Throttle bodies, when used with electronic fuel injection, typically utilize a sensor commonly called a throttle position sensor (“TPS”). This sensor interacts with the engine's electronic control unit (“ECU”) to communicate the position of the throttle plate and/or shaft. In some cases the rotational mounting of the TPS can be out of position relative to the throttle plate and/or shaft. This issue may be seen upon the initial installation of either the throttle body and/or the ECU. This mismatch can be caused by a number of circumstances including but not limited to manufacturing tolerances, high idle settings on aggressive race engines and/or large engine sizes.
Because of application variations, assemblies that utilize a TPS can send incorrect information to the engine ECU because of misalignments of the TPS. In the past it was common for end-users to modify the TPS by manually elongating the TPS mounting holes with a drill or mill so it could be repositioned so the ECU would receive the correct idle and open throttle voltages. However these methods can be inaccurate and may damage the TPS or throttle body.
The embodiments of this invention correct these deficiencies by providing a TPS clocker that allows rotational adjustment without the modification of the TPS or the housing to which the TPS is mounted.
In view of the foregoing, it is a feature of the embodiments described herein to provide a throttle body assembly including an adjustment ring or other means for attaching the TPS to the throttle body, while allowing some rotational freedom and adjustment of the TPS relative to the throttle position, so the ECU receives the correct output voltages from the TPS.
A complete understanding of the embodiments of the present invention may be obtained by reference to the accompanying drawings, when considered in conjunction with the subsequent, detailed description, in which:
The following description is intended to convey a thorough understanding of the embodiments by providing a number of specific embodiments and details involving devices for adjusting rotational alignment of throttle position sensors on throttle bodies. It is understood, however, that the invention is not limited to these specific embodiments and details, which are exemplary only. It is further understood that one possessing ordinary skill in the art, in light of known devices, systems and methods, would appreciate the use of the invention for its intended purposes and benefits in any number of alternative embodiments.
As shown in
In exemplary embodiments of the invention, the TPS 160 is connected to a rotational adjustment ring 110 by fasteners 161, with the throttle plate shaft 120 passing through a center opening of the adjustment ring 110. The rotational adjustment ring 110 may include one or more radial slots 113 which may be in complimentary tabs 114, allowing finite radial adjustment of the rotational angle of the TPS 160 in relation to the throttle body 150 and/or throttle plate shaft 120. The radial adjustment of the TPS 160 may be used to correct, or otherwise alter, the output voltage sent from the TPS 160 to the ECU. The rotational adjustment ring 110 may be coupled to the throttle body 150 by fasteners 115 (such as bolts, screws, pins, rivets, clips, etc.). Fasteners 115 may be loosened and/or removed to allow rotation of the rotational adjustment ring 110 and the attached TPS 160 to achieve a desired output voltage. When the desired output voltage is achieved fasteners 115 may be retightened and/or reinstalled to prevent further rotation of the rotational adjustment ring 110 and attached TPS 160.
In some embodiments, as shown in
In some embodiments, the rotational adjustment ring 110 may include a TPS position reference mark 117, as shown in
In some embodiments, the throttle body 150 may include radial position reference marks 151 around the installation location of the TPS 160 , as shown in
Preferred embodiments may further be arranged so the fasteners 115 are centered in radial slots 113 when the TPS position reference mark 117 is aligned with the center mark of the radial position reference marks 151.
Position reference marks 117 and 151 may be combinations of raised marks, indented marks, painted and other applied marks to improve visibility.
In some embodiments, a seal, such as an o-ring or gasket, may be installed between throttle body 150 and rotational adjustment ring 110 to seal, and otherwise prevent intrusion of liquids, moisture, dust, dirt and/or debris into the throttle body 150 and/or TPS 160.
As shown in
In some alternative embodiments, the rotational adjustment plate 211 may include radial position reference marks 251 around the installation location of the TPS 160, similar to those in other embodiments. In addition a reference , such as a painted dot or other marking (not shown), may be added to the a visible surface of the TPS 160 near the radial position reference marks 251 for reference during rotational adjustment.
In the preceding specification, various exemplary embodiments have been described with reference to the accompanying drawings. It will, however, be evident that various modifications and changes may be made thereto, and additional exemplary embodiments may be implemented, without departing from the broader scope of the invention as set forth in the claims that follow. The specification and drawings are accordingly to be regarded in an illustrative rather than a restrictive sense.
The present application claims the benefit of priority of U.S. Provisional Application No. 61/897,397 filed Oct. 30, 2013, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61897397 | Oct 2013 | US |