The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. For purposes of clarity, the same reference numbers will be used in the drawings to identify similar elements. As used herein, the phrase at least one of A, B, and C should be construed to mean a logical (A or B or C), using a non-exclusive logical or. It should be understood that steps within a method may be executed in different order without altering the principles of the present disclosure.
Referring now to
The present disclosure uses a fluid-lubricated sleeve-bearing 200 in place of the bearing 24 described above. Many of the same elements are identical and, thus, are labeled the same as
A seal ring 206 is disposed between the disc 202 and the inboard-bearing surface 204. In this embodiment, the seal ring 206 is disposed upon the disc 202. However, the seal ring 206 may also be disposed on the inboard-bearing surface 204.
The shaft 22, the disc 202, the inboard-bearing surface 204, and the seal ring 206 define a thrust chamber 208.
The diameter of the seal ring 206 may be about the same size as the diameter of impeller ring 40. However, various sizes of seal rings may be used, depending on the forces involved and other designed specific parameters.
The shaft 22 and the bearing 200 have a bearing clearance 210 therebetween. The bearing clearance 210 allows fluid between the shaft 22 and the bearing 200.
A thrust disc 216 may be disposed on the shaft 22. The thrust disc 216 has a diameter to allow fluid to pass between the thrust disc 216 and the casing 12. Grooves 240 described in detail in
As mentioned above, axial thrust in the outboard direction during rotation of the impeller 26 causes the shaft 22 to move toward the inlet 14. The resulting axial motion reduces the clearance between inboard bearing surface 204 and the seal ring 206. Pressure in the thrust chamber 208 will thus increase since fluid in the relatively high pressure impeller chamber 16 will travel through the passage 218, through the bearing clearance 210, and into the thrust chamber 208. The pressure in the thrust chamber 208 causes the disc 202 to move in the inboard direction which is opposite to the axial thrust caused by the rotation of the impeller 26. Thus, the thrust force may be neutralized. The thrust force is balanced when an excessively strong counter-force is generated, the space between the seal ring 206 and the inboard bearing surface 204 increases allowing fluid to drain from the thrust chamber 208.
Referring now also to
Referring again to
A flow meter 254 may also be disposed within the return pipe 250. The flow meter 254 generates a flow signal that corresponds to the flow through the return pipe 250. The flow meter 254 can monitor the leakage rate and help monitor the condition of the seal ring 206 and the bearing clearance 210. The flow signal from the flow meter 254 may be provided to a controller 260 that generates an indicator 262 corresponding to the flow of the fluid. The return pipe 250, the temperature sensor 252, and the flow meter 254 may or may not be used in a constructive embodiment.
In a further embodiment of the disclosure, the outlet 18 may be in fluid communication with the thrust chamber 208. An inlet pipe 260 may be used to fluidically couple the outlet 18 such as at the diffuser 46 to a passage 262 in the casing 12. The passage 262 may be in fluid communication with a passage 262 in the bearing 200. The passages 262 and 264, together with the return pipe 250, allow high-pressure fluid from the outlet 18 to pass into the thrust chamber 208. A filter 266 may also be provided to prevent particulates from entering the thrust chamber 208. A valve 268 may also be provided within the input pipe 260 so that flow may be controlled to allow the pressure within the thrust chamber 208 to be regulated. Because of pressure at the outlet 18 is higher than in the bearing portion 20, fluid flows through the input pipe 260 into the thrust chamber 208.
In operation, when the impeller 26 first starts to rotate under the power of the motor 28, initial thrust may move the shaft in the inboard direction. The thrust disc 216 and grooves 240 and 242 may be used to lubricate the outboard axial end of the bearing 200. After the initial start-up and rotation of the impeller 26, the rotating impeller 26 generates an outboard axial force on the shaft. Fluid is communicated from the impeller chamber 16 and, more specifically, the inboard impeller side chamber through the passages 218, grooves 240 and 242 into the bearing clearance 210. Fluid thus travels into the thrust chamber 208 to provide a counter-acting force on the disc 202 and, thus, the shaft 22.
To help regulate the flow into the thrust chamber 208, fluid from the input pipe 260 may travel through the casing and the bearing to provide fluid into the thrust chamber 208.
To remove fluid from the bearing portion 20, the return pipe 250 may be used to return fluid to the inlet portion 14. The temperature and/or flow or both of the fluid may be monitored by a controller 260 and generate an indicator indicative of where of the sealing ring or the bearing clearance or both.
Those skilled in the art can now appreciate from the foregoing description that the broad teachings of the disclosure can be implemented in a variety of forms. Therefore, while this disclosure includes particular examples, the true scope of the disclosure should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings, the specification and the following claims.
This application claims the benefit of U.S. Provisional Application No. 60/813,763, filed on Jun. 14, 2006. The disclosure of the above application is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60813763 | Jun 2006 | US |