | Nov 2004 | A1 |
| 20040230213 | Wulfman | Nov 2004 | A1 |
| 20040235611 | Nistal | Nov 2004 | A1 |
| 20040236312 | Nistal | Nov 2004 | A1 |
| 20050004585 | Hall | Jan 2005 | A1 |
| 20050020327 | Chung | Jan 2005 | A1 |
| 20050020974 | Noriega | Jan 2005 | A1 |
| 20050059990 | Ayala | Mar 2005 | A1 |
| 20050113853 | Noriega | May 2005 | A1 |
| 20050149084 | Kanz | Jul 2005 | A1 |
| 20050177068 | Simpson | Aug 2005 | A1 |
| 20050197661 | Simpson | Sep 2005 | A1 |
| 20050197861 | Omori | Sep 2005 | A1 |
| 20050222519 | Simpson | Oct 2005 | A1 |
| 20050240146 | Nash | Oct 2005 | A1 |
| 20060020327 | Lashinski | Jan 2006 | A1 |
| 20060074442 | Noriega | Apr 2006 | A1 |
| 20060229646 | Sparks | Oct 2006 | A1 |
| 20060239982 | Simpson | Oct 2006 | A1 |
| 20060241564 | Corcoran | Oct 2006 | A1 |
| 20070135733 | Soukup | Jun 2007 | A1 |
| 20070225739 | Pintor | Sep 2007 | A1 |
| 20070250000 | Magnin | Oct 2007 | A1 |
| 20070282303 | Nash | Dec 2007 | A1 |
| 20070282350 | Hernest | Dec 2007 | A1 |
| 20070282358 | Remiszewski | Dec 2007 | A1 |
| 20080004643 | To | Jan 2008 | A1 |
| 20080004644 | To | Jan 2008 | A1 |
| 20080004645 | To | Jan 2008 | A1 |
| 20080004646 | To | Jan 2008 | A1 |
| 20080004647 | To | Jan 2008 | A1 |
| 20080045986 | To et al. | Feb 2008 | A1 |
| 20080103516 | Wulfman | May 2008 | A1 |
| 20080140101 | Carley | Jun 2008 | A1 |
| 20080234715 | Pesce | Sep 2008 | A1 |
| 20080249364 | Korner | Oct 2008 | A1 |
| 20090018565 | To et al. | Jan 2009 | A1 |
| 20090018566 | Escudero | Jan 2009 | A1 |
| 20090018567 | Escudero | Jan 2009 | A1 |
| 20090024085 | To | Jan 2009 | A1 |
| 20090043330 | To | Feb 2009 | A1 |
| 20090043380 | Blaha et al. | Feb 2009 | A1 |
| 20090234378 | Escudero | Sep 2009 | A1 |
| 20100010492 | Lockard | Jan 2010 | A1 |
| 20100049225 | To | Feb 2010 | A1 |
| 20100119578 | To et al. | May 2010 | A1 |
| 20100174302 | Heitzmann | Jul 2010 | A1 |
| 20100324567 | Root | Dec 2010 | A1 |
| 20100324576 | Pintor | Dec 2010 | A1 |
| 20110040315 | To | Feb 2011 | A1 |
| 20110112563 | To | May 2011 | A1 |
| 20110152906 | Escudero | Jun 2011 | A1 |
| 20110152907 | Escudero | Jun 2011 | A1 |
| 20110270289 | To | Nov 2011 | A1 |
| 20110301626 | To | Dec 2011 | A1 |
| 20120083810 | Escudero | Apr 2012 | A1 |
| 20130085515 | To | Apr 2013 | A1 |
| 20130090674 | Escudero | Apr 2013 | A1 |
| 20130096587 | Smith | Apr 2013 | A1 |
| 20130103062 | To | Apr 2013 | A1 |
| 20130103063 | Escudero | Apr 2013 | A1 |
| 20130158578 | Ghodke | Jun 2013 | A1 |
| 20130296901 | Olson | Nov 2013 | A1 |
| 20140039532 | Vrba | Feb 2014 | A1 |
| 20140058423 | Smith | Feb 2014 | A1 |
| 20140107680 | Escudero | Feb 2014 | A1 |
| 20150224585 | Kuroda | Aug 2015 | A1 |
| 20170273698 | McGuckin et al. | Sep 2017 | A1 |
| 20180193056 | Colyer et al. | Jul 2018 | A1 |
| 20200029801 | Tachibana et al. | Jan 2020 | A1 |
| 20200029998 | Ogle et al. | Jan 2020 | A1 |
| 20200060718 | Patel et al. | Feb 2020 | A1 |
| 20200129202 | Schoenle et al. | Apr 2020 | A1 |
| 20200315654 | Patel et al. | Oct 2020 | A1 |
| 20200352552 | Rousso et al. | Nov 2020 | A1 |
| 20210186541 | Thress | Jun 2021 | A1 |
| 20210378694 | Thress et al. | Dec 2021 | A1 |
| 20220039815 | Thress et al. | Feb 2022 | A1 |
| 20220142638 | Enright et al. | May 2022 | A1 |
| 20220151647 | Dolendo et al. | May 2022 | A1 |
| 20220152355 | Dolendo et al. | May 2022 | A1 |
| 20220387071 | To et al. | Dec 2022 | A1 |
| 20230218310 | Scheinblum et al. | Jul 2023 | A1 |
| 20230241302 | Merritt et al. | Aug 2023 | A1 |
| 20230248380 | Long et al. | Aug 2023 | A1 |
| 20230310751 | Merritt et al. | Oct 2023 | A1 |
| 20230389932 | Ozenne et al. | Oct 2023 | A1 |
| 20230355938 | Merritt et al. | Nov 2023 | A1 |
| 20240081857 | Luong et al. | Mar 2024 | A1 |
| 20240082540 | Brodt et al. | Mar 2024 | A1 |
| 20240157041 | Zikry et al. | May 2024 | A1 |
| Number | Date | Country |
|---|---|---|
| 20304580 | Sep 2004 | DE |
| 0254414 | Aug 1992 | EP |
| 0817594 | Mar 1996 | EP |
| 0817595 | Mar 1996 | EP |
| 0950456 | Oct 1999 | EP |
| 1158910 | Jan 2000 | EP |
| 1176915 | Feb 2002 | EP |
| 1178315 | Feb 2002 | EP |
| 1315460 | Jun 2003 | EP |
| 1603486 | Jun 2006 | EP |
| 1722694 | Nov 2006 | EP |
| 1870044 | Dec 2007 | EP |
| 1617893 | Aug 2008 | EP |
| 2579791 | Jun 2010 | EP |
| 2462881 | Jun 2012 | EP |
| 2617372 | Jul 2013 | EP |
| 2641551 | Sep 2013 | EP |
| 2424608 | Mar 2014 | EP |
| 2211732 | May 2018 | EP |
| 2164409 | Aug 2018 | EP |
| 3027126 | Oct 2019 | EP |
| 2931151 | Nov 2019 | EP |
| H0380872 | Apr 1991 | JP |
| 2006511256 | Apr 2006 | JP |
| 2011136180 | Jul 2011 | JP |
| 2013531542 | Aug 2013 | JP |
| 6266108 | Jan 2018 | JP |
| 6356604 | Jul 2018 | JP |
| WO 1992001423 | Feb 1992 | WO |
| WO 1992014506 | Sep 1992 | WO |
| WO 1994024946 | Nov 1994 | WO |
| WO 1995021576 | Aug 1995 | WO |
| WO 1996029941 | Oct 1996 | WO |
| WO 1996029942 | Oct 1996 | WO |
| WO 1999023958 | May 1999 | WO |
| WO 1999035977 | Jul 1999 | WO |
| WO 2000054659 | Sep 2000 | WO |
| WO 2000054859 | Sep 2000 | WO |
| WO 2001064115 | Sep 2001 | WO |
| WO 2001074255 | Oct 2001 | WO |
| WO 2001076680 | Oct 2001 | WO |
| WO 2005084562 | Sep 2005 | WO |
| WO 2005123169 | Dec 2005 | WO |
| WO 2006028886 | Mar 2006 | WO |
| WO 2007010389 | Jan 2007 | WO |
| WO 2008005888 | Jan 2008 | WO |
| WO 2008005891 | Jan 2008 | WO |
| WO 2009005779 | Jan 2009 | WO |
| WO 2009054968 | Apr 2009 | WO |
| WO 2009126309 | Oct 2009 | WO |
| WO 2009144580 | Dec 2009 | WO |
| WO 2010050391 | May 2010 | WO |
| WO 2010054121 | May 2010 | WO |
| WO 2011044533 | Apr 2011 | WO |
| WO 2013056262 | Apr 2013 | WO |
| WO 2013172970 | Nov 2013 | WO |
| WO 2015017114 | Feb 2015 | WO |
| WO 2016001932 | Jan 2016 | WO |
| WO 2020234203 | Nov 2020 | WO |
| PCTUS2232428 | Jun 2022 | WO |
| PCTUS2024042773 | Aug 2024 | WO |
| Entry |
|---|
| U.S. Appl. No. 18/805,071, filed Mar. 11, 2022, To, et al.—owned by Applicant. |
| U.S. Appl. No. 63/126,847 (priority for U.S. Appl. No. 17/518,294, cited herein), filed Dec. 17, 2020, To, et al.—owned by Applicant. |
| U.S. Appl. No. 63/197,970 (priority for U.S. Appl. No. 17/518,294, cited herein), filed Jun. 7, 2021, To, et al.—owned by Applicant. |
| U.S. Appl. No. 63/520,029, filed Aug. 16, 2023, To, et al.—owned by Applicant. |
| Written opinion and search report for PCT/US22/32428, To—owned by Applicant, Jun. 7, 2022. |
| Extended European Search Reoort for EP 22820858, Mar. 27, 2024, To—owned by Applicant. |
| Caranfa, J.T., et al. Mechanical endovascular therapy for acute ischemic stroke: An indirect treatment comparison between Solitaire and Penumbra thrombectomy devices. PLoS ONE 13(3): e0191657 (2018) https://doi.org/10.1371/journal.pone.0191657. |
| Ikeno et al. Initial Experience with the Novel 6 F r-Compatible System for Debulking De Novo Coronary Arterial Lesions. Catheterization and Cardiovascular Interventions 62:308-17. (2004). |
| Kanjwal et al. Peripheral Arterial Disease—a Silent Killer. JK-Practitioner 11(4):225-32 (2004). |
| Nakamura et al. Efficacy and Feasibility of Helixcision for Debulking Neointimal Hyperplasia for In-Stent Restenosis. Catheterization and Cardiovascular Interventions 57:460-66 (2002). |
| Written opinion and search report for PCT/US2024/042773, To, et al.—owned by Applicant, Aug. 16, 2024. |
| Number | Date | Country | |
|---|---|---|---|
| 63520029 | Aug 2023 | US |