Thrombus management and structural compliance features for prosthetic heart valves

Abstract
A prosthetic heart valve can include an outer support assembly, an inner valve assembly, which define between them an annular space, and a pocket closure that bounds the annular space to form a pocket in which thrombus can be formed and retained. Alternatively, or additionally, the outer support assembly and the inner valve assembly can be coupled at the ventricle ends of the outer support assembly and the inner valve assembly, with the outer support assembly being relatively more compliant in hoop compression in a central, annulus portion than at the ventricle end, so that the prosthetic valve can seat securely in the annulus while imposing minimal loads on the inner valve assembly that could degrade the performance of the valve leaflets.
Description
BACKGROUND

Prosthetic heart valves, including those for insertion into atrioventricular valves (tricuspid and mitral valves) are susceptible to various problems, including problems with insufficient articulation and sealing of the valve within the native valve annulus, pulmonary edema due to poor atrial drainage, perivalvular leaking around the install prosthetic valve, lack of a good fit for the prosthetic valve within the native valve annulus, atrial tissue erosion, excess wear on the Nitinol structures, interference with the aorta at the posterior side of the mitral annulus, lack of customization, and thrombus formation, to name a few. Accordingly, there is still a need for a prosthetic heart valve that can address some or all of these problems.


SUMMARY

A prosthetic heart valve can include an outer support assembly, an inner valve assembly, which define between them an annular space, and a pocket closure that bounds the annular space to form a pocket in which thrombus can be formed and retained. A prosthetic heart valve can alternatively, or additionally, include an outer support assembly and an inner valve assembly, coupled at the ventricle ends of the outer support assembly and the inner valve assembly, with the outer support assembly being relatively more compliant in hoop compression in a central, annulus portion than at the ventricle end, so that the prosthetic valve can seat securely in the annulus while imposing minimal loads on the inner valve assembly that could degrade the performance of the valve leaflets.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B are schematic perspective and side cross sectional views of a prosthetic heart valve according to an embodiment.



FIGS. 2A-C are schematic views of an inner valve assembly of the prosthetic heart valve of FIGS. 1A and 1B.



FIG. 3 is a top view of a prosthetic heart valve according to another embodiment.



FIG. 4 is a top view of a prosthetic heart valve according to another embodiment.



FIG. 5 is a perspective side view of a portion of a prosthetic heart valve according to another embodiment.



FIG. 6 is an exploded view of a prosthetic heart valve system according to another embodiment.



FIGS. 7-9 are front, bottom, and top views of a prosthetic heart valve according to another embodiment.



FIG. 10 is an opened and flattened view of the inner frame of the valve of FIGS. 7-9, in an unexpanded configuration.



FIGS. 11 and 12 are side and bottom views, respectively, of the inner frame of FIG. 10 in an expanded configuration.



FIG. 13 is an opened and flattened view of the outer frame of the valve of FIGS. 7-9, in an unexpanded configuration.



FIGS. 14 and 15 are side and top views, respectively, of the outer frame of FIG. 13 in an expanded configuration.



FIGS. 16-18 are side, front, and top views of an assembly of the inner frame of FIGS. 10-12 and the outer frame of FIGS. 13-15.



FIG. 19 is a plan view of a fabric pattern for the inner and outer coverings of the outer frame assembly of the valve of FIGS. 7-9.



FIG. 20 is a plan view of a fabric pattern for the leaflets and outer covering of the inner valve assembly of the valve of FIGS. 7-9.



FIGS. 21 and 22 are schematic perspective and side cross sectional views of a prosthetic heart valve according to another embodiment.



FIGS. 23-25 are top and perspective views of a prosthetic heart valve according to another embodiment.



FIG. 26 is an exploded view of a prosthetic heart valve system according to another embodiment.



FIGS. 27 and 28 are schematic perspective and side cross sectional views of a prosthetic heart valve according to another embodiment.



FIGS. 29A-D are schematic illustrations of stiffness profiles of a prosthetic heart valve according to another embodiment.





DETAILED DESCRIPTION

A schematic representation of a prosthetic heart valve 100 is shown in FIGS. 1A and 1B. Prosthetic heart valve 100 is designed to replace a damaged or diseased native heart valve such as a mitral valve. Valve 100 includes an outer frame assembly 110 and an inner valve assembly 140 coupled to the outer frame assembly.


Although not separately shown in the schematic illustration of outer frame assembly 110 in FIGS. 1A and 1B, outer fame assembly 110 may be formed of an outer frame 120, covered on all or a portion of its outer face with an outer covering 130, and covered on all or a portion of its inner face by an inner covering 132.


Outer frame 120 can provide several functions for prosthetic heart valve 100, including serving as the primary structure, as anchoring mechanism and/or an attachment point for a separate anchoring mechanism to anchor the valve to the native heart valve apparatus, a support to carry inner valve assembly 140, and/or a seal to inhibit paravalvular leakage between prosthetic heart valve 100 and the native heart valve apparatus.


Outer frame 120 is preferably formed so that it can be deformed (compressed and/or expanded) and, when released, return to its original (undeformed) shape. To achieve this, outer frame 120 is preferably formed of materials, such as metals or plastics, that have shape memory properties. With regards to metals, Nitinol® has been found to be especially useful since it can be processed to be austenitic, martensitic or super elastic. Other shape memory alloys, such as Cu—Zn—Al—Ni alloys, and Cu—Al—Ni alloys, may be used.


Outer frame 120 is preferably formed from a laser cut, thin-walled tube of Nitinol®. The laser cuts form regular cutouts in the thin Nitinol® tube. The tube can be expanded radially, placed on a mold or mandrel of the desired shape, heated to the martensitic temperature, and quenched. The treatment of the frame in this manner will form an open lattice frame structure, and may have a flared end or cuff at the atrium end portion 126 of outer frame 120. Outer frame 120 thus has shape memory properties and will readily revert to the memory shape at the calibrated temperature. Alternatively, outer frame 120 may be constructed from braided wire or other suitable material.


Inner valve assembly 140 is shown schematically in more detail in FIGS. 2A-2C. Inner valve assembly 140 can include an inner frame 150, an outer covering 160, and leaflets 170. In the simplified form shown schematically in FIG. 2A, inner frame 150 includes six axial posts or frame members that support outer covering 160 and leaflets 170. Leaflets 170 are attached along three of the posts, shown as commissure posts 152 in FIG. 2A, and outer covering 160 is attached to the other three posts, 154 in FIG. 2A, and optionally to commissure posts 152. In the simplified form illustrated schematically in FIG. 2A, each of outer covering 160 and leaflets 170 are formed of approximately rectangular sheets of material, which are joined together at their upper, or atrium end. The lower, ventricle end of outer covering 160 may be joined to inner covering 132 of outer frame assembly 110 (not shown in FIG. 2A), and the lower, ventricle end of leaflets 170 may form free edges, though coupled to the lower ends of commissure posts 152.


As shown in FIGS. 2B and 2C, leaflets 170 are movable between an open configuration (FIG. 2B) and a closed configuration (FIG. 2C) in which the leaflets coapt, or meet in sealing abutment.


At the lower, or ventricle end, leaflets 170 may have a smaller perimeter than outer covering 160. Thus, the free lower edges of the leaflets, between commissure posts 152 (each portion of leaflets 170 between adjacent commissure posts being referred to as a “belly” of leaflets 170) are spaced radially from the lower edge of outer covering 160. This radial spacing facilitates movement of the leaflets from the open position in FIG. 2B to the closed position in FIG. 2C, as the counter flow of blood from the ventricle to the atrium during systole can catch the free edges of the bellies and push the leaflets closed.


Outer covering 130 and inner covering 132 of outer frame 120, outer covering 160 and leaflets 170 may be formed of any suitable material, or combination of materials. In some embodiments, the tissue is optionally a biological tissue, such as a chemically stabilized tissue from a heart valve of an animal, such as a pig, or pericardial tissue of an animal, such as cow (bovine pericardium) or sheep (ovine pericardium) or pig (porcine pericardium) or horse (equine pericardium). Preferably, the tissue is bovine pericardial tissue. Examples of suitable tissue include that used in the products Duraguard®, Peri-Guard®, and Vascu-Guard®, all products currently used in surgical procedures, and which are marketed as being harvested generally from cattle less than 30 months old. Alternatively, valve leaflets 170 may optionally be made from pericardial tissue or small intestine submucosal tissue.


Synthetic materials, such as polyurethane or polytetrafluoroethylene, may also be used for valve leaflets 170. Where a thin, durable synthetic material is contemplated, e.g. for outer covering 130 or inner cover 132, synthetic polymer materials such expanded polytetrafluoroethylene or polyester may optionally be used. Other suitable materials may optionally include thermoplastic polycarbonate urethane, polyether urethane, segmented polyether urethane, silicone polyether urethane, silicone-polycarbonate urethane, and ultra-high molecular weight polyethylene. Additional biocompatible polymers may optionally include polyolefins, elastomers, polyethylene-glycols, polyethersulphones, polysulphones, polyvinylpyrrolidones, polyvinylchlorides, other fluoropolymers, silicone polyesters, siloxane polymers and/or oligomers, and/or polylactones, and block co-polymers using the same.


In another embodiment, valve leaflets 170 may optionally have a surface that has been treated with (or reacted with) an anti-coagulant, such as, without limitation, immobilized heparin. Such currently available heparinized polymers are known and available to a person of ordinary skill in the art.


As shown in FIGS. 1A, 1B, and 2A, inner valve assembly 140 may be substantially cylindrical, and outer frame assembly 110 may be tapered, extending from a smaller diameter (slightly larger than the outer diameter of inner valve assembly 140) at a lower, ventricle portion 112 (where it is coupled to inner valve assembly 140) to a larger diameter, atrium portion 116, with an intermediate diameter, annulus portion 114 between the atrium and ventricle portions.


A tapered annular space or pocket 185 is thus formed between the outer surface of inner valve assembly 140 and the inner surface of outer frame assembly 110, open to the atrium end of valve assembly 100. When valve assembly 100 is disposed in the annulus of a native heart valve, blood from the atrium can move in and out of pocket 185. The blood can clot, forming thrombus, and the thrombus can be washed out by the flow of blood during the cyclic pumping of the heart, which is undesirable. To inhibit such washout of thrombus, and to enhance clotting, ingrowth of tissue into the surfaces of valve 100, and produce other benefits, the pocket can be covered, or enclosed, by a pocket closure 180.


Pocket closure 180 can be formed at least in part of any suitable material that is sufficiently porous to allow blood, including particularly red blood cells, to enter pocket 185, but is not so porous as to allow undesirably large thrombi to leave the pocket 185, or to allow washout of thrombus formed in the pocket 185. For example, pocket closure 180 may be formed at least in part from a woven or knit polyester fabric with apertures less than 160μ, and preferably between 90μ and 120μ. It is not necessary for the entirety of pocket closure 180 to be formed of the same material, with the same porosity. For example, some portions of pocket closure 180 may be formed of a less porous, or blood impermeable, material and other portions formed of material of the porosity range noted above. It is also contemplated that a portion of the outer frame assembly 110 or the inner valve assembly 140 may be formed with an aperture that communicates with pocket 180, covered by a closure formed of material having the desired porosity, thus providing another path by which blood may enter, but thrombi are prevented from leaving, atrial pocket 185.


The outer surface of inner valve assembly 110, and/or the inner surface of outer frame assembly 140, need not by circular in cross-section as shown schematically in FIGS. 1A and 1B, but may be of non-constant radius at a given location along the central axis of valve 100. Thus, pocket 185 may not be of constant cross-section, and may not be continuous, but rather may be formed in two or more fluidically isolated, partially annular volumes. Similarly, pocket closure 180 need not be shaped as a ring with constant width as shown schematically in FIGS. 1A and 1B, but rather than be a continues ring of varying with, a more complicated continuous shape, or may be formed in multiple, discrete sections.


Pocket closure 180 serves to trap and/or slow the flow of blood within pocket 185, reducing hemodynamic washout and increasing formation of thrombus in pocket 185. It also promotes active in-growth of native tissue into the several coverings of prosthetic heart valve 100, further stabilizing valve 100 in the native heart valve. The material forming the outer covering of inner valve assembly 140 can also be hardened or stiffened, providing better support for leaflets 170. Also, a mass of thrombus filling pocket 185 can serve as potting for inner valve assembly 140, further stabilizing the valve assembly. Greater stability for inner valve assembly 140 can provide more reliable coaption of valve leaflets 170, and thus more effective performance. The mass of thrombus can also stabilize the outer frame assembly 110 after it has been installed in, and flexibly conformed to, the native valve apparatus. This can provide a more effective seal between prosthetic heart valve 100 and the native valve apparatus, and reduce perivalvular leakage.


One possible implementation of the prosthetic heart valve shown schematically in FIGS. 1A-2C is prosthetic heart valve 200, shown in top view in FIG. 3. Prosthetic heart valve 200 includes an outer frame assembly 210 and an inner valve assembly 240 coupled to the outer frame assembly.


The outer frame assembly 210 includes an outer frame 220, covered on all or a portion of its outer face with an outer covering 230 (not visible), and covered on all or a portion of its inner face by an inner covering 232.


The inner valve assembly 240 includes an inner frame 250, an outer covering 260 (not visible), and leaflets 270. Inner frame 250 includes six axial posts or frame members that support outer covering 260 and leaflets 270. The inner valve assembly 240 may be substantially cylindrical, and outer frame assembly 210 may be tapered, extending from a smaller diameter (slightly larger than the outer diameter of inner valve assembly 240) at a lower, ventricle portion (where it is coupled to inner valve assembly 240) to a larger diameter, atrium portion, with an intermediate diameter, annulus portion between the atrium and ventricle portions.


A tapered annular space or pocket 285 (e.g., atrial thrombogenic sealing pocket) is thus formed between the outer surface of inner valve assembly 240 and the inner surface of outer frame assembly 210, open to the atrium end of valve assembly 200. The pocket closure 280 can, for example, be formed from a circular piece of wire, or halo, with a permeable mesh fabric or tissue, that is sewn and thereby connected to the inner frame 250 and/or to the leaflets 170. The inner frame 250 has an inner wireframe structure (e.g., made of Nitinol wire) that supports the leaflets 270 sewn to the inner frame 250 and functions as a valve. The inner frame 250 in FIG. 3 includes three U-shaped wire components joined at their opened ends to form junctions. Leaflets 270 are sewn to these components to form articulating leaflets 170 creating and functioning as a prosthetic valve (e.g., prosthetic tricuspid valve; prosthetic mitral valve; prosthetic aortic valve, etc.).


Moreover, the inner frame 250 has (tether) attachment apertures 211 (not shown), for attaching tether assembly 290 (not shown). Tether assembly 290 is connected to epicardial securing pad 254 (not shown).


In operation, the inner valve assembly 240 is disposed within and secured within the outer frame assembly 210. Outer frame assembly 210 may also have in various embodiments an outer stent tissue material. Outer frame assembly 210 includes an articulating collar 246 which has a collar cover 248. Articulating collar 246 is specifically shaped to solve leakage issues arising from native structures. In particular, collar 246 is composed of an A2 segment 247, a P2 segment 249, and two commissural segments, the A1-P1 segment 251, and the A3-P3 segment 253. The collar 246 may also have in preferred embodiments a shortened or flattened or D-shaped section 262 of the A2 segment in order to accommodate and solve left ventricular outflow tract (LVOT) obstruction issues.


In operation, the prosthetic heart valve 200 may be deployed (e.g., as a prosthetic mitral valve) using catheter delivery techniques. The prosthetic heart valve 200 is compressed within a narrow catheter and delivered to the annular region of the native valve (e.g., the left atrium) with a pre-attached tether assembly 290. There, the valve 200 is pushed out of the catheter where it springs open into its pre-formed functional shape without the need for manual expansion (e.g., manual expansion using an inner balloon catheter). When the valve 200 is pulled into place, the outer frame assembly 210 is seated in the native mitral annulus, leaving the articulating collar 246 to engage the atrial floor and prevent pull-thru (where the valve 200 is pulled into the ventricle). In such embodiments, it is not necessary to cut-away the native leaflets, as has been taught in prior prosthetic efforts. Instead, the native leaflets can be used to provide a tensioning and/or sealing function around the outer frame assembly 210. It is advantageous for the valve 200 to be asymmetrically deployed in order to address LVOT problems where non-accommodating prosthetic valves push against the A2 anterior segment of the valve (e.g., mitral valve) and close blood flow through the aorta, which anatomically sits immediately behind the A2 segment of the mitral annulus. Thus, D-shaped section 262 is deployed substantially immediately adjacent/contacting the A2 segment since the flattened D-shaped section 262 is structurally smaller and has a more vertical profile (closer to paralleling the longitudinal axis of the outer frame assembly 212) and thereby provides less pressure on the A2 segment. Once the valve 200 is properly seated, tether assembly 290 may be extended out through the apical region of the left ventricle and secured using an epicardial pad 254 or similar suture-locking attachment mechanism (not shown).


In an alternate embodiment, the tether assembly 290 is on the outer frame assembly 210, which would then have (tether) attachment apertures 213 for attaching tether assembly 290 to epicardial securing pad 254.



FIG. 4 is a top, or atrial, view of another embodiment of a prosthetic heart valve 300, illustrated without pocket closure 380. FIG. 4 shows the top of the junction tip 302 of the three U-shaped wire components of inner frame 350 joined at their opened ends to form junctions 302. Leaflets 370 are sewn to these components to form articulating leaflets 370 creating and functioning as a prosthetic valve (e.g., prosthetic tricuspid valve, prosthetic mitral valve, prosthetic aortic valve, etc.). Thrombogenic pocket 385 is shown below the plane of the collar. FIG. 4 shows vertical A2 segment 347, the P2 segment 349, and the commissural A1-P1 segment 351 and A3-P3 segment 353. FIG. 4 shows how upon deployment blood would fill the void or gap 385 between the inner valve assembly 340 and the outer frame assembly 310 of the valve 300. This blood creates a temporary fluid seal that pools in that space and provide a pressure buffer against the leakage inducing forces that accompany systolic and diastolic related intra-atrial and intra-ventricular pressure. Moreover, FIG. 4 provides an illustration of collar 346 that may, in some embodiments, include a shortened or flattened or D-shaped section 362 of the A2 segment in order to accommodate and solve left ventricular outflow tract (LVOT) obstruction issues.



FIG. 5 is a perspective side view of the P2 area 447 and A3-P3 area 453 of a self-expanding pre-configured compressible transcatheter prosthetic cardiovascular valve 400 contemplated herein, that contains as a sub-component, a self-expanding inner valve assembly 440. The valve 400 further includes as a sub-component, an outer frame assembly 410. The outer frame assembly 410 and the inner valve assembly 440 collectively define thrombogenic pockets 485. FIG. 5 shows one of the three U-shaped wire components of inner frame 450 joined at their opened ends to form junctions 402. Leaflets 470 are sewn to these components to form articulating leaflets 470 creating and functioning as a prosthetic valve. Thrombogenic pocket 485 is shown slightly below the plane of the majority of collar 446 except for the vertical A2 segment 447, the P2 segment 449, and the commissural A1-P1 segment 451 (not shown) and A3-P3 segment 453. FIG. 5 shows how upon deployment blood would fill the void or gap (i.e., pocket 485) between the inner valve assembly 440 and the outer frame assembly 410 at the A3-P3 segment 453 area of the valve 400. This blood creates a temporary fluid seal that would pool in that space and provide a pressure buffer against the leakage inducing forces that accompany systolic and diastolic related intra-atrial and intra-ventricular pressure.



FIG. 6 is an exploded view of an embodiment of the pre-configured compressible transcatheter prosthetic cardiovascular valve 400, which contains as a sub-component, a self-expanding inner frame 450. The valve 400 further includes as a sub-component, an outer frame assembly 410. The outer frame assembly 410 and the inner valve assembly 440 collectively define thrombogenic pockets 485 (not shown). The pocket 485 is formed between inner valve assembly 440, as the inside of the V-shaped or U-shaped pocket, and the outer frame assembly 410 with outer covering 430, as the outside of the V-shaped or U-shaped pocket. In this valve 400, the inner valve assembly 440 has an atrial thrombogenic sealing pocket closure 480 (not shown) (e.g., formed from a circular piece of wire, or halo), with a permeable mesh fabric or tissue, that is sewn and thereby connected to the inner frame 450 and/or to the leaflets 470. The inner frame 450 includes an inner wireframe structure made of Nitinol wire that supports leaflets 570 sewn to the inner frame 450 and functions as a valve. The inner frame 450 includes three main U-shaped wire components 407 joined at their opened ends to form junctions 402. Optionally, in some embodiments, the inner frame 450 can include additional wire cross-members or struts (e.g., more than three).


In this valve 400, the inner frame 450 is sewn with tissue and acts a cover to prevent valvular leakage. The inner valve assembly 440 includes the leaflets 470. The leaflets 470 include articulating leaflets that define a valve function. The leaflets 470 are sewn to the inner frame 450. The inner frame 450 also has (tether) attachment apertures 411 for attaching tether assembly 490. Tether assembly 490 is shown in this example as connected to epicardial securing pad 454. In operation, the covered inner valve assembly 440 (with leaflets 470), is disposed within and secured within the outer frame assembly 410. Outer frame assembly 410 may also have in various embodiments an outer covering 460. Outer frame assembly 410 has an articulating collar 446 which has a collar cover 448. Articulating collar 446 may also have in preferred embodiments a flattened or D-shaped section 462 at the A2 area to accommodate and solve left ventricular outflow tract (LVOT) obstruction issues. Collar 446 may also have specially formed commissural segments to prevent commissural leakage at A1-P1 segment 451 and at A3-P3 segment 453


In operation, the valve 400 may be deployed as a prosthetic valve using catheter delivery techniques. The valve 400 is compressed within a narrow catheter and delivered to the annular region of the native valve (e.g., the left atrium) with a pre-attached tether assembly 490. There, the valve 400 is pushed out of the catheter where it springs open into its pre-formed functional shape without the need for manual expansion (e.g., manual expansion using an inner balloon catheter). When the valve 400 is pulled into place, the outer frame assembly 410 is seated in the native annulus (e.g., native mitral annulus), leaving the articulating collar 446 to engage the atrial floor and prevent pull-thru (where the valve is pulled into the ventricle). In such embodiments, it is not necessary to cut-away the native leaflets, as has been taught in prior prosthetic efforts. Instead, the native leaflets can be used to provide a tensioning and/or sealing function around the valve 400 (e.g., around the outer frame assembly 410). It is advantageous for the valve 400 to be asymmetrically deployed in order to address LVOT problems where non-accommodating prosthetic valves push against the A2 anterior segment of the valve (e.g., the mitral valve) and close blood flow through the aorta, which anatomically sits immediately behind the A2 segment of the annulus (e.g., mitral annulus).


Thus, D-shaped section 462 is deployed substantially immediately adjacent/contacting the A2 segment since the flattened D-shaped section 462 is structurally smaller and has a more vertical profile (closer to paralleling the longitudinal axis of the outer frame assembly 410) and thereby provides less pressure on the A2 segment. Once the valve 400 is properly seated, tether assembly 490 may be extended out through the apical region of the left ventricle and secured using an epicardial pad 454 or similar suture-locking attachment mechanism.



FIGS. 7-9 are front, bottom, and top views, respectively, of a prosthetic heart valve 500 according to an embodiment.


Prosthetic heart valve 500 is designed to replace a damaged or diseased native heart valve such as a mitral valve. Valve 500 includes an outer frame assembly 510 and an inner valve assembly 540 coupled to the outer frame assembly 510.


As shown, outer frame assembly 510 includes an outer frame 520, covered on all or a portion of its outer face with an outer covering 530, and covered on all or a portion of its inner face by an inner covering 532.


Outer frame 520 can provide several functions for prosthetic heart valve 500, including serving as the primary structure, as anchoring mechanism and/or an attachment point for a separate anchoring mechanism to anchor the valve to the native heart valve apparatus, a support to carry inner valve assembly 540, and/or a seal to inhibit paravalvular leakage between prosthetic heart valve 500 and the native heart valve apparatus.


Outer frame 520 is configured to be manipulated and/or deformed (e.g., compressed and/or expanded) and, when released, return to its original (undeformed) shape. To achieve this, outer frame 520 can be formed of materials, such as metals or plastics, that have shape memory properties. With regards to metals, Nitinol® has been found to be especially useful since it can be processed to be austenitic, martensitic or super elastic. Other shape memory alloys, such as Cu—Zn—Al—Ni alloys, and Cu—Al—Ni alloys, may be used.


As best shown in FIG. 7, outer frame assembly 510 has an upper end (e.g., at the atrium portion 516), a lower end (e.g., at the ventricle portion 512), and a medial portion (e.g., at the annulus portion 514) therebetween. The medial portion of the outer frame assembly 510 has a perimeter that is configured (e.g., sized, shaped) to fit into an annulus of a native atrioventricular valve. The upper end of the outer frame assembly 510 has a perimeter that is larger than the perimeter of the medial portion. In some embodiments, the perimeter of the upper end of the outer frame assembly 510 has a perimeter that is substantially larger than the perimeter of the medial portion. As shown best in FIG. 9, the upper end and the medial portion of the outer frame assembly 510 has a D-shaped cross-section. In this manner, the outer frame assembly 510 promotes a suitable fit into the annulus of the native atrioventricular valve.


Inner valve assembly 540 includes an inner frame 550, an outer covering 560, and leaflets 570. As shown, the inner valve assembly 540 includes an upper portion having a periphery formed with multiple arches. The inner frame 550 includes six axial posts or frame members that support outer covering 560 and leaflets 570. Leaflets 570 are attached along three of the posts, shown as commissure posts 552 (best illustrated in FIG. 8), and outer covering 560 is attached to the other three posts, 554 (best illustrated in FIG. 8), and optionally to commissure posts 552. Each of outer covering 560 and leaflets 570 are formed of approximately rectangular sheets of material, which are joined together at their upper, or atrium end. The lower, ventricle end of outer covering 560 may be joined to inner covering 532 of outer frame assembly 510, and the lower, ventricle end of leaflets 570 may form free edges 575, though coupled to the lower ends of commissure posts 552.


Although inner valve assembly 540 is shown as having three leaflets, in other embodiments, an inner valve assembly can include any suitable number of leaflets. The leaflets 570 are movable between an open configuration and a close configuration in which the leaflets 570 coapt, or meet in a sealing abutment.


At the lower, or ventricle end, leaflets 570 may have a smaller perimeter than outer covering 560. Thus, the free lower edges of the leaflets, between commissure posts 552 (each portion of leaflets 570 between adjacent commissure posts being referred to as a “belly” of leaflets 570) are spaced radially from the lower edge of outer covering 560 of the inner valve assembly 540. This radial spacing facilitates movement of the leaflets 570 from the open position to the closed position as the counterflow of blood from the ventricle to the atrium during systole can catch the free edges of the bellies and push the leaflets 570 closed (e.g., coapt).


Outer covering 530 of the outer frame assembly 510 and inner covering 532 of outer frame assembly 510, outer covering 560 of the inner valve assembly 540 and leaflets 570 of the inner valve assembly 540 may be formed of any suitable material, or combination of materials, such as those discussed above. In this embodiment, the inner covering 532 of the outer frame assembly 510, the outer covering 560 of the inner valve assembly 540, and the leaflets 570 of the inner valve assembly 540 are formed, at least in part, of porcine pericardium. Moreover, in this embodiment, the outer covering 530 of the outer frame assembly 510 is formed, at least in part, of polyester.


In another embodiment, valve leaflets 570 may optionally have a surface that has been treated with (or reacted with) an anti-coagulant, such as, without limitation, immobilized heparin. Such currently available heparinized polymers are known and available to a person of ordinary skill in the art.


Inner valve assembly 540 is be substantially cylindrical, and outer frame assembly 510 is be tapered, extending from a smaller diameter (slightly larger than the outer diameter of inner valve assembly 540) at a lower, ventricle portion 512 (where it is coupled to inner valve assembly 540) to a larger diameter, atrium portion 516, with an intermediate diameter, annulus portion 514 between the atrium and ventricle portions.


As shown, a tapered annular space or pocket 585 is thus formed between the outer surface of inner valve assembly 540 and the inner surface of outer frame assembly 510, open to the atrium end of valve assembly 500. As shown, pocket closure 580 is coupled along the periphery of the upper end of the inner valve assembly 540. In some embodiments, the pocket closure 580, or a portion thereof, can be coupled along any suitable portion of the inner valve assembly 540.


As discussed above, pocket closure 580 can be formed at least in part of any suitable material that is sufficiently porous to allow blood, including particularly red blood cells, to enter pocket 585, but is not so porous as to allow undesirably large thrombi to leave the pocket 585, or to allow washout of thrombus formed in the pocket 585. In this embodiment, pocket closure 580 is formed entirely of knit polyester (i.e., PET warp knit fabric) having apertures of about 90-120 microns. In some embodiments, a pocket closure can include apertures less than about 160 microns.


Inner frame 550 is shown in more detail in FIGS. 10-12. Specifically, FIGS. 10-12 show inner frame 550 in an undeformed, initial state (FIG. 10), a side view of the inner frame 550 in a deployed configuration (FIG. 11), and a bottom view of the inner frame 550 in a deployed configuration (FIG. 12), respectively, according to an embodiment.


In this embodiment, inner frame 550 is formed from a laser-cut tube of Nitinol®. Inner frame 550 is illustrated in FIG. 10 in an undeformed, initial state, i.e. as laser-cut, but cut and unrolled into a flat sheet for ease of illustration. Inner frame 550 can be divided into four portions, corresponding to functionally different portions of the inner frame 550 in final form: atrial portion 541, body portion 542, strut portion 543, and tether clamp portion 544. Strut portion 543 includes six struts, such as strut 543A, which connect body portion 542 to tether clamp portion 544.


Connecting portion 544 includes longitudinal extensions of the struts, connected circumferentially by pairs of opposed, slightly V-shaped connecting members (or “micro-Vs”). Connecting portion 544 is configured to be radially collapsed by application of a compressive force, which causes the micro-Vs to become more deeply V-shaped, with the vertices moving closer together longitudinally and the open ends of the V shapes moving closer together circumferentially. Thus, connecting portion 544 can be configured to compressively clamp or grip one end of a tether, either connecting directly onto a tether line (e.g. braided filament line) or onto an intermediate structure, such as a polymer or metal piece that is in term firmly fixed to the tether line.


In contrast to connecting portion 544, atrial portion 541 and body portion 542 are configured to be expanded radially. Strut portion 543 forms a longitudinal connection, and radial transition, between the expanded body portion and the compressed connecting portion 544.


Body portion 542 includes six longitudinal posts, such as post 542A. The posts can be used to attach leaflets 570 to inner frame 540, and/or can be used to attach inner assembly 540 to outer assembly 510, such as by connecting inner frame 550 to outer frame 520. In the illustrated embodiment, the posts include openings through which connecting members (such as suture filaments and/or wires) can be passed to couple the posts to other structures.


Inner frame 550 is shown in a fully deformed, i.e. to the final, deployed configuration, in side view and bottom view in FIGS. 11 and 12, respectively.


Outer frame 520 of valve 500 is shown in more detail in FIGS. 13-15. In this embodiment, outer frame 520 is also formed from a laser-cut tube of Nitinol®. Outer frame 520 is illustrated in FIG. 13 in an undeformed, initial state, i.e. as laser-cut, but cut and unrolled into a flat sheet for ease of illustration. Outer frame 520 can be divided into a coupling portion 571, a body portion 572, and a cuff portion 573, as shown in FIG. 13.


Coupling portion 571 includes multiple openings or apertures, such as 571A, by which outer frame 520 can be coupled to inner frame 550, as discussed in more detail below.


Outer frame 520 is shown in a fully deformed, i.e. to the final, deployed configuration, in side view and top view in FIGS. 14 and 15, respectively. As best seen in FIG. 15, the lower end of coupling portion 571 forms a roughly circular opening (identified by “O” in FIG. 15). The diameter of this opening preferably corresponds approximately to the diameter of body portion 542 of inner frame 550, to facilitate coupling of the two components of valve 500.


Outer frame 520 and inner frame 550 are shown coupled together in FIGS. 16-18, in front, side, and top views, respectively. The two frames collectively form a structural support for a prosthetic valve such as valve 500. The frames support the valve leaflet structure (e.g., leaflets 570) in the desired relationship to the native valve annulus, support the coverings (e.g., outer covering 530, inner covering 532, outer covering 560) for the two frames to provide a barrier to blood leakage between the atrium and ventricle, and couple to the tether (e.g., tether assembly 590) (by the inner frame 550) to aid in holding the prosthetic valve in place in the native valve annulus by the tether connection to the ventricle wall. The outer frame 520 and the inner frame 550 are connected at six coupling points (representative points are identified as “C”). In this embodiment, the coupling points are implemented with a mechanical fastener, such as a short length of wire, passed through aperture (such as aperture 571A) in coupling portion 571 of outer frame 520 and corresponding openings in longitudinal posts (such as post 542A) in body portion 542 of inner frame 550. Inner frame 550 is thus disposed within the outer frame 520 and securely coupled to it.


A template 534 (or design pattern) for cutting, shaping, and sizing outer covering 530 of outer frame assembly 510 and/or inner covering 532 of outer frame assembly is illustrated in FIG. 19, according to an embodiment. Design pattern 534 includes attachment location indications 536a, 536b. To arrange outer covering 530 into an assembled configuration (i.e., either coupled to or ready to be coupled to outer frame 520), the two ends of the outer covering 530 are coupled together (e.g., sewn) in accordance with the attachment location indications 536a, 536b of the template 534. Similarly, inner covering 532 is arranged into an assembled configuration by coupling (e.g., sewing) its ends together in accordance with the attachment location indications 536a, 536b.



FIG. 20 illustrates a design pattern of one leaflet 570 and associated portion of outer covering 560 of the inner valve assembly in its initial, pre-assembled state (i.e., not attached to inner frame 550), according to an embodiment. As discussed above, the portion of leaflet 570 between adjacent commissure posts is referred to as a “belly” of the leaflet 570. The belly has a curved edge indicated with reference ‘B’ in FIG. 20. During assembly of inner valve assembly 540, the leaflet 570 is coupled to the inner frame 550 of the inner valve assembly 540. Specifically, the belly edge B of the leaflet 570, or a portion thereof, is coupled to the inner frame 550 at the arch portion of the inner frame 550. In addition, outer covering 560 is folded over a portion of the inner frame 550 (e.g., the arch portion) along the axis indicated with ‘F’, and coupled to a portion of the inner frame 550 (e.g., the commissure post 552) along attachment line A. As shown, a coupling area C (e.g., a stitching area), is disposed outside and adjacent to attachment line A. Coupling area C can facilitate the assembly process. Subsequently, excess leaflet material and/or excess outer covering material can be cut away and disposed of or reused. For example, material disposed between the belly edge B and the F-axis, or material in the coupling area C, may, in some embodiments, be unnecessary material and thus can be cut away from the leaflet 570 and/or outer covering 560. The assembly process can be repeated for each leaflet 570, each outer covering 560, and each commissure post 552.


The leaflets 570 and the outer covering 560 can have any suitable size, shape, material, and/or configuration. For example, in this embodiment, leaflets 570 and/or outer covering 560 is formed of fixed porcine pericardium, with a thickness of about 0.01 inches.


A schematic representation of another embodiment of a prosthetic heart valve is shown in FIGS. 21 and 22. Prosthetic heart valve 600 is designed to replace a damaged or diseased native heart valve such as a mitral valve. Valve 600 includes an outer frame assembly 610 and an inner valve assembly 640 coupled to the outer frame assembly 610.


Although not separately shown in the schematic illustration of outer frame assembly 610 in FIGS. 21 and 22, outer fame assembly 610 may be formed of an outer frame 620, covered on all or a portion of its outer face with an outer covering 630, and covered on all or a portion of its inner face by an inner covering 632. The materials and construction of the components of prosthetic heart valve 600 can be similar to those of the other embodiments described above. The following discussion focuses on the aspects of this embodiment that differ from the previous embodiments.


Inner valve assembly 640 includes an inner frame 650 (not shown), an outer covering 660 (not shown), leaflets 670 (not shown), and atrial structure 655 (e.g., halo). As shown, the halo 655 is disposed at the atrium portion 616 of inner valve assembly 640. In such a configuration, when valve 600 is implanted into a heart of a patient, halo 655 will be disposed above the atrial floor and/or native valve annulus of the patient's heart. In this manner, the halo 655 provides extended functionality (e.g., above the native mitral valve annulus) of the inner frame 650. In some instances, for example, if prosthetic leaflets are seated too low relative to the native valve annulus, the leaflets may improperly coapt (e.g., incomplete coaptation) and/or hemodynamic leakage can occur. Thus, disposing halo 655 above the native valve annulus can provide for and/or promote complete coaptation.


Halo 655 can be formed from any suitable method and material. For example, in some embodiments, halo 655 can be formed from a substantially circular piece of wire. In such embodiments, halo 655 can be coupled to (e.g., sewn) to inner frame 650.


Outer covering 630 and inner covering 632 of outer frame 620, outer covering 660 and leaflets 670 may be formed of any suitable material, or combination of materials, such as those discussed above in connection with other embodiments.


As shown in FIGS. 21 and 22, inner valve assembly 640 may be substantially cylindrical, and outer frame assembly 610 may be tapered, extending from a smaller diameter (slightly larger than the outer diameter of inner valve assembly 640) at a lower, ventricle portion 612 (where it is coupled to inner valve assembly 640) to a larger diameter, atrium portion 616, with an intermediate diameter, annulus portion 614 between the atrium and ventricle portions.


In some embodiments, the outer surface of inner valve assembly 610, and/or the inner surface of outer frame assembly 640, need not by circular in cross-section as shown schematically in FIGS. 21 and 22, but may be of non-constant radius at a given location along the central axis of valve 600.


The atrial halo 655 functions by extending the inner frame of an inner valve assembly above the plane of atrial floor in an improved prosthetic heart valve that includes an inner frame that holds the leaflets and which is disposed within an outer frame for reducing or preventing leaking when the prosthetic heart valve is disposed within a heart valve (e.g., mitral valve, tricuspid valve).


A benefit to having leaflets within a raised leaflet silo or cylinder (e.g., halo 650) is improved blood flow and leaflet closure. It has been observed that where the leaflet cylinder is at the atrial floor, leaflet coaptation is incomplete and can result in hemodynamic leakage.


Accordingly, by providing an atrial halo or ring structure that is raised above the plane of the native annulus or atrial floor, complete leaflet coaptation is encouraged. During ventricular contraction or systole, the blood is ejected towards aortic valve to exit the heart but is also ejected towards the prosthetic mitral valve, which needs to remain closed during systole. Retrograde blood hitting the prosthetic valve leaflets cause the leaflets to close, preventing regurgitation into the left atrium. During diastole or ventricular filling, the blood needs to flow from the atrium into the ventricle without obstruction. However, when prosthetic leaflets are not properly placed or properly aligned, the leaflets can obstruct efficient filling of the ventricle or cause uneven ventricular output.



FIG. 23 is a top-view of a prosthetic heart valve 700 according to an embodiment that is one possible implementation of the prosthetic heart valve shown schematically in FIGS. 21 and 22. Prosthetic heart valve 700 includes an outer frame assembly 710, an inner valve assembly 740, and a tether assembly 790. The inner valve assembly 740 includes an inner frame 750, and outer covering 760 (not shown), leaflets 770, and atrial structure 755 (e.g., halo). Halo 755 can be formed from a circular piece of wire that can be connected to the inner frame 750 and sewn to the leaflets 770. The inner frame 750 can be made of Nitinol® wire that supports leaflets 770 sewn to the inner frame 750 and functions as a valve. The inner frame 750 shown in FIG. 23 includes three U-shaped wire components joined at their opened ends to form junctions 702. Leaflets 770 are sewn to these components to form articulating leaflets, creating and functioning as a prosthetic valve (e.g., prosthetic mitral valve, prosthetic tricuspid valve).


In some embodiments, the inner frame 750 has tether attachment apertures 711 (not shown) for attaching tether assembly 790. Tether assembly 790 is connected to epicardial securing pad 754 (not shown).


In operation, the inner frame 750 (with leaflets 770), is disposed within and secured within the outer frame 720 of the outer frame assembly 710. Outer frame 720 includes an outer covering 730 (not shown) (e.g., tissue material) and an inner covering 732 (e.g., tissue material). Outer frame 720 has an articulating collar 746 which has a collar cover 748. Articulating collar 746 is configured (e.g., shaped and sized) to solve leakage issues arising from native structures. In particular, collar 746 is composed of an A2 segment 747, a P2 segment 749, and two commissural segments, the A1-P1 segment 751, and the A3-P3 segment 753. The collar 746 may also have, in some embodiments a shortened or flattened or D-shaped section 762 of the A2 segment in order to accommodate and solve left ventricular outflow tract (LVOT) obstruction issues.


In operation, the valve 700 may be deployed as a prosthetic mitral valve using catheter delivery techniques. The entire valve 700 is compressed within a narrow catheter and delivered to the annular region of the native valve, preferably the left atrium, with a pre-attached tether apparatus. Upon delivery, the valve 700 is pushed out of the catheter where it springs open into its pre-formed functional shape without the need for manual expansion (e.g., manual expansion using an inner balloon catheter). When the valve 700 is pushed and/or pulled into place, the outer frame assembly 710 is seated in the native valve annulus (e.g., native mitral annulus), leaving the articulating collar 746 to engage the atrial floor and prevent pull-through (where the valve is pulled into the ventricle). In such embodiments, it is not necessary to cut-away the native leaflets, as has been taught in prior prosthetic efforts. Instead, the native leaflets can be used to provide a tensioning and/or sealing function around the outer frame assembly 710. It is advantageous for the valve 700 to be asymmetrically deployed in order to address LVOT problems where non-accommodating prosthetic valves push against the A2 anterior segment of the valve (e.g., mitral valve) and close blood flow through the aorta, which anatomically sits immediately behind the A2 segment of the mitral annulus. Thus, D-shaped section 762 is deployed substantially immediately adjacent/contacting the A2 segment since the flattened D-shaped section 762 is structurally smaller and has a more vertical profile (closer to paralleling the longitudinal axis of the outer stent) and thereby provides less pressure on the A2 segment. Once the valve 700 is properly seated, tether assembly 790 may be extended out through the apical region of the left ventricle and secured using an epicardial pad 754 or similar suture-locking attachment mechanism (not shown).


In an alternate embodiment, the tether assembly 790 is on the outer frame 720, which would then have tether attachment apertures 713 for attaching tether assembly 790 to epicardial securing pad 754.



FIG. 24 is a perspective view of the A1-P1 side of the prosthetic heart valve 700 according to an embodiment. FIG. 24 shows one of the three U-shaped wire components of inner frame 750 joined at their opened ends to form junctions 702. Although three U-shaped wire components are shown, in other embodiments, any suitable number of U-shaped wire components can be joined at their opened ends to form junctions. Similarly, in some embodiments, the wire components of inner frame 750 can by any suitable shape or size. Leaflets 770 are sewn to these components to form articulating leaflets 770 creating and functioning as a prosthetic heart valve (e.g., mitral valve, tricuspid valve). Atrial halo 755 is shown with the plane of the circular wire above the plane of the majority of collar except for the vertical A2 segment 747, the P2 segment 749, and the commissural A1-P1 segment 751 an A3-P3 segment 753. FIG. 26 shows how upon deployment blood would fill the void or gap 707 between the inner frame 750 and the outer frame 720 at the A1-P1 segment 751 of the valve 700. This blood creates a temporary fluid seal that would pool in that space and provide a pressure buffer against the leakage inducing forces that accompany systolic and diastolic related intra-atrial and intra-ventricular pressure.



FIG. 25 is a perspective view of the A3-P3 side 753 of prosthetic heart valve 700 according to an embodiment. FIG. 25 shows one of the three U-shaped wire components of inner frame 750 joined at their opened ends to form junctions 702. Leaflets 770 are sewn to these components to form articulating leaflets 770 creating and functioning as a prosthetic tricuspid valve. Atrial halo 755 is shown with the plane of the circular wire above the plane of the majority of collar except for the vertical A2 segment 747, the P2 segment 749, and the commissural A1-P1 segment 751 and A3-P3 segment 753. FIG. 25 shows how upon deployment blood would fill the void or gap 708 between the inner frame 750 and outer frame 720 at the A3-P3 segment 753 area of the valve 700. This blood creates a temporary fluid seal that would pool in that space and provide a pressure buffer against the leakage inducing forces that accompany systolic and diastolic related intra-atrial and intra-ventricular pressure.



FIG. 26 is an exploded view of prosthetic heart valve 700 according to an embodiment. In this valve 700, the inner frame 750 is sewn with tissue 706 and acts a cover to prevent valvular leakage. The inner frame 750 contains the leaflets 770 comprised of articulating leaflets that define a valve function. The leaflets 770 are sewn to the inner frame 750. The inner frame 750 also has tether attachment apertures 711 for attaching tether assembly 790. Tether assembly 790 is shown in this example as connected to epicardial securing pad 754. In operation, the covered inner frame 750 (e.g., covered with outer covering 760) (with leaflets 770), is disposed within and secured within the outer frame 720 of the outer frame assembly 710. Outer frame 720 may also have in various embodiments a covering (e.g., outer covering 730). Outer frame 720 has an articulating collar 746 which has a collar cover 748. Articulating collar 746 may also have in some embodiments a D-shaped section 762 to accommodate and solve left ventricular outflow tract (LVOT) obstruction issues.


In operation, the valve 700 may be deployed as a prosthetic valve (e.g., mitral valve) using catheter delivery techniques. The entire valve 700 is compressed within a narrow catheter and delivered to the annular region of the native valve, such as, for example, with a pre-attached tether assembly 790. There, the valve 700 is pushed out of the catheter where it springs open into its pre-formed functional shape without the need for manual expansion (e.g., manual expansion using an inner balloon catheter). When the valve 700 is pushed and/or pulled into place, the outer frame assembly 710 is seated in the native mitral annulus, leaving the articulating collar 746 to engage the atrial floor and prevent pull-through (where the valve is pulled into the ventricle). In such embodiments, it is not necessary to cut-away the native leaflets, as has been taught in prior prosthetic efforts. Instead, the native leaflets can be used to provide a tensioning and/or sealing function around the outer frame assembly 710. It is advantageous for the valve 700 to be asymmetrically deployed in order to address LVOT problems where non-accommodating prosthetic valves push against the A2 anterior segment of the valve (e.g., the mitral valve) and close blood flow through the aorta, which anatomically sits immediately behind the A2 segment of the mitral annulus. Thus, D-shaped section 762 is deployed immediately adjacent/contacting the A2 segment since the flattened D-shaped section 762 is structurally smaller and has a more vertical profile (closer to paralleling the longitudinal axis of the outer stent) and thereby provides less pressure on the A2 segment. Once the valve 700 is properly seated, tether assembly 790 may be extended out through the apical region of the left ventricle and secured using an epicardial pad 754 or similar suture-locking attachment mechanism.


Any of the prosthetic heart valve embodiments described above can incorporate additional structural features to enhance their performance. The structural features are discussed below with reference to prosthetic heart valve 800, illustrated schematically in perspective and side views in FIGS. 27 and 28, respectively.


As shown, the outer frame 820 has an atrium portion 826, a ventricle portion 822, and an annulus portion 824 disposed between the atrium portion 826 and the ventricle portion 822. The inner frame 850 of the inner valve assembly 840 has a first end and a second end. The inner valve assembly 840 can be coupled to the outer frame 820 by a connection between the first end of the inner frame 850 and the ventricle portion 812 of the outer frame assembly 810. The inner frame assembly 840 can extend from the connection towards the atrium portion 816 of the outer frame assembly 810. The inner frame assembly 840 and the outer frame assembly 810 can diverge from the connection towards the atrium portion 816 of the outer frame assembly 810. The annulus portion 814 of the outer frame assembly 810 can be spaced radially from the inner valve assembly 840 and radially inwardly deflectable towards the inner valve assembly 840 to accommodate a natural heart valve annulus in the annulus portion 814.


The outer frame assembly 810 can be shaped and sized in any suitable manner to facilitate a proper fit into a native heart valve. For example, as shown, the outer frame 820 can be shaped and sized to resemble, at least in part, an hourglass shape. Specifically, the annulus portion 814 of outer frame assembly 810 varies from an intermediate diameter (or perimeter) near ventricle portion 812 to a smaller diameter (or perimeter) near the middle of annulus portion 814, to a larger diameter (or perimeter) near atrium portion 816. Thus, annulus portion 814 has an hourglass shape. Ventricle portion 812 has a maximum diameter larger than a maximum diameter of annulus portion 816. The ventricle portion has a minimum diameter smaller than a minimum diameter of the annulus portion 814.


The diameters and/or perimeters for each portion of the outer frame 820 can be selected based on the size and/or shape of a native heart valve into which prosthetic heart valve 800 is to be implanted. For example, the minimum diameter of the annulus portion 824 of the outer frame 820 can be smaller than that of the native valve annulus. Thus, in such a configuration, the diameters of the ventricle portion 822, annulus portion 824, and atrium portion 826 can collectively promote a suitable fit (e.g., a snug, secure fit) of the prosthetic heart valve 800 in a native heart valve. In this manner, the outer frame 820 can be configured to optimize securement and sealing between the prosthetic heart valve 800 (particularly outer frame assembly 810) and a native valve annulus of a native heart valve. Thus, such a configuration minimizes the likelihood of paravalvular leaks.


Although the outer frame 820 is shown to have a circular cross-section, in some embodiments, the outer frame 820 can by any suitable shape or size. For example, in some embodiments, the outer frame 820 can have a D-shape cross-section. In this manner, the outer frame 820 can have a shape configured to correspond to (e.g., mate with) a native heart valve annulus.


In addition to, or instead of, outer frame 820 and/or outer frame assembly 810 with the hourglass shape described above, valve 800, or in some instances, outer frame 820 and/or outer frame assembly 810, in particular, can be formed to provide stiffness, such as resistance to hoop compression, that is varied spatially, i.e., axially and/or circumferentially.


In this manner, a suitable stiffness profile can be arranged such that the valve 800 promotes a desirable shape and sealing region when disposed in a native heart valve, thus minimizing the likelihood of paravalvular leaks and undesired movement of the valve. Similarly stated, valve 800 can be configured to have a stiffness profile suitable to cause desirable deformation of the native heart valve annulus (i.e., the sealing region), and thus, proper implantation of valve 800.


A desired stiffness profile of prosthetic valve 800 can be achieved by varying properties, characteristics, and/or the arrangement of the outer frame assembly 810 and the inner valve assembly 840. For example, the outer frame 820 and/or the inner frame 850 can contain portions of varying material states. For example, a first portion of outer frame 820 can be in an elastic state, while a second portion of outer frame 820 is in a super-elastic state. Similarly, for example, portions of the outer frame 820 and/or the inner frame 850 can be in an austenitic state and/or a martensitic state (e.g., a stress induced martensitic state). In this manner, portions of valve 800 can be configured to suitably mate with a native valve annulus, thus improving sealing and limiting paravalvular leaks.


In addition, the outer frame assembly 810 and/or inner valve assembly 840 can have varying widths, thicknesses, shapes (e.g., longitudinal shape), angles (e.g., angle of attachment between inner valve assembly 840 and outer frame assembly 810), and the like. In some embodiments, the outer covering 830, inner covering 832, outer covering 860, and/or pocket closure 880 can be configured to determine, at least in part, the stiffness profile and/or shape of valve 800 (e.g., based on sewing pattern).



FIGS. 29B, and 29C and 29D illustrate axial and circumferential stiffness profiles, respectively, of prosthetic heart valve 800 (shown in FIG. 29A) according to an embodiment. The stiffness of heart valve 800 can vary axially and/or circumferentially in any suitable manner. For example, FIG. 29B represents an axial stiffness profile of valve 800. Specifically, as shown, the Z-axis represents an axial location on valve 800 (e.g., a location of the stiffness value). The S-axis represents a range of stiffness (or range of stiffness values), increasing from left (starting at origin O) to right.


Further to this example, as illustrated in FIG. 29B, in some embodiments, locations near the ventricle portion 822 (e.g., indicated as B in FIG. 29A) of the outer frame 822 can have a larger stiffness value, locations near the annulus portion 824 of the outer frame 820 can have a smaller stiffness value relative to the ventricle portion 822 (e.g., to facilitate cooperation with the native valve annulus), and locations near the atrium portion 826 (e.g., indicated as A in FIG. 29A) of the outer frame 820 can have a smaller, the same, or larger stiffness value (illustrated by the dotted line) than the stiffness value near the annulus portion 824. In this manner, the outer frame assembly 810 can be relatively more compliant in hoop compression in a central, annulus portion 814, than at the ventricle portion 812. Thus, in use, the prosthetic valve 800 can seat securely in the annulus of the native heart valve while imposing minimal loads on the inner valve assembly 840 that could degrade the performance of the valve leaflets 870. Although, for ease of illustration, the stiffness profile shown in FIG. 29B includes linear portions, in some embodiments, the stiffness profile can include non-linear portions instead of or in addition to the linear portions as shown.


Similarly, the stiffness of heart valve 800, or portions of heart valve 800, can have varying degrees of stiffness circumferentially, as illustrated by the stiffness profiles shown in FIGS. 29C and 29 D. By way of example, FIG. 29C illustrates a circumferential stiffness profile at axial location A (as shown by reference ‘A’ in FIG. 29A). Similarly, FIG. 29D illustrates a circumferential stiffness profile at axial location B (as shown by reference ‘B’ in FIG. 29A). As the profile extends radially from the origin (indicated as ‘O’), the stiffness value increases.


Thus, as shown in FIG. 29C, the stiffness at S1 (90 degrees) is greater than the stiffness at S2 (270 degrees). Further to this example, in some embodiments, the circumferential portion from zero to 180 degrees can represent a relatively flat portion of an outer frame 820 of the outer frame assembly 810 having a D-shape configuration, and 180 to 360 degrees can represent a relatively curved portion of the outer frame 820 having the D-shape configuration.


In a similar fashion, FIG. 29D illustrates a circumferential stiffness profile at axial location B (as shown by reference ‘B’ in FIG. 29A). As shown, axial location B has a different stiffness profile than axial location A. Such variability in design, as discussed above, can provide for advantageous customization of heart valve 800, and cooperation of heart valve 800 with a native heart valve. Similar to FIG. 29C, FIG. 29D illustrates the stiffness at one side of valve 800 being be greater than a stiffness at another side of the valve 800. In this manner, in some instances, a portion of valve 800 that will experience greater forces from the native heart valve annulus can have a smaller stiffness value (e.g., more compliant) than a portion of the valve 800 that will experience smaller or fewer forces, thus optimizing the cooperation of the prosthetic heart valve 800 with the native heart (particularly the native heart valve annular region).


While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation, and as such, various changes in form and/or detail may be made. Any portion of the apparatus and/or methods described herein may be combined in any suitable combination, unless explicitly expressed otherwise. Where methods and/or schematics described above indicate certain events occurring in certain order, the ordering of certain events and/or flow patterns may be modified. Additionally, certain events may be performed concurrently in parallel processes when possible, as well as performed sequentially.

Claims
  • 1. A prosthetic heart valve comprising: an outer frame assembly having an atrium portion configured to be disposed in an atrium of a heart, an opposite, ventricle portion, and an annulus portion between the atrium portion and the ventricle portion, the atrium portion having a maximum perimeter larger than a maximum perimeter of the annulus portion,the ventricle portion having a minimum perimeter smaller than a minimum perimeter of the annulus portion,the annulus portion having an hourglass shape with a minimum perimeter disposed between a larger perimeter near the atrium portion and a larger perimeter near the ventricle portion;an inner valve assembly, the inner valve assembly including an inner frame having an atrium end and a ventricle end, the inner valve assembly disposed within and coupled to the outer frame assembly by a connection between the ventricle end of the inner frame and the ventricle portion of the outer frame assembly,the inner frame assembly extending from the connection towards the atrium portion of the outer frame assembly, the inner frame assembly and the outer frame assembly diverging from the connection towards the atrium portion of the outer frame assembly, the inner valve assembly and the outer frame assembly defining therebetween an annular region, the inner valve assembly and the outer frame assembly configured to substantially prevent blood flow therebetween through the annular region,the annulus portion of the outer frame assembly being spaced radially from the inner valve assembly and radially inwardly deflectable towards the inner valve assembly to accommodate in the annulus portion a natural valve annulus having a perimeter smaller than the minimum perimeter of the annulus portion; anda pocket closure coupled between the outer frame assembly and the inner valve assembly and enclosing therewith a portion of the annular space, forming a thrombus retaining pocket, at least a portion of the pocket closure formed of a material having a porosity that is sufficiently large to allow red blood cells to pass through the pocket closure into the pocket and that is sufficiently small to prevent thrombus formed from the red blood cells to pass through the pocket closure from the thrombus retaining pocket.
  • 2. The prosthetic heart valve of claim 1, wherein the inner valve assembly includes: a covering disposed about the periphery of the inner frame, defining in part the annular region, and formed of a material substantially impermeable to blood; anda valve leaflet assembly supported on the inner frame.
  • 3. The prosthetic heart valve of claim 1, wherein the outer frame assembly includes: an outer frame; andan inner covering disposed about the inner periphery of the outer frame, defining in part the annular region, and formed of a material substantially impermeable to blood.
  • 4. The prosthetic heart valve of claim 1, wherein: the inner valve assembly includes: a covering disposed about the periphery of the inner frame, defining in part the annular region, and formed of a material substantially impermeable to blood; anda valve leaflet assembly supported on the inner frame; andthe outer frame assembly includes: an outer frame; andan inner covering disposed about the inner periphery of the outer frame, defining in part the annular region, and formed of a material substantially impermeable to blood,the covering of the inner frame coupled to the inner covering of the outer frame to close the ventricle end of the annular region, opposite the pocket covering.
  • 5. The prosthetic heart valve of claim 1, wherein the atrium end of the inner valve assembly has a periphery formed with multiple arches and wherein the pocket closure is coupled along the periphery of the atrium end.
  • 6. The prosthetic heart valve of claim 1, wherein the annulus portion of the outer frame assembly has a perimeter that is sized to fit into an annulus of an atrioventricular valve, each of the atrium portion and the annulus portion being D-shaped in cross section.
  • 7. The prosthetic heart valve of claim 1, wherein the inner frame is formed of an expanded shape memory metal.
  • 8. The prosthetic heart valve of claim 1, wherein the outer frame assembly includes an outer frame formed of an expanded shape memory metal.
  • 9. The prosthetic heart valve of claim 1, wherein the pocket closure is formed at least in part of a material having a pore size less than about 160 μm.
  • 10. The prosthetic heart valve of claim 9, wherein the pocket closure is formed at least in part of a material having a pore size between about 90 μm and about 120 μm.
  • 11. The prosthetic heart valve of claim 1, wherein the pocket closure is formed at least in part of a material that is one of a woven material, a knit material, or a non-woven material.
  • 12. The prosthetic heart valve of claim 1, wherein each of the atrium portion and the annulus portion of the outer frame assembly is D-shaped in cross section.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of International Application No. PCT/US2014/044047, filed Jun. 25, 2014, which is a continuation-in-part of U.S. patent application Ser. No. 14/155,535, filed Jan. 15, 2014, and claims priority to and the benefit of U.S. Provisional Application No. 61/839,237, filed Jun. 25, 2013 and U.S. Provisional Application No. 61/840,313, filed Jun. 27, 2013. The disclosures of the foregoing applications are incorporated herein by reference in their entireties.

US Referenced Citations (631)
Number Name Date Kind
2697008 Rowley Dec 1954 A
3409013 Berry Nov 1968 A
3472230 Fogarty et al. Oct 1969 A
3476101 Ross Nov 1969 A
3548417 Kisher Dec 1970 A
3587115 Shiley Jun 1971 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3714671 Edwards et al. Feb 1973 A
3755823 Hancock Sep 1973 A
3976079 Samuels et al. Aug 1976 A
4003382 Dyke Jan 1977 A
4035849 Angell et al. Jul 1977 A
4056854 Boretos et al. Nov 1977 A
4073438 Meyer Feb 1978 A
4106129 Carpentier et al. Aug 1978 A
4222126 Boretos et al. Sep 1980 A
4265694 Boretos et al. May 1981 A
4297749 Davis et al. Nov 1981 A
4339831 Johnson Jul 1982 A
4343048 Ross et al. Aug 1982 A
4345340 Rosen Aug 1982 A
4373216 Klawitter Feb 1983 A
4406022 Roy Sep 1983 A
4470157 Love Sep 1984 A
4490859 Black et al. Jan 1985 A
4535483 Klawitter et al. Aug 1985 A
4574803 Storz Mar 1986 A
4585705 Broderick et al. Apr 1986 A
4592340 Boyles Jun 1986 A
4605407 Black et al. Aug 1986 A
4612011 Kautzky Sep 1986 A
4626255 Reichart et al. Dec 1986 A
4638886 Marietta Jan 1987 A
4643732 Pietsch et al. Feb 1987 A
4655771 Wallsten Apr 1987 A
4692164 Dzemeshkevich et al. Sep 1987 A
4733665 Palmaz Mar 1988 A
4759758 Gabbay Jul 1988 A
4762128 Rosenbluth Aug 1988 A
4777951 Cribier et al. Oct 1988 A
4787899 Lazarus Nov 1988 A
4787901 Baykut Nov 1988 A
4796629 Grayzel Jan 1989 A
4824180 Levrai Apr 1989 A
4829990 Thuroff et al. May 1989 A
4830117 Capasso May 1989 A
4851001 Taheri Jul 1989 A
4856516 Hillstead Aug 1989 A
4878495 Grayzel Nov 1989 A
4878906 Lindemann et al. Nov 1989 A
4883458 Shiber Nov 1989 A
4922905 Strecker May 1990 A
4923013 De Gennaro May 1990 A
4960424 Grooters Oct 1990 A
4966604 Reiss Oct 1990 A
4979939 Shiber Dec 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
4996873 Takeuchi Mar 1991 A
5007896 Shiber Apr 1991 A
5026366 Leckrone Jun 1991 A
5032128 Alonso Jul 1991 A
5037434 Lane Aug 1991 A
5047041 Sammuels Sep 1991 A
5059177 Towne et al. Oct 1991 A
5064435 Porter Nov 1991 A
5080668 Bolz et al. Jan 1992 A
5085635 Cragg Feb 1992 A
5089015 Ross Feb 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5163953 Vince Nov 1992 A
5167628 Boyles Dec 1992 A
5192297 Hull Mar 1993 A
5201880 Wright et al. Apr 1993 A
5266073 Wall Nov 1993 A
5282847 Trescony et al. Feb 1994 A
5295958 Shturman Mar 1994 A
5306296 Wright et al. Apr 1994 A
5332402 Teitelbaum Jul 1994 A
5336616 Livesey et al. Aug 1994 A
5344442 Deac Sep 1994 A
5360444 Kusuhara Nov 1994 A
5364407 Poll Nov 1994 A
5370685 Stevens Dec 1994 A
5397351 Pavcnik et al. Mar 1995 A
5411055 Kane et al. May 1995 A
5411552 Andersen et al. May 1995 A
5415667 Frater May 1995 A
5443446 Shturman Aug 1995 A
5480424 Cox Jan 1996 A
5500014 Quijano et al. Mar 1996 A
5545209 Roberts et al. Aug 1996 A
5545214 Stevens Aug 1996 A
5549665 Vesely et al. Aug 1996 A
5554184 Machiraju Sep 1996 A
5554185 Block et al. Sep 1996 A
5571175 Vanney et al. Nov 1996 A
5591185 Kilmer et al. Jan 1997 A
5607462 Imran Mar 1997 A
5607464 Trescony et al. Mar 1997 A
5609626 Quijano et al. Mar 1997 A
5639274 Fischell et al. Jun 1997 A
5665115 Cragg Sep 1997 A
5674279 Wright et al. Oct 1997 A
5697905 Ambrosio Dec 1997 A
5702368 Stevens et al. Dec 1997 A
5716417 Girard et al. Feb 1998 A
5728068 Leone et al. Mar 1998 A
5728151 Garrison et al. Mar 1998 A
5741333 Frid Apr 1998 A
5749890 Shaknovich May 1998 A
5756476 Epstein May 1998 A
5769812 Stevens et al. Jun 1998 A
5800508 Goicoechea et al. Sep 1998 A
5833673 Ockuly et al. Nov 1998 A
5840081 Andersen et al. Nov 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler Jan 1999 A
5855602 Angell Jan 1999 A
5904697 Gifford, III et al. May 1999 A
5925063 Khosravi Jul 1999 A
5957949 Leonhardt et al. Sep 1999 A
5968068 Dehdashtian et al. Oct 1999 A
5972030 Garrison et al. Oct 1999 A
5993481 Marcade et al. Nov 1999 A
6027525 Suh et al. Feb 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6045497 Schweich, Jr. et al. Apr 2000 A
6063112 Sgro et al. May 2000 A
6077214 Mortier et al. Jun 2000 A
6099508 Bousquet Aug 2000 A
6132473 Williams et al. Oct 2000 A
6168614 Andersen et al. Jan 2001 B1
6171335 Wheatley et al. Jan 2001 B1
6174327 Mertens et al. Jan 2001 B1
6183411 Mortier et al. Feb 2001 B1
6210408 Chandrasakaran et al. Apr 2001 B1
6217585 Houser et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6231602 Carpentier et al. May 2001 B1
6245102 Jayaraman Jun 2001 B1
6260552 Mortier et al. Jul 2001 B1
6261222 Schweich, Jr. et al. Jul 2001 B1
6264602 Mortier et al. Jul 2001 B1
6287339 Vazquez et al. Sep 2001 B1
6299637 Shaolian Oct 2001 B1
6302906 Goecoechea et al. Oct 2001 B1
6312465 Griffin et al. Nov 2001 B1
6332893 Mortier et al. Dec 2001 B1
6350277 Kocur Feb 2002 B1
6358277 Duran Mar 2002 B1
6379372 Dehdashtian et al. Apr 2002 B1
6402679 Mortier et al. Jun 2002 B1
6402680 Mortier et al. Jun 2002 B2
6402781 Langberg et al. Jun 2002 B1
6406420 McCarthy et al. Jun 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440164 Di Matteo et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6468660 Ogle et al. Oct 2002 B2
6482228 Norred Nov 2002 B1
6488704 Connelly et al. Dec 2002 B1
6537198 Vidlund et al. Mar 2003 B1
6540782 Snyders Apr 2003 B1
6569196 Vesely et al. May 2003 B1
6575252 Reed Jun 2003 B2
6582462 Andersen et al. Jun 2003 B1
6605112 Moll Aug 2003 B1
6616684 Vidlund et al. Sep 2003 B1
6622730 Ekvall et al. Sep 2003 B2
6629534 St. Goar et al. Oct 2003 B1
6629921 Schweich, Jr. et al. Oct 2003 B1
6648077 Hoffman Nov 2003 B2
6648921 Anderson et al. Nov 2003 B2
6652578 Bailey et al. Nov 2003 B2
6669724 Park et al. Dec 2003 B2
6706065 Langberg et al. Mar 2004 B2
6709456 Langberg et al. Mar 2004 B2
6723038 Schroeder et al. Apr 2004 B1
6726715 Sutherland Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6740105 Yodfat et al. May 2004 B2
6746401 Panescu Jun 2004 B2
6746471 Mortier et al. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6764510 Vidlund et al. Jul 2004 B2
6797002 Spence et al. Sep 2004 B2
6810882 Langberg et al. Nov 2004 B2
6830584 Seguin Dec 2004 B1
6854668 Wancho et al. Feb 2005 B2
6855144 Lesh Feb 2005 B2
6858001 Aboul-Hosn Feb 2005 B1
6890353 Cohn et al. May 2005 B2
6893460 Spenser et al. May 2005 B2
6896690 Lambrecht et al. May 2005 B1
6908424 Mortier et al. Jun 2005 B2
6908481 Cribier Jun 2005 B2
6936067 Buchanan Aug 2005 B2
6955175 Stevens et al. Oct 2005 B2
6974476 McGuckin et al. Dec 2005 B2
6976543 Fischer Dec 2005 B1
6997950 Chawia Feb 2006 B2
7018406 Seguin et al. Mar 2006 B2
7018408 Bailey et al. Mar 2006 B2
7044905 Vidlund et al. May 2006 B2
7060021 Wilk Jun 2006 B1
7077862 Vidlund et al. Jul 2006 B2
7087064 Hyde Aug 2006 B1
7100614 Stevens et al. Sep 2006 B2
7101395 Tremulis et al. Sep 2006 B2
7108717 Freidberg Sep 2006 B2
7112219 Vidlund et al. Sep 2006 B2
7115141 Menz et al. Oct 2006 B2
7141064 Scott et al. Nov 2006 B2
7175656 Khairkhahan Feb 2007 B2
7198646 Figulla et al. Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7247134 Vidlund et al. Jul 2007 B2
7252682 Seguin Aug 2007 B2
7267686 DiMatteo et al. Sep 2007 B2
7275604 Wall Oct 2007 B1
7276078 Spenser et al. Oct 2007 B2
7276084 Yang et al. Oct 2007 B2
7316706 Bloom et al. Jan 2008 B2
7318278 Zhang et al. Jan 2008 B2
7329278 Seguin et al. Feb 2008 B2
7331991 Kheradvar et al. Feb 2008 B2
7335213 Hyde et al. Feb 2008 B1
7374571 Pease et al. May 2008 B2
7377941 Rhee et al. May 2008 B2
7381210 Zarbatany et al. Jun 2008 B2
7381218 Schreck Jun 2008 B2
7393360 Spenser et al. Jul 2008 B2
7404824 Webler et al. Jul 2008 B1
7416554 Lam et al. Aug 2008 B2
7422072 Dade Sep 2008 B2
7429269 Schwammenthal et al. Sep 2008 B2
7442204 Schwammenthal et al. Oct 2008 B2
7445631 Salahieh et al. Nov 2008 B2
7462191 Spenser et al. Dec 2008 B2
7470285 Nugent et al. Dec 2008 B2
7500989 Solem et al. Mar 2009 B2
7503931 Kowalsky et al. Mar 2009 B2
7510572 Gabbay Mar 2009 B2
7510575 Spenser et al. Mar 2009 B2
7513908 Lattouf Apr 2009 B2
7524330 Berreklouw Apr 2009 B2
7534260 Lattouf May 2009 B2
7556646 Yang et al. Jul 2009 B2
7579381 Dove Aug 2009 B2
7585321 Cribier Sep 2009 B2
7618446 Andersen et al. Nov 2009 B2
7618447 Case et al. Nov 2009 B2
7621948 Herrmann et al. Nov 2009 B2
7632304 Park Dec 2009 B2
7632308 Loulmet Dec 2009 B2
7635386 Gammie Dec 2009 B1
7674222 Nikolic et al. Mar 2010 B2
7674286 Alfieri et al. Mar 2010 B2
7695510 Bloom et al. Apr 2010 B2
7708775 Rowe et al. May 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7766961 Patel et al. Aug 2010 B2
7789909 Andersen et al. Sep 2010 B2
7803168 Gifford et al. Sep 2010 B2
7803184 McGuckin, Jr. et al. Sep 2010 B2
7803185 Gabbay Sep 2010 B2
7806928 Rowe et al. Oct 2010 B2
7837727 Goetz et al. Nov 2010 B2
7854762 Speziali et al. Dec 2010 B2
7892281 Seguin et al. Feb 2011 B2
7896915 Guyenot et al. Mar 2011 B2
7927370 Webler et al. Apr 2011 B2
7931630 Nishtala et al. Apr 2011 B2
7942928 Webler et al. May 2011 B2
7955247 Levine et al. Jun 2011 B2
7955385 Crittenden Jun 2011 B2
7972378 Tabor et al. Jul 2011 B2
7988727 Santamore et al. Aug 2011 B2
7993394 Hariton et al. Aug 2011 B2
8007992 Tian et al. Aug 2011 B2
8029556 Rowe Oct 2011 B2
8043368 Crabtree Oct 2011 B2
8052749 Salahieh Nov 2011 B2
8052750 Tuval et al. Nov 2011 B2
8052751 Aklog et al. Nov 2011 B2
8062355 Figulla et al. Nov 2011 B2
8062359 Marquez et al. Nov 2011 B2
8070802 Lamphere et al. Dec 2011 B2
8109996 Stacchino et al. Feb 2012 B2
8142495 Hasenkam et al. Mar 2012 B2
8152821 Gambale et al. Apr 2012 B2
8157810 Case et al. Apr 2012 B2
8167932 Bourang et al. May 2012 B2
8167934 Styrc et al. May 2012 B2
8187299 Goldfarb et al. May 2012 B2
8206439 Gomez Jun 2012 B2
8216301 Bonhoeffer et al. Jul 2012 B2
8226711 Mortier et al. Jul 2012 B2
8236045 Benichou et al. Aug 2012 B2
8241274 Keogh et al. Aug 2012 B2
8252051 Chau et al. Aug 2012 B2
8303653 Bonhoeffer et al. Nov 2012 B2
8308796 Lashinski et al. Nov 2012 B2
8323334 Deem et al. Dec 2012 B2
RE44075 Williamson et al. Mar 2013 E
8449599 Chau et al. May 2013 B2
8486138 Vesely Jul 2013 B2
8578705 Sindano et al. Nov 2013 B2
8685086 Navia et al. Apr 2014 B2
8790394 Miller et al. Jul 2014 B2
8900214 Nance et al. Dec 2014 B2
8979922 Thambar et al. Mar 2015 B2
9034032 McLean et al. May 2015 B2
9034033 McLean et al. May 2015 B2
9039757 McLean et al. May 2015 B2
9078749 Lutter et al. Jul 2015 B2
9084676 Chau et al. Jul 2015 B2
9095433 Lutter et al. Aug 2015 B2
9149357 Sequin Oct 2015 B2
9254192 Lutter et al. Feb 2016 B2
20010018611 Solem et al. Aug 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20020010427 Scarfone et al. Jan 2002 A1
20020032481 Gabbay Mar 2002 A1
20020116054 Lundell et al. Aug 2002 A1
20020138138 Yang Sep 2002 A1
20020139056 Finnell Oct 2002 A1
20020151961 Lashinski et al. Oct 2002 A1
20020173842 Buchanan Nov 2002 A1
20030010509 Hoffman Jan 2003 A1
20030036698 Kohler et al. Feb 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030078652 Sutherland Apr 2003 A1
20030100939 Yodfat et al. May 2003 A1
20030105520 Alferness et al. Jun 2003 A1
20030120340 Liska et al. Jun 2003 A1
20030130731 Vidlund et al. Jul 2003 A1
20030149476 Damm et al. Aug 2003 A1
20030212454 Scott et al. Nov 2003 A1
20040039436 Spenser et al. Feb 2004 A1
20040049266 Anduiza et al. Mar 2004 A1
20040064014 Melvin et al. Apr 2004 A1
20040092858 Wilson et al. May 2004 A1
20040093075 Kuehne May 2004 A1
20040097865 Anderson et al. May 2004 A1
20040127983 Mortier et al. Jul 2004 A1
20040133263 Dusbabek et al. Jul 2004 A1
20040147958 Lam et al. Jul 2004 A1
20040152947 Schroeder et al. Aug 2004 A1
20040162610 Liska et al. Aug 2004 A1
20040163828 Silverstein et al. Aug 2004 A1
20040181239 Dorn et al. Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040260317 Bloom et al. Dec 2004 A1
20040260389 Case et al. Dec 2004 A1
20050004652 Van der Burg et al. Jan 2005 A1
20050004666 Alfieri et al. Jan 2005 A1
20050075727 Wheatley Apr 2005 A1
20050080402 Santamore et al. Apr 2005 A1
20050096498 Houser et al. May 2005 A1
20050107661 Lau et al. May 2005 A1
20050113798 Slater et al. May 2005 A1
20050113810 Houser et al. May 2005 A1
20050113811 Houser et al. May 2005 A1
20050119519 Girard et al. Jun 2005 A9
20050121206 Dolan Jun 2005 A1
20050125012 Houser et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050137698 Salahieh et al. Jun 2005 A1
20050148815 Mortier et al. Jul 2005 A1
20050177180 Kaganov et al. Aug 2005 A1
20050197695 Stacchino Sep 2005 A1
20050203614 Forster et al. Sep 2005 A1
20050203615 Forster et al. Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050240200 Bergheim Oct 2005 A1
20050251209 Saadat et al. Nov 2005 A1
20050256567 Lim et al. Nov 2005 A1
20050288766 Plain et al. Dec 2005 A1
20060004442 Spenser et al. Jan 2006 A1
20060025784 Starksen et al. Feb 2006 A1
20060025857 Bergheim et al. Feb 2006 A1
20060030885 Hyde Feb 2006 A1
20060042803 Gallaher Mar 2006 A1
20060047338 Jenson et al. Mar 2006 A1
20060052868 Mortier et al. Mar 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060094983 Burbank et al. May 2006 A1
20060129025 Levine et al. Jun 2006 A1
20060142784 Kontos Jun 2006 A1
20060149350 Patel et al. Jul 2006 A1
20060161040 McCarthy et al. Jul 2006 A1
20060161249 Realyvasquez et al. Jul 2006 A1
20060167541 Lattouf Jul 2006 A1
20060195134 Crittenden Aug 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060229708 Powell et al. Oct 2006 A1
20060229719 Marquez et al. Oct 2006 A1
20060241745 Solem Oct 2006 A1
20060247491 Vidlund et al. Nov 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060276874 Wilson et al. Dec 2006 A1
20060282161 Huynh et al. Dec 2006 A1
20060287716 Banbury et al. Dec 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20070005131 Taylor Jan 2007 A1
20070005231 Seguchi Jan 2007 A1
20070010877 Salahieh et al. Jan 2007 A1
20070016286 Herrmann et al. Jan 2007 A1
20070016288 Gurskis et al. Jan 2007 A1
20070027535 Purdy et al. Feb 2007 A1
20070038291 Case et al. Feb 2007 A1
20070050020 Spence Mar 2007 A1
20070061010 Hauser et al. Mar 2007 A1
20070066863 Rafiee et al. Mar 2007 A1
20070073387 Forster et al. Mar 2007 A1
20070078297 Rafiee et al. Apr 2007 A1
20070083076 Lichtenstein Apr 2007 A1
20070083259 Bloom et al. Apr 2007 A1
20070100439 Cangialosi et al. May 2007 A1
20070112422 Dehdashtian May 2007 A1
20070112425 Schaller et al. May 2007 A1
20070118151 Davidson May 2007 A1
20070118154 Crabtree May 2007 A1
20070118210 Pinchuk May 2007 A1
20070118213 Loulmet May 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070161846 Nikolic et al. Jul 2007 A1
20070162103 Case et al. Jul 2007 A1
20070168024 Khairkhahan Jul 2007 A1
20070185565 Schwammenthal et al. Aug 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070215362 Rodgers Sep 2007 A1
20070221388 Johnson Sep 2007 A1
20070233239 Navia et al. Oct 2007 A1
20070239265 Birdsall Oct 2007 A1
20070256843 Pahila Nov 2007 A1
20070267202 Mariller Nov 2007 A1
20070270943 Solem Nov 2007 A1
20070293944 Spenser et al. Dec 2007 A1
20080009940 Cribier Jan 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080071361 Tuval et al. Mar 2008 A1
20080071362 Tuval et al. Mar 2008 A1
20080071363 Tuval et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080071368 Tuval et al. Mar 2008 A1
20080071369 Tuval et al. Mar 2008 A1
20080082163 Woo Apr 2008 A1
20080082166 Styrc et al. Apr 2008 A1
20080091264 Machold et al. Apr 2008 A1
20080114442 Mitchell et al. May 2008 A1
20080125861 Webler et al. May 2008 A1
20080147179 Cai et al. Jun 2008 A1
20080154355 Benichou et al. Jun 2008 A1
20080154356 Obermiller et al. Jun 2008 A1
20080161911 Revuelta et al. Jul 2008 A1
20080172035 Starksen et al. Jul 2008 A1
20080177381 Navia et al. Jul 2008 A1
20080183203 Fitzgerald et al. Jul 2008 A1
20080188928 Salahieh et al. Aug 2008 A1
20080208328 Antocci et al. Aug 2008 A1
20080208332 Lamphere et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080243150 Starksen et al. Oct 2008 A1
20080243245 Thambar et al. Oct 2008 A1
20080255660 Guyenot et al. Oct 2008 A1
20080255661 Straubinger et al. Oct 2008 A1
20080281411 Berreklouw Nov 2008 A1
20080293996 Evans et al. Nov 2008 A1
20090005863 Goetz et al. Jan 2009 A1
20090054968 Bonhoeffer et al. Feb 2009 A1
20090054974 McGuckin, Jr. et al. Feb 2009 A1
20090062908 Bonhoeffer et al. Mar 2009 A1
20090076598 Salahieh et al. Mar 2009 A1
20090082619 De Marchena Mar 2009 A1
20090088836 Bishop et al. Apr 2009 A1
20090099410 De Marchena Apr 2009 A1
20090112309 Jaramillo Apr 2009 A1
20090132035 Roth et al. May 2009 A1
20090137861 Goldberg et al. May 2009 A1
20090138079 Tuval et al. May 2009 A1
20090157175 Benichou Jun 2009 A1
20090164005 Dove et al. Jun 2009 A1
20090171432 Von Segesser et al. Jul 2009 A1
20090171447 Von Segesser et al. Jul 2009 A1
20090171456 Kveen et al. Jul 2009 A1
20090177266 Powell et al. Jul 2009 A1
20090192601 Rafiee et al. Jul 2009 A1
20090210052 Forster et al. Aug 2009 A1
20090216322 Le et al. Aug 2009 A1
20090222076 Figulla et al. Sep 2009 A1
20090224529 Gill Sep 2009 A1
20090234318 Loulmet et al. Sep 2009 A1
20090234435 Johnson et al. Sep 2009 A1
20090234443 Ottma et al. Sep 2009 A1
20090240320 Tuval et al. Sep 2009 A1
20090248149 Gabbay Oct 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090287299 Tabor et al. Nov 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20090326575 Galdonik et al. Dec 2009 A1
20100016958 St. Goar et al. Jan 2010 A1
20100021382 Dorshow et al. Jan 2010 A1
20100023117 Yoganathan et al. Jan 2010 A1
20100036479 Hill et al. Feb 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100082094 Quadri et al. Apr 2010 A1
20100161041 Maisano et al. Jun 2010 A1
20100168839 Braido et al. Jul 2010 A1
20100179641 Ryan et al. Jul 2010 A1
20100185277 Braido et al. Jul 2010 A1
20100185278 Schankereli Jul 2010 A1
20100191326 Alkhatib Jul 2010 A1
20100192402 Yamaguchi et al. Aug 2010 A1
20100204781 Alkhatib Aug 2010 A1
20100210899 Schankereli Aug 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100249489 Jarvik Sep 2010 A1
20100280604 Zipory et al. Nov 2010 A1
20100286768 Alkhatib Nov 2010 A1
20100298755 McNamara et al. Nov 2010 A1
20100298931 Quadri et al. Nov 2010 A1
20110004296 Lutter et al. Jan 2011 A1
20110015616 Straubinger et al. Jan 2011 A1
20110015728 Jimenez et al. Jan 2011 A1
20110015729 Jimenez et al. Jan 2011 A1
20110029072 Gabbay Feb 2011 A1
20110066231 Cartledge et al. Mar 2011 A1
20110112632 Chau et al. May 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110137408 Bergheim Jun 2011 A1
20110224728 Martin et al. Sep 2011 A1
20110245911 Quill et al. Oct 2011 A1
20110251682 Murray, III et al. Oct 2011 A1
20110264206 Tabor Oct 2011 A1
20110288637 De Marchena Nov 2011 A1
20110319988 Schankereli et al. Dec 2011 A1
20110319989 Lane et al. Dec 2011 A1
20120010694 Lutter et al. Jan 2012 A1
20120016468 Robin et al. Jan 2012 A1
20120022640 Gross et al. Jan 2012 A1
20120035703 Lutter et al. Feb 2012 A1
20120035713 Lutter et al. Feb 2012 A1
20120035722 Tuval Feb 2012 A1
20120059487 Cunanan et al. Mar 2012 A1
20120089171 Hastings et al. Apr 2012 A1
20120101571 Thambar et al. Apr 2012 A1
20120101572 Kovalsky et al. Apr 2012 A1
20120116351 Chomas et al. May 2012 A1
20120123529 Levi et al. May 2012 A1
20120165930 Gifford et al. Jun 2012 A1
20120179244 Schankereli et al. Jul 2012 A1
20120203336 Annest Aug 2012 A1
20120215303 Quadri et al. Aug 2012 A1
20120283824 Lutter et al. Nov 2012 A1
20130030522 Rowe et al. Jan 2013 A1
20130053950 Rowe et al. Feb 2013 A1
20130131788 Quadri et al. May 2013 A1
20130172978 Vidlund et al. Jul 2013 A1
20130184811 Rowe et al. Jul 2013 A1
20130190861 Chau et al. Jul 2013 A1
20130197622 Mitra et al. Aug 2013 A1
20130231735 Deem et al. Sep 2013 A1
20130282101 Eidenschink et al. Oct 2013 A1
20130310928 Morriss et al. Nov 2013 A1
20130317603 McLean et al. Nov 2013 A1
20130325041 Annest et al. Dec 2013 A1
20130325114 McLean Dec 2013 A1
20130338752 Geusen et al. Dec 2013 A1
20140081323 Hawkins Mar 2014 A1
20140094918 Vishnubholta et al. Apr 2014 A1
20140163668 Rafiee Jun 2014 A1
20140194981 Menk Jul 2014 A1
20140214159 Vidlund et al. Jul 2014 A1
20140222142 Kovalsky et al. Aug 2014 A1
20140243966 Garde et al. Aug 2014 A1
20140277419 Garde et al. Sep 2014 A1
20140296969 Tegels et al. Oct 2014 A1
20140296970 Ekvall et al. Oct 2014 A1
20140296971 Tegels et al. Oct 2014 A1
20140296972 Tegels et al. Oct 2014 A1
20140296975 Tegels et al. Oct 2014 A1
20140303718 Tegels et al. Oct 2014 A1
20140316516 Vidlund et al. Oct 2014 A1
20140324160 Benichou et al. Oct 2014 A1
20140324161 Tegels et al. Oct 2014 A1
20140324164 Gross et al. Oct 2014 A1
20140358224 Tegels et al. Dec 2014 A1
20140364944 Lutter et al. Dec 2014 A1
20140379076 Vidlund et al. Dec 2014 A1
20150005874 Vidlund et al. Jan 2015 A1
20150011821 Gorman et al. Jan 2015 A1
20150025553 Del Nido et al. Jan 2015 A1
20150057705 Vidlund et al. Feb 2015 A1
20150119978 Tegels et al. Apr 2015 A1
20150127096 Rowe et al. May 2015 A1
20150142100 Morriss et al. May 2015 A1
20150142103 Vidlund May 2015 A1
20150142104 Braido May 2015 A1
20150173897 Raanani Jun 2015 A1
20150196393 Vidlund et al. Jul 2015 A1
20150202044 Chau et al. Jul 2015 A1
20150216653 Freudenthal Aug 2015 A1
20150223934 Vidlund et al. Aug 2015 A1
20150238729 Jenson et al. Aug 2015 A1
20150272731 Racchini et al. Oct 2015 A1
20150305860 Wang et al. Oct 2015 A1
20150305864 Quadri et al. Oct 2015 A1
20150305868 Lutter et al. Oct 2015 A1
20150335429 Morriss et al. Nov 2015 A1
20150342717 O'Donnell Dec 2015 A1
20150351903 Morriss et al. Dec 2015 A1
20160008131 Christianson et al. Jan 2016 A1
20160067042 Murad et al. Mar 2016 A1
20160074160 Christianson et al. Mar 2016 A1
20160143736 Vidlund et al. May 2016 A1
20160151155 Lutter et al. Jun 2016 A1
20160206280 Vidlund et al. Jul 2016 A1
Foreign Referenced Citations (85)
Number Date Country
2902226 May 2007 CN
101180010 May 2008 CN
102869321 Jan 2013 CN
2246526 Mar 1973 DE
19532846 Mar 1997 DE
19546692 Jun 1997 DE
19857887 Jul 2000 DE
19907646 Aug 2000 DE
10049812 Apr 2002 DE
10049813 Apr 2002 DE
10049815 Apr 2002 DE
102006052564 Dec 2007 DE
102006052710 May 2008 DE
102007043831 Apr 2009 DE
0103546 May 1988 EP
1057460 Dec 2000 EP
1088529 Apr 2001 EP
1469797 Nov 2005 EP
2111800 Oct 2009 EP
2193762 Jun 2010 EP
2788217 Jul 2000 FR
2815844 May 2002 FR
2003-505146 Feb 2003 JP
2009-514628 Apr 2009 JP
1017275 Aug 2002 NL
1271508 Nov 1986 SU
WO 9217118 Oct 1992 WO
WO 9301768 Feb 1993 WO
WO 9829057 Jul 1998 WO
WO 9940964 Aug 1999 WO
WO 9947075 Sep 1999 WO
WO 0018333 Apr 2000 WO
WO 0030550 Jun 2000 WO
WO 0041652 Jul 2000 WO
WO 0047139 Aug 2000 WO
WO 0135878 May 2001 WO
WO 0149213 Jul 2001 WO
WO 0154624 Aug 2001 WO
WO 0154625 Aug 2001 WO
WO 0156512 Aug 2001 WO
WO 0161289 Aug 2001 WO
WO 0176510 Oct 2001 WO
WO 0182840 Nov 2001 WO
WO 0204757 Jan 2002 WO
WO 0222054 Mar 2002 WO
WO 0228321 Apr 2002 WO
WO 0236048 May 2002 WO
WO 0241789 May 2002 WO
WO 0243620 Jun 2002 WO
WO 0249540 Jun 2002 WO
WO 02076348 Oct 2002 WO
WO 03003943 Jan 2003 WO
WO 03030776 Apr 2003 WO
WO 03047468 Jun 2003 WO
WO 03049619 Jun 2003 WO
WO 2004019825 Mar 2004 WO
WO 2005102181 Nov 2005 WO
WO 2006014233 Feb 2006 WO
WO 2006034008 Mar 2006 WO
WO 2006070372 Jul 2006 WO
WO 2006113906 Oct 2006 WO
WO 2008005405 Jan 2008 WO
WO 2008035337 Mar 2008 WO
WO 2008091515 Jul 2008 WO
WO 2008125906 Oct 2008 WO
WO 2008147964 Dec 2008 WO
WO 2009024859 Feb 2009 WO
WO 2009026563 Feb 2009 WO
WO 2009045338 Apr 2009 WO
WO 2010090878 Aug 2010 WO
WO 2010121076 Oct 2010 WO
WO 2011017440 Feb 2011 WO
WO 2011069048 Jun 2011 WO
WO 2011072084 Jun 2011 WO
WO 2011106735 Sep 2011 WO
WO 2011163275 Dec 2011 WO
WO 2012027487 Mar 2012 WO
WO 2012177942 Dec 2012 WO
WO 2013028387 Feb 2013 WO
WO 2013059747 Apr 2013 WO
WO 2013175468 Nov 2013 WO
WO 2014121280 Aug 2014 WO
WO 2014144937 Sep 2014 WO
WO 2014162306 Oct 2014 WO
WO 2014189974 Nov 2014 WO
Non-Patent Literature Citations (52)
Entry
US 9,155,620, 10/2015, Gross et al. (withdrawn)
International Search Report and Written Opinion for International Application No. PCT/US2014/044047, mailed Nov. 17, 2014.
Al Zaibag, M. et al., “Percutaneous Balloon Valvotomy in Tricuspid Stenosis,” British Heart Journal, Jan. 1987, 57(1):51-53.
Al-Khaja, N. et al., “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications,” European Journal of Cardiothoracic Surgery, Jun. 30, 1989, 3:305-311.
Almagor, Y. et al., “Balloon Expandable Stent Implantation in Stenotic Right Heart Valved Conduits,” Journal of the American College of Cardiology, Nov. 1, 1990, 16(6):1310-1314.
Andersen, H. R. et al., “Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs,” European Heart Journal, 1992, 13(5):704-708.
Andersen, H. R., “History of Percutaneous Aortic Valve Prosthesis,” Herz, Aug. 2009, 34(5):343-346.
Andersen, H. R., “Transluminal catheter implanted prosthetic heart valves,” International Journal of Angiology, 1998, 7(2):102-106.
Ashton, R. C., Jr. et al., “Development of an Intraluminal Device for the Treatment of Aortic Regurgitation: Prototype and in Vitro Testing System,” Journal of Thoracic and Cardiovascular Surgery, 1996, 112:979-983.
Benchimol, A. et al., “Simultaneous Left Ventricular Echocardiography and Aortic Blood Velocity During Rapid Right Ventricular Pacing in Man,” The American Journal of the Medical Sciences, Jan.-Feb. 1977, 273(1):55-62.
Bernacca, G. M. et al., “Polyurethane heart valves: Fatigue failure, calcification, and polyurethane structure,” Journal of Biomedical Materials Research, Mar. 5, 1997, 34(3):371-379.
Boudjemline, Y. et al., “Steps Toward the Percutaneous Replacement of Atrioventricular Valves: An Experimental Study,” Journal of the American College of Cardiology, Jul. 2005, 46(2):360-365.
Buckberg, G. et al., “Restoring Papillary Muscle Dimensions During Restoration in Dilated Hearts,” Interactive CardioVascular and Thoracic Surgery, 2005, 4:475-477.
Chamberlain, G., “Ceramics Replace Body Parts,” Design News, Jun. 9, 1997, Issue 11, vol. 52, 5 pages.
Choo, S. J. et al., “Aortic Root Geometry: Pattern of Differences Between Leaflets and Sinuses of Valsava,” The Journal of Heart Valve Disease, Jul. 1999, 8:407-415.
Declaration of Malcolm J. R. Dalrymple-Hay, Nov. 9, 2012, pp. 1-11; with Curriculum Vitae, Oct. 4, 2012.
Dotter, C. T. et al., “Transluminal Treatment of Arteriosclerotic Obstruction. Description of a New Technic and a Preliminary Report of its Application,” Circulation, Nov. 1964, 30:654-670.
Drawbaugh, K., “Feature—Heart Surgeons Explore Minimally Invasive Methods,” Reuters Limited, Jul. 16, 1996, 3 pages.
Gray, H., The Aorta, Anatomy of the Human Body, 1918, Retrieved from the Internet <http://www.bartleby.com/107/142.html> , Dec. 10, 2012, 5 pages.
Gray, H., The Heart, Anatomy of the Human Body, 1918, Retrieved from the Internet <http://education.yahoo.com/reference/gray/subjects/subject/138> , Aug. 10, 2012, 9 pages.
Greenhalgh, E. S., “Design and characterization of a biomimetic prosthetic aortic heart valve,” 1994, ProQuest Dissertations and Theses, Department of Fiber and Polymer Science, North Carolina State University at Raleigh, 159 pages.
Inoue, K. et al., “Clinical Application of Transvenous Mitral Commissurotomy by a New Balloon Catheter,” The Journal of Thoracic and Cardiovascular Surgery, 1984, 87:394-402.
Jin, X. Y. et al., “Aortic Root Geometry and Stentless Porcine Valve Competence,” Seminars in Thoracic and Cardiovascular Surgery, Oct. 1999, 11(4):145-150.
Knudsen, L. L. et al., “Catheter-implanted prosthetic heart valves. Transluminal catheter implantation of a new expandable artificial heart valve in the descending thoracic aorta in isolated vessels and closed chest pigs,” The International Journal of Artificial Organs, 1993, 16(5):253-262.
Kolata, G., “Device That Opens Clogged Arteries Gets a Failing Grade in a New Study,” New York Times [online], <http://www.nytimes.com/1991/01/03/health/device-that-opens-clogged-arteries-gets-a-faili . . . ,>, published Jan. 3, 1991, retrieved from the Internet on Feb. 5, 2016, 3 pages.
Lawrence, D. D., “Percutaneous Endovascular Graft: Experimental Evaluation,” Radiology, 1987, 163:357-360.
Lozonschi, L., et al. “Transapical mitral valved stent implantation: A survival series in swine,” The Journal of Thoracic and Cardiovascular Surgery, 140(2):422-426 (Aug. 2010) published online Mar. 12, 2010, 1 page.
Lutter, G. et al., “Mitral Valved Stent Implantation,” European Journal of Cardio-Thoracic Surgery, 2010, 38:350-355, 2 pages.
Ma, L. et al., “Double-crowned valved stents for off-pump mitral valve replacement,” European Journal of Cardio-Thoracic Surgery, Aug. 2005, 28(2):194-198.
Moazami, N. et al., “Transluminal aortic valve placement: A feasibility study with a newly designed collapsible aortic valve,” ASAIO Journal, Sep./Oct. 1996, 42(5):M381-M385.
Orton, C., “Mitralseal: Hybrid Transcatheter Mitral Valve Replacement,” Retrieved from the Internet: <http:/www.acvs.org/symposium/proceedings2011/data/papers/102.pdf>, pp. 311-312.
Pavcnik, D. et al. “Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Radiology, 1992; 183:151-154.
Porstmann, W. et al., “Der Verschluβ des Ductus Arteriosus Persistens ohne Thorakotomie,” Thoraxchirurgie Vaskuläre Chirurgie, Band 15, Heft 2, Stuttgart, Apr. 1967, pp. 199-203.
Rashkind, W. J., “Creation of an Atrial Septal Defect Without Thoracotomy,” The Journal of the American Medical Association, Jun. 13, 1966, 196(11):173-174.
Rashkind, W. J., “Historical Aspects of Interventional Cardiology: Past, Present, Future,” Texas Heart Institute Journal, Dec. 1986, 13(4):363-367.
Reul, H. et al., “The Geometry of the Aortic Root in Health, at Valve Disease and After Valve Replacement,” J. Biomechanics, 1990, 23(2):181-191.
Rosch, J. et al., “The Birth, Early Years and Future of Interventional Radiology,” J Vasc Interv Radiol., Jul. 2003, 4:841-853.
Ross, D. N., “Aortic Valve Surgery,” Guy's Hospital, London, 1968, pp. 192-197.
Rousseau, E. P. M. et al., “A mechanical analysis of the closed Hancock heart valve prosthesis,” Journal of Biomechanics, 1988, 21(7):545-562.
Sabbah, A. N. et al., “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview,” Dec. 1989, Journal of Cardiac Surgery, 4(4):302-309.
Selby, J. B., “Experience with New Retrieval Forceps for Foreign Body Removal in the Vascular, Urinary, and Biliary Systems,” Radiology, 1990, 176:535-538.
Serruys, P. W. et al., “Stenting of Coronary Arteries. Are we the Sorcerer's Apprentice?,” European Heart Journal , Sep. 1989, 10(9):774-782.
“Shape Memory Alloys,” Retrieved from the Internet: <http://webdocs.cs.ualberta.ca/˜database/MEMS/sma.html>, Feb. 5, 2016, 3 pages.
Sigwart, U., “An Overview of Intravascular Stents: Old and New,” Chapter 48, Interventional Cardiology, 2nd Edition, W.B. Saunders Company, Philadelphia, PA, © 1994, 1990, pp. 803-815.
Tofeig, M. et al., “Transcatheter Closure of a Mid-Muscular Ventricular Septal Defect with an Amplatzer VSD Occluder Device,” Heart, 1999, 81:438-440.
Uchida, B. T. et al., “Modifications of Gianturco Expandable Wire Stents,” Am. J. Roentgenol., May 1988, 150(5):1185-1187.
Watt, A. H. et al., “Intravenous Adenosine in the Treatment of the Supraventricular Tachycardia; a Dose-Ranging Study and Interaction with Dipyridamole,” British Journal of Clinical Pharmacology, 1986, 21:227-230.
Webb, J. G. et al., “Percutaneous Aortic Valve Implantation Retrograde from the Femoral Artery,” Circulation, 2006, 113:842-850.
Wheatley, D. J., “Valve Prostheses,” Rob & Smith's Operative Surgery, Fourth Edition, 1986, pp. 415-424, Butterworths.
Yoganathan, A. P. et al., “The Current Status of Prosthetic Heart Valves,” In Polymetric Materials and Artificial Organs, American Chemical Society, 1984, pp. 111-150.
Communication Pursuant to Article 94(3) EPC for European Application No. 14739333.4, mailed Oct. 20, 2016, 6 pages.
Office Action for Chinese Patent Application No. 201480035996.8, mailed on Dec. 5, 2016, 12 pages.
Related Publications (1)
Number Date Country
20160106537 A1 Apr 2016 US
Provisional Applications (2)
Number Date Country
61839237 Jun 2013 US
61840313 Jun 2013 US
Continuations (1)
Number Date Country
Parent PCT/US2014/044047 Jun 2014 US
Child 14976866 US
Continuation in Parts (1)
Number Date Country
Parent 14155535 Jan 2014 US
Child PCT/US2014/044047 US