This invention generally relates to model railroads and devices therefor.
Model train enthusiasts have long enjoyed constructing and operating model railroad systems in which separate track sections are joined together to form a predetermined route on which the model train can travel. Each of the separate track sections includes electrical conductors. Typically, electrical energy is supplied to the rails of the assembled track sections to energize the model train.
Model trains may be controlled digitally using digital command control (DCC), which is a standard system, defined by the National Model Railroad Association, for operating model railways. The DCC system typically employs one or more controls (throttles) and a DCC command station which, in some instances, may provide electrical power to the track and locomotive, or other devices, while pulsing the track power to transmit digital signals that control the model locomotives and any other digitally-controlled railcars or devices, including stationary devices such as turnouts and signals, for example. Alternatively, the DCC command station may control other devices which provide control signals to the model locomotives, railcars, or other devices. Typically, the DCC command station receives its instructions from a controller operated by a user. Based on the user instructions (e.g., speed, direction, lights on/off, whistle/horn, etc.), the DCC command station converts the user instructions into coded instructions that are transmitted via signals of a predetermined voltage.
Embodiments of the invention represent an advancement over the state of the art in systems that control model railways. These and other advantages of the invention, as well as additional inventive features, will be apparent from the description of the invention provided herein.
In one aspect, embodiments of the invention provide a throttle emulator system for the remote control of a model vehicle. The throttle emulator system includes an emulator module and a DCC interface having a connector to permit connection with an input on a DCC command station. The DCC command station is configured to provide digital signals to control the model vehicle. The emulator module is coupled to the DCC interface and configured to transmit command and control signals to the input on the DCC command station, via the DCC interface, thereby emulating a DCC throttle. The command and control signals are relayed by the DCC command station to control the model vehicle. The emulator module is further configured for wireless communication with a mobile electronic device such that a user can communicate with the emulator module to remotely control the model vehicle through a user interface on the mobile electronic device. In some embodiments, the DCC interface for the DCC command station is removable and replaceable, because, currently, there is no one common input design used by all manufacturers. Specifically, the connector can be replaced with any of multiple types of connectors to accommodate multiple types of DCC command stations.
In a particular embodiment, the emulator module communicates wirelessly via Wi-Fi. In certain embodiments, the model vehicle is a model train configured to travel on a model railroad track, and the DCC command station provides the digital signals to the model train through the railroad track. The mobile electronic device may be one of a smart phone, a tablet computer, notebook computer, and a laptop computer.
In some embodiments, the emulator module is configured as a web server for the mobile electronic device, wherein the emulator module provides control elements for a user interface on the mobile electronic device, the control elements providing a means to control the model vehicle. Further, the emulator module may be configured to provide information or instructions relating to the model vehicle.
In certain embodiments, the emulator module is configured to distinguish between multiple mobile electronic devices within range of its wireless signals, such that only a desired mobile electronic device receives control elements or information from the emulator module. In a further embodiment, the emulator module is accessible to the user through the mobile electronic device after completion of a login process.
The throttle emulator system may also include a power supply module for supplying power to the emulator module. In particular embodiments, the emulator module is configured to receive video signals from the model vehicle and transmit those video signals to the mobile electronic device. In certain embodiments, the emulator module is configured to distinguish between multiple model vehicles within range of its wireless signals such that the emulator module controls only a desired model vehicle.
The emulator module may be configured to be compatible with DCC command stations using any of the current protocols such as Xpressnet, Loconet or other protocols specific to a particular system. However, the emulator module is not necessarily limited to DCC command stations using these protocols, and may be configured to include other protocols as necessary.
In another aspect, embodiments of the invention provide a throttle emulator system for a model railroad set that includes an emulator module configured to wirelessly transmit command and control signals directly to a model locomotive, model railcar, or other digitally controlled device to control operation of the model locomotive, model railcar, or device. The model locomotive, model railcar, and other device are each equipped with decoders to receive and translate the command and control signals. The emulator module is further configured for wireless communication with a mobile electronic device such that a user can communicate with the emulator module to control the model vehicle through a user interface on the mobile electronic device.
Other aspects, objectives and advantages of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention and, together with the description, serve to explain the principles of the invention. In the drawings:
While the invention will be described in connection with certain preferred embodiments, there is no intent to limit it to those embodiments. On the contrary, the intent is to cover all alternatives, modifications and equivalents as included within the spirit and scope of the invention as defined by the appended claims.
The throttle emulator system 100 also includes an optional local power supply 118 (shown in dashed lines) to provide power to the emulator module 102 in the event that external power is not available. The power supply 118 connects to the emulator module 102 via power connection 106. In certain embodiments of the invention, the power supply 118 provides power to the emulator module 102 via a battery.
The emulator module 102 has a wired connection to the DCC command station 104, which has a wired connection to the model track 132. The model track 132 is made from a conductive material, such as metal. The DCC command station 104 may provide electrical power to the model locomotive 130 via the model track 132, or the model locomotive 130 may be powered from another external source of power delivered over the model track 132. As shown in
Alternatively, the model locomotive 130 may be battery-powered. Further, the electrical power signal provided by the DCC command station 104 to the model track 132 can be modulated to provide a digital control signal for the model locomotive 130. The model locomotive 130 includes a decoder 140 to interpret and translate the modulated digital signal to operate the model locomotive 130 in accordance with the commands from the DCC command station 104.
Command signals may be provided to the DCC command station 104 from the emulator module 102, which is wirelessly connected to mobile electronic device 134. The term “mobile electronic device” as used herein includes, but is not limited to, smart phones, tablet computers, laptop computers, notebook computers, personal digital assistants, etc. In certain embodiments, wireless communication is implemented over Wi-Fi, though other wireless communication standards may be used.
In a particular embodiment of the invention, the emulator module 102 is configured as a web server for the mobile electronic device 134, wherein the emulator module 102 provides control elements 138 for a user interface 136 on the mobile electronic device 134. In this particular embodiment, the user interface 136 has various control elements 138, which may include a variety of virtual buttons, knobs, slider bars, etc. which can be manipulated (via touchscreen for example) by the user of the mobile electronic device 134 to effect control of the model locomotive 130. In this fashion, the user is able to transmit commands wirelessly to the emulator module 102 and, in turn, to the model locomotive 130 through the DCC command station 104.
In certain embodiments, the emulator module 102 is configured to distinguish between multiple model vehicles and multiple mobile electronic devices 134 within range of its wireless signals, such that the model vehicle only communicates with its owner's emulator module 102, and such that only the desired mobile electronic device 134 receives commands via the control elements 138 or information stored in the emulator module 102. This allows the use of multiple emulator modules 102 with multiple model railroad systems 128 in the same area without interference, assuring that only the desired model locomotive 128 only responds to commands from its emulator module 102.
In a further embodiment, the emulator module 102 is accessible to the user through the mobile electronic device 134 after completion of a login process. The emulator module 102 may be configured to be compatible with DCC command stations 104 using any of the current protocols such as Xpressnet, Loconet or others specific to a particular system. However, the emulator module 102 is not necessarily limited to DCC command stations 104 using these protocols, and may be configured to include other protocols as necessary.
However, it is envisioned that, in particular embodiments, the wireless communication between the mobile electronic device 134 and model locomotive 130 is two-way. For example, the user interface 136 may be configured to display video, on the mobile electronic device 134, from a camera on the model locomotive. Non-powered model train cars may also transmit video or other telemetry. Also, the mobile electronic device 134 may display data, such as speed, distance traveled, time of travel, tractive force, etc., relayed from sensors located on the model locomotive 130 or model track 132. Further, the emulator module 102 and user interface 136 may be configured to provide information or operating instructions, related to the model locomotive 130 or some other model vehicle, to the user on the mobile electronic device 134. While
All references, including publications, patent applications, and patents cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) is to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non- claimed element as essential to the practice of the invention.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
This patent application claims the benefit of U.S. Provisional Patent Application No. 62/241,274, filed Oct. 14, 2015, the entire teachings and disclosure of which are incorporated herein by reference thereto.
Number | Date | Country | |
---|---|---|---|
62241274 | Oct 2015 | US |