Throttle valve housing

Information

  • Patent Application
  • 20050017211
  • Publication Number
    20050017211
  • Date Filed
    May 12, 2004
    20 years ago
  • Date Published
    January 27, 2005
    19 years ago
Abstract
The invention relates to a throttle valve housing, particularly for an internal combustion engine of a motor vehicle, comprising a tubular housing part whose flow-through channel can be closed off from a gaseous medium by means of a throttle valve mounted on a throttle valve shaft. A tubular inlet area and a tubular outlet area are situated at the ends of the housing part, have flow-through openings that extend the flow-through channel, and can be detachably connected to a supply tube and a discharge tube. The inlet area and the outlet area can be produced as separate parts and can be connected to the housing part in a fixed manner.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of international application filed Oct. 10, 2002, which designated the United States, and further claims priority to German application 10156213.6, filed Nov. 15, 2001, the both of which are herein incorporated by reference.


BACKGROUND OF THE INVENTION

The invention is concerned with a throttle valve housing, in particular for an internal combustion engine of a motor vehicle, having a tubular housing part whose flow-through channel can have a gaseous medium, in particular air, flowing through it, can be closed off by means of a throttle valve arranged on a throttle valve shaft and at whose ends are arranged a tubular inlet area and a tubular outlet area which have flow-through openings extending the flow-through channel and can be detachably connected to a supply tube and a discharge tube.


Throttle valve housings of this type are usually injection molded from aluminum and then the flow-through channel and the inlet and outlet area with their flow-through openings are cut. This presupposes that the areas which are to be machined are rectilinear and symmetrical.


Furthermore, the construction of the housing part which is integral with the inlet and outlet part has to be such that removal from the mold is possible after the injection molding process.


The construction of the housing part is frequently identical for very different applications, and only the inlet area or the outlet area has a different configuration.


The production of the known throttle valve housings is therefore complex and expensive.


SUMMARY OF THE INVENTION

It is therefore the object of the invention to provide a throttle valve housing of the type mentioned at the beginning making production with different shaping simple and cost effective.


According to the invention, this and other objects are achieved in that the inlet area and/or the outlet area can be produced as separate components and can be connected to the housing part in a fixed manner. It is therefore possible, on the one hand, in the case of standardized housing parts to produce inlet and/or outlet areas of very different shaping separately and then to connect them to the housing part in a fixed manner. This permits a great diversity of variants.


In this case, the different shaping can relate to the connecting geometry of the inlet area and outlet area, with which the throttle valve housing is connected to the supply tube and the discharge tube.


The uniform, standardized housing part reduces the tools required to produce it.


Furthermore, shapings are also possible which would not be possible in a casting technique in the case of the inlet and outlet areas being integral with the housing part, due to not being able to remove them from the mold.


One possibility for connecting the inlet area and/or outlet area to the housing part is for the inlet area and/or outlet area to be connectable to the housing part by bonding. A reactive hot adhesive can advantageously be used for this.


A further, likewise advantageous connecting possibility is for the inlet area and/or outlet area to be connectable to the housing part by welding, in particular laser welding.


If the inlet area and/or outlet area can be connected to the housing part by encapsulating the particular end of the housing part by injection molding, then both the production of the inlet and/or outlet area and also the connection of this part to the housing part take place in a single operating cycle.


Without a great outlay on installation, the inlet area and/or outlet area can be connected to the housing part by a plug-in connection, a clip or latching connection or else also by a press connection.


A seal, in particular a sealing ring, can be arranged between the inlet area and/or outlet area, on the one hand, and the housing part, on the other hand, to avoid the leakage of air.


In particular in the case of a welding or bonding connection, the inlet part and/or the outlet part can be connected on the end side to the housing part.


For simple production requiring little or even no finishing work, the inlet part and/or the outlet part and/or the housing part can be an injection molded part.


In this case, the inlet part and/or the outlet part and/or the housing part can be a plastic injection molded part or else a metal injection molded part, in particular an aluminum injection molded part. One or more of these parts can also be a metal injection molded part to which a plastic injection molded part is connected.


The inlet part and/or the outlet part can have an extent which differs from a straight line, so that they form, for example, an angled or curved connection.


The separate production and subsequent connection of the housing part and inlet part and/or outlet part makes it easily possible, even with a complicated shaping, for the inlet part and/or the outlet part to have an element protruding into the flow-through opening of the inlet part and/or of the outlet part.


In this case, a protective grid or ice grid or else a sensor, in particular a flow sensor or a temperature sensor, can be arranged-in the flow-through opening.




BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

Exemplary embodiments of the invention are illustrated in the drawing and are described in greater detail below. In the drawing



FIG. 1 shows a first exemplary embodiment of a throttle valve housing in cross section



FIG. 2 shows a second exemplary embodiment of a throttle valve housing in cross section



FIG. 3 shows a third exemplary embodiment of a throttle valve housing in cross section.




DETAILED DESCRIPTION OF THE INVENTION

The throttle valve housings illustrated in the figures all have a tubular housing part 1 of aluminum or an aluminum alloy with a cylindrical flow-through channel 2. A throttle valve shaft 3, on which a throttle valve 4 is arranged to more or less close off the flow-through channel 2, is arranged transversely with respect to the flow-through channel 2 and protrudes with its one end through a corresponding hole in the housing part 1 into a spring chamber 5. Arranged in the spring chamber 5 is a restoring spring 6 which is designed as a torsion spring, surrounds the throttle valve shaft 3 and is fastened at one end to the throttle valve shaft 3 and at its other end to the spring chamber housing 7. The restoring spring 6 pressurizes the throttle valve shaft 3 into the illustrated closed position of the throttle valve 4.


The other end of the throttle valve shaft 3 protrudes through a corresponding hole in the housing part 1 into an adjusting drive housing 8, in which are arranged an electric-powered actuator and a transmission, by means of which the throttle valve shaft 3 can be adjusted counter to the force of the restoring spring 6.


In the figures, a tubular inlet area 9, 9′ and 9″ adjoins the upper end side of the housing part 1 and a tubular outlet area 10, 10′ and 10″ adjoins the lower end side of the housing part 1.


The inlet areas 9, 9′, 9″ and the outlet areas 10, 10′, 10″ have flow-through openings 11, 11′, 11″ which, at their transition to the flow-through channel 2, have the same cross section as the latter and continue it.


In FIG. 1, the inlet area 9 and the outlet area 10, which consist of plastic, are bonded on end-side bonding points 12 to the housing part 1 by a reactive hot adhesive.


The inlet area 9 and outlet area 10 extend rectilinearly to the housing part 1 and have a conically expanding cross section of the flow-through opening 11 toward their mouths which face away from the housing part 1. While the inlet area 9 ends at this mouth without an additional configuration, the outlet area 10 has a radially encircling groove 15 on the radially encircling, outer casing surface.


In the exemplary embodiment of FIG. 2, the likewise end-side connection of the inlet area 9′ and outlet area 10′, which consist of aluminum, to the housing part 1 consists of a weld 13. The inlet part 9′ likewise extends rectilinearly to the housing part 1. The flow-through opening 11′ of the inlet part 9′ has a cross section which increases in a curved manner toward the mouth which leads outward. A radially encircling bead 16 is arranged on the radially encircling, outer casing surface of the inlet area 9′. The outlet part 10′ is designed as a curved connection 17 whose cross section of the flow-through opening 11″ tapers conically in its last part toward the housing part 1. In FIG. 3, the inlet area 9″ and outlet area 10″ consist of plastic and are connected to the housing part 1 by an encapsulation 14 of the mouth regions of the housing part 1 by injection molding. As in FIG. 1, the inlet area 9″ and outlet area 10″ extend rectilinearly to the housing part 1 and have cross sections which expand conically toward the mouths of the flow-through openings 11.

Claims
  • 1. A throttle valve housing, in particular for an internal combustion engine of a motor vehicle, having a tubular housing part whose flow-through channel can have a gaseous medium, in particular air, flowing through it, can be closed off by means of a throttle valve arranged on a throttle valve shaft and at whose ends are arranged a tubular inlet area and a tubular outlet area which have flow-through openings extending the flow-through channel and can be detachably connected to a supply tube and a discharge tube, characterized in that the inlet area and/or the outlet area can be produced as separate components and can be connected to the housing part (1) in a fixed manner.
  • 2. The throttle valve housing according to claim 1, characterized in that the inlet area and/or outlet area can be connected to the housing part by bonding.
  • 3. The throttle valve housing as claimed in claim 1, characterized in that the inlet area and/or outlet area can be connected to the housing part by welding, in particular by laser welding.
  • 4. The throttle valve housing as claimed in claim 1, characterized in that the inlet area and/or outlet area can be connected to the housing part by encapsulating the particular end of the housing part by injection molding.
  • 5. The throttle valve housing as claimed in claim 1, characterized in that the inlet area and/or outlet area can be connected to the housing part by a plug-in connection.
  • 6. The throttle valve housing as claimed in claim 1, characterized in that the inlet area and/or outlet area can be connected to the housing part via a clip or latching connection.
  • 7. The throttle valve housing as claimed in claim 1, characterized in that the inlet area and/or outlet area can be connected to the housing part via a press connection.
  • 8. The throttle valve housing according to claim 1, characterized in that a seal, in particular a sealing ring, is arranged between the inlet area and/or outlet area, on the one hand, and housing part, on the other hand.
  • 9. The throttle valve housing according to claim 1, characterized in that the inlet part and/or the outlet part can be connected on the end side to the housing part.
  • 10. The throttle valve housing according to claim 1, characterized in that the inlet part and/or the outlet part and/or the housing part is/are an injection molded part.
  • 11. The throttle valve housing as claimed in claim 10, characterized in that the inlet part and/or the outlet part and/or the housing part is/are a plastic injection molded part.
  • 12. The throttle valve housing as claimed in claim 10, characterized in that the inlet part and/or the outlet part and/or the housing part is/are a metal injection molded part, in particular an aluminum injection molded part.
  • 13. The throttle valve housing according to claim 1, characterized in that the inlet part and/or the outlet part has/have an extent deviating from a straight line.
  • 14. The throttle valve housing according to claim 1, characterized in that the inlet part and/or the outlet part has/have an element protruding into the flow-through opening of the inlet part and/or of the outlet part.
  • 15. The throttle valve housing as claimed in claim 14, characterized in that a protective grid or ice grid is arranged in the flow-through opening.
  • 16. The throttle valve housing as claimed in claim 14, characterized in that a sensor, in particular a flow sensor or a temperature sensor, is arranged in the flow-through opening.
Priority Claims (1)
Number Date Country Kind
10156213.6 Nov 2001 DE national
Continuations (1)
Number Date Country
Parent PCT/DE02/03820 Oct 2002 US
Child 10843356 May 2004 US