1. Field of the Invention
The present invention relates to the papermaking arts. More specifically, the present invention relates to through-air-drying (TAD) fabrics used in the manufacture of bulk tissue and towel, and of nonwoven articles and fabrics on a paper machine.
2. Description of the Prior Art
Soft, absorbent disposable paper products, such as facial tissue, bath tissue and paper toweling, are a pervasive feature of contemporary life in modern industrialized societies. While there are numerous methods for manufacturing such products, in general terms, their manufacture begins with the formation of a cellulosic fibrous web in the forming section of a paper machine. The cellulosic fibrous web is formed by depositing a fibrous slurry, that is, an aqueous dispersion of cellulose fibers, onto a moving forming fabric in the forming section. A large amount of water is drained from the slurry through the forming fabric, leaving the cellulosic fibrous web on the surface of the forming fabric.
The cellulosic fibrous web is then transferred to a through-air-drying (TAD) fabric or belt by means of an air flow, brought about by vacuum or suction, which deflects the web and forces it to conform, at least in part, to the topography of the TAD fabric or belt. Downstream from the transfer point, the web, carried on the TAD fabric or belt, passes through a through-air dryer, where a flow of heated air, directed against the web and through the TAD fabric or belt, dries the web to a desired degree. Finally, downstream from the through-air dryer, the web may be adhered to the surface of a Yankee dryer and imprinted thereon by the surface of the TAD fabric or belt, for further and complete drying. The fully dried web is then removed from the surface of the Yankee dryer with a doctor blade, which foreshortens or crepes the web and increases its bulk. The foreshortened web is then wound onto rolls for subsequent processing, including packaging into a form suitable for shipment to and purchase by consumers.
As noted above, there are many methods for manufacturing bulk tissue products, and the foregoing description should be understood to be an outline of the general steps shared by some of the methods. For example, the use of a Yankee dryer is not always required, as, in a given situation, foreshortening may not be desired, or other means, such as “wet creping”, may have already been taken to foreshorten the web.
It should be appreciated that TAD fabrics may take the form of endless loops on the paper machine and function in the manner of conveyors. It should further be appreciated that paper manufacture is a continuous process which proceeds at considerable speeds. That is to say, the fibrous slurry is continuously deposited onto the forming fabric in the forming section, while a newly manufactured paper sheet is continuously wound onto rolls after it is dried.
Those skilled in the art will appreciate that fabrics are created by weaving, and have a weave pattern which repeats for flat weaving in both the warp or machine direction (MD) and the weft or cross-machine direction (CD). Woven fabrics take many different forms. For example, they may be woven endless, or flat woven and subsequently rendered into endless form with a seam. It will also be appreciated that the resulting fabric must be uniform in appearance; that is, there are no abrupt changes in the weave pattern that result in undesirable characteristics in the formed paper sheet. Due to the repeating nature of the weave patterns, a common fabric deficiency is a characteristic diagonal pattern in the fabric. In addition, any pattern marking, desired or not, imparted to the formed tissue will impact the characteristics of the paper.
Contemporary papermaking fabrics are produced in a wide variety of styles designed to meet the requirements of the paper machines on which they are installed for the paper grades being manufactured. Generally, they comprise a base fabric woven from monofilament and may be single-layered or multi-layered. The yarns are typically extruded from any one of several synthetic polymeric resins, such as polyamide and polyester resins, used for this purpose by those of ordinary skill in the paper machine clothing arts.
The present application is concerned, at least in part, with the TAD fabrics or belts used on the through-air dryer of a bulk tissue machine. More specifically, the present application is concerned with a TAD fabric of the variety disclosed in U.S. Pat. No. 6,763,855 to Rougvie (which is incorporated herein by reference). Rougvie discloses a TAD fabric comprising a woven base fabric having a coating of a polymeric resin material. Although the present fabric does not have a resin coating, many of the teachings of Rougvie relating to TAD fabrics are relevant.
Fabrics of this kind may also be used in the forming section of a bulk tissue machine to form cellulosic fibrous webs having discrete regions of relatively low basis weight in a continuous background of relatively high basis weight. Belts of this kind may also be used to manufacture other nonwoven articles and fabrics by processes such as hydroentangling, which have discrete regions in which the density of fibers is less than that in adjacent regions.
The properties of absorbency, strength, softness, and aesthetic appearance are important for many products when used for their intended purpose, particularly when the fibrous cellulosic products are facial or toilet tissue, paper towels, sanitary napkins or diapers.
Bulk, cross directional tensile, absorbency, and softness are particularly important characteristics when producing sheets of tissue, napkin, and towel paper. To produce a paper product having these characteristics, a fabric will often be constructed so that the top surface exhibits topographical variations. These topographical variations are often measured as plane differences between strands in the surface of the fabric. For example, a plane difference is typically measured as the difference in height between a raised weft or warp yarn strand or as the difference in height between MD knuckles and CD knuckles in the plane of the fabric's surface. Often, the fabric surface will exhibit pockets in which case plane differences may be measured as a pocket depth.
The present invention provides a TAD fabric which exhibits favorable characteristics for the formation of tissue paper and related products.
Accordingly, the present invention is a TAD fabric, although it may find application in the forming, pressing and drying sections of a paper machine. As such, it is a papermaker's fabric which comprises a plurality of warp yarns interwoven with a plurality of weft yarns.
The present invention is preferably a TAD fabric comprising a plurality of warp yarns interwoven with a plurality of weft yarns to produce a paper-side surface pattern characterized by alternating first pockets and second pockets. The first and second pockets are bounded by raised warp yarns and raised weft yarns produced by knuckles in the fabric pattern. The first pockets are preferably larger in area than the second pockets. The fabric base in the interior of the first pocket is preferably a plain weave pattern. The interior of the second pocket may also be bisected by a raised weft yarn.
The present invention will now be described in more complete detail with frequent reference being made to the drawing figures, which are identified below.
For a more complete understanding of the invention, reference is made to the following description and accompanying drawings, in which:
The present invention is preferably a TAD fabric having at least two different sized pockets which alternate on the paper-side surface. The pocket sizes are a function of the weave pattern, mesh count, and yarns used in the pattern. Pocket sizes can be characterized by an MD/CD dimension and/or by a pocket depth. The pockets are formed/bounded by weft yarns and warp yarns which are raised from the base plane of the fabric surface. The raised weft yarns and warp yarns are produced by long knuckles in the weave pattern. The fabric base weave inside each pocket can be a plain weave pattern or any other suitable pattern. In addition, a pocket may include one or more raised or semi-raised warp yarns or weft yarns inside the pocket perimeter. For example, one size pocket may have a raised weft yarn bisecting the pocket area.
Fabrics according to the present invention may have mesh/end counts in the range of 12-20 yarns/cm in the MD and 10-18 yarns/cm in the CD. The pocket depth of the present fabrics may range between 300 and 500 μms.
Advantages of the present fabric are a relatively high percentage of open area resulting in a high air permeability as compared to other TAD fabrics. The present fabric produces a distinct and visible pattern in the tissue paper while limiting manufacturing stresses to maintain tensile strength and prevent ruptures. As a result, the present fabric may reduce or not cause pinholes in the tissue paper, as seen with other highly structured TAD fabrics.
A preferred embodiment of the present fabric may be produced with a 10-shed pattern comprising 3 different warp yarn contours and 3 different weft yarns contours. This pattern forms two sizes of pockets (or depressions) on the fabric surface. The smaller pocket encompasses an area which is between 45% and 65% of the area encompassed by the larger pocket. Both the large and small pockets are surrounded by higher out of plane long knuckles created by warp yarns and weft yarns. The interior of the large pocket has a plain weave surface pattern. The interior of the small pocket is bisected by a raised weft yarn across its center. This raised weft yarn may or may not be in-plane with the high long knuckles forming the pocket. Other embodiments alternatively may have a raised warp yarn bisecting the pocket.
The present invention is intended to cover other fabric patterns having different sizes and shapes of pockets, different pocket depths, and different yarn contours. Accordingly, the present invention should not be construed as being limited to the preferred embodiment disclosed above.
The fabric according to the present invention preferably comprises only monofilament yarns, preferably of polyester, polyamide, or other polymers. Any combination of polymers for any of the yarns can be used as identified by one of ordinary skill in the art. The CD and MD yarns may have a circular cross-sectional shape with one or more different diameters. For example, the raised weft yarns and warp yarns may be a different diameter than the weft yarns and warp yarns forming the base fabric (i.e. the pocket interiors). The weft yarn and warp yarn diameters may range from 0.20 mm to 0.55 mm, and are preferably between 0.35 mm and 0.45 mm. However, any combination of diameters can be used and these exemplary diameters should not be construed as limiting the invention in any way. Further, in addition to a circular cross-sectional shape, one or more of the yarns may have other cross-sectional shapes such as a rectangular cross-sectional shape or a non-round cross-sectional shape.
Modifications to the above would be obvious to those of ordinary skill in the art, but would not bring the invention so modified beyond the scope of the present invention. The claims to follow should be construed to cover such situations.
This application is based upon and claims the benefit of U.S. Provisional Patent Application Ser. No. 60/673,657 filed Apr. 20, 2005 entitled “Fabric for the Production of High Bulk Tissue and Towel and Nonwovens”, the disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4239065 | Trokhan | Dec 1980 | A |
4281688 | Kelly et al. | Aug 1981 | A |
4759975 | Sutherland et al. | Jul 1988 | A |
RE33195 | McDonald et al. | Apr 1990 | E |
5089324 | Jackson | Feb 1992 | A |
5853547 | Ahrens et al. | Dec 1998 | A |
6237644 | Hay et al. | May 2001 | B1 |
6592714 | Lamb | Jul 2003 | B2 |
6649026 | Lamb | Nov 2003 | B2 |
6708732 | Hay et al. | Mar 2004 | B1 |
6743333 | Lamb | Jun 2004 | B2 |
6763855 | Rougvie | Jul 2004 | B2 |
6827821 | Brewster et al. | Dec 2004 | B2 |
6837275 | Josef et al. | Jan 2005 | B2 |
6837276 | Josef et al. | Jan 2005 | B2 |
6860299 | Kuji | Mar 2005 | B2 |
20020056536 | Lamb | May 2002 | A1 |
20040035541 | Lamb | Feb 2004 | A1 |
20040102118 | Hay et al. | May 2004 | A1 |
20040104005 | Brewster et al. | Jun 2004 | A1 |
20050067039 | LaFond et al. | Mar 2005 | A1 |
20050167062 | Herman et al. | Aug 2005 | A1 |
20050167067 | Crook et al. | Aug 2005 | A1 |
20070028994 | Kroll et al. | Feb 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20070028994 A1 | Feb 2007 | US |
Number | Date | Country | |
---|---|---|---|
60673657 | Apr 2005 | US |