The present invention relates particularly to a thrust sliding bearing, and more particularly to a synthetic resin-made sliding bearing which is suitably incorporated as a sliding bearing of a strut-type suspension (Macpherson type) in a four-wheeled motor vehicle.
In general, a strut-type suspension is mainly used in a front wheel of a four-wheeled motor vehicle, and is constructed such that a strut assembly incorporating a hydraulic shock absorber in an outer cylinder formed integrally with a main shaft is combined with a suspension coil spring. Among such suspensions, there is a type of structure in which the axis of the coil spring is actively offset with respect to the axis of that strut, so as to allow the sliding of a piston rod of the shock absorber incorporated in the strut to be effected smoothly, and there is another type of structure in which the coil spring is disposed by aligning the axis of the coil spring with the axis of the strut. In either structure, a thrust bearing is disposed between a mounting member for a motor vehicle body and an upper spring seat of the coil spring to allow the rotation to be effected smoothly when the strut assembly rotates together with the coil spring by the steering operation.
[Patent Document 1] JP-UM-B-4-52488
[Patent Document 2] JP-UM-B-2-1532
[Patent Document 3] JP-UM-B-2-6263
[Patent Document 4] JP-UM-B-8-2500
[Patent Document 5] JP-UM-B-4-47445
In this thrust bearing, a thrust rolling bearing using balls or needles or a synthetic resin-made thrust sliding bearing is used. However, the thrust rolling bearing has a possibility of causing a fatigue failure in the balls or needles owing to such as infinitesimal oscillations and a vibratory load, so that there is a problem in that it is difficult to maintain a smooth steering operation. As compared with the thrust rolling bearing, the synthetic resin-made thrust sliding bearing has a high frictional torque and therefore has the problem that the steering operation is made heavy. Furthermore, both thrust bearings have the problem that the steering operation is made heavy due to the high sliding frictional force of a dust seal formed of a rubber elastomer fitted to prevent the ingress of foreign objects such as dust onto sliding surfaces, and the synthetic resin-made thrust sliding bearing in particular has the problem that the steering operation is made much heavier.
To overcome the above-described problems, the present applicant proposed synthetic resin-made thrust sliding bearings which are each comprised of a synthetic resin-made upper casing, a synthetic resin-made lower casing, and a synthetic resin-made sliding bearing piece interposed between the upper and lower casings, wherein the upper and lower casings are combined by elastic fitting, and a resiliently fitting portion and a sealing portion based on labyrinth action are respectively formed between the upper and lower casings and between an inner peripheral surface side and an outer peripheral surface side, to prevent the entry of foreign objects such as dust onto the bearing sliding surfaces by means of that sealing portion (described in Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, and Patent Document 5).
This thrust sliding bearing will be described with reference to drawings as follows. In
With the above-described thrust sliding bearings, it is possible to overcome the problem of an increase in the frictional resistance force due to the dust seal which is formed of a rubber elastomer and fitted between the sliding surfaces in such a manner as to surround the sliding surfaces, and it is possible to effect stable and smooth steering operation by preventing as practically as possible the entry of foreign objects such as dust onto the sliding surfaces.
The above-described thrust sliding bearings exhibit low frictional properties by the combination of the reduction of friction by virtue of the sliding among synthetic resins including the synthetic resin-made upper casing, the synthetic resin-made lower casing, and the synthetic resin-made thrust sliding bearing piece interposed between the upper casing and the lower casing and the reduction of friction by virtue of the lubricating oil such as grease filled in the pluralities of grooves formed on the upper surface and the lower surface of the thrust sliding bearing piece. In recent years, however, there has been a demand for the reduction of the steering operating force through further lower frictional properties of the sliding bearing.
As a result of conducting strenuous studies in order to satisfy the above-described demand, the present inventors found that further lower frictional properties can be exhibited by changing profiles of the grooves which are formed on the upper surface and the lower surface of the thrust sliding bearing piece interposed between the upper casing and the lower casing and serve as a sump section for lubricating oil such as grease.
The present invention has been devised on the basis of the above-described finding, and its object is to provide a synthetic resin-made thrust sliding bearing which exhibits further lower frictional properties.
A thrust sliding bearing in accordance with the present invention is comprises: a synthetic resin-made upper casing having an upper annular planar portion; a synthetic resin-made lower casing which is superposed on the upper casing so as to be rotatable about an axis of the upper casing and has a lower annular planar portion opposing the upper annular planar portion of the upper casing, a first and a second annular protrusion formed on the lower annular planar portion concentrically with each other, and a wide lower annular recess surrounded by the first and the second annular protrusion; and a synthetic resin-made thrust sliding bearing piece disposed in the lower annular recess of the lower casing and having an annular thrust sliding bearing surface which is brought into sliding contact with at least one of the upper annular planar portion and the lower annular planar portion, wherein the thrust sliding bearing piece has at least two annular recessed grooves which are formed on the thrust sliding bearing surface concentrically with each other and a lubricating oil filled in the annular recessed grooves.
According to the thrust sliding bearing in accordance with the present invention, since at least two annular recessed grooves which are arranged concentrically with each other are formed on the thrust sliding bearing surface of the synthetic resin-made thrust sliding bearing piece which is disposed in the lower annular recess of the lower casing, the lubricating oil such as grease filled in the annular recessed grooves is constantly fed to the thrust sliding bearing surface, i.e., the sliding surface, during the relative rotation of at least one of the upper casing and the lower casing and the thrust sliding bearing piece. In consequence, since the lubricating oil is constantly present at the thrust sliding bearing surface during the relative rotation, further lower frictional properties are exhibited at the thrust sliding bearing surface by virtue of this lubricant.
In the thrust sliding bearing in accordance with the present invention, a ratio of a total area of opening surfaces of the at least two annular recessed grooves in surfaces combining the opening surfaces of the at least two annular recessed grooves and the thrust sliding bearing surface is preferably 20 to 50%, more preferably 30 to 40%.
In order to allow the low frictional properties of the lubricating oil to be exhibited satisfactorily in the plurality of annular recessed grooves for holding the lubricating oil such as grease, it is preferable that the ratio of the total area of opening surfaces of the at least two annular recessed grooves in surfaces combining the opening surfaces of the at least two annular recessed grooves and the thrust sliding bearing surface is at least 20%. If the ratio exceeds 50%, a decline in the strength of the thrust sliding bearing piece results, and plastic deformation such as creep is likely to occur. In allowing the low frictional properties of the lubricating oil to be exhibited more satisfactorily, the ratio may be 30 to 40% in order to ensure the strength of the thrust sliding bearing piece.
In a preferred embodiment, the upper annular planar portion has a circular hole in a central portion thereof, the lower annular planar portion has in a central portion thereof an insertion hole concentric with the circular hole of the upper annular planar portion; the upper casing has a cylindrical engaging suspended portion formed integrally on an outer peripheral edge of an annular lower surface of the upper annular planar portion and an annular engaging portion formed on an inner peripheral surface of the cylindrical engaging suspended portion; the first annular protrusion is integrally formed on an annular upper surface of the lower annular planar portion, while the second annular protrusion is integrally formed on an outer peripheral edge of the annular upper surface of the lower annular planar portion in such a manner as to be radially outwardly spaced apart a predetermined interval from the first annular protrusion; the lower annular recess is defined by an outer peripheral surface of the first annular protrusion, an inner peripheral surface of the second annular protrusion, and the annular upper surface of the lower annular planar portion; and the lower casing further has an annular engaging portion formed on an outer peripheral surface of the second annular protrusion, and the upper casing is combined with the lower casing by causing the annular engaging portion thereof to be resiliently fitted to the annular engaging portion of the lower casing.
According to the above-described embodiment, since the upper casing and the lower casing are combined with each other by causing the annular engaging portion of the upper casing to be resiliently fitted to the annular engaging portion of the lower casing, the assembly operation thereof can be performed very simply.
In another preferred embodiment of the thrust sliding bearing in accordance with the present invention, the upper casing further includes a first cylindrical suspended portion formed integrally on the annular lower surface of the upper annular planar portion in such a manner as to be radially outwardly spaced apart a predetermined interval from a peripheral edge of the circular hole in the central portion of the upper annular planar portion and to be radially inwardly spaced apart a predetermined interval from the inner peripheral surface of the cylindrical engaging suspended portion, so as to form at an outer peripheral surface of the first cylindrical suspended portion an upper outer annular groove in cooperation with the inner peripheral surface of the cylindrical engaging suspended portion; the lower casing further includes a third annular protrusion formed integrally on the annular upper surface of the lower annular planar portion in such a manner as to be radially outwardly spaced apart a predetermined interval from the outer peripheral surface of the first annular protrusion, so as to form at an outer peripheral surface of the third annular protrusion a lower outer annular groove in cooperation with an inner peripheral surface of the second annular protrusion; and the upper casing is combined with the lower casing such that the second annular protrusion is disposed in the upper outer annular groove by causing the upper end face of the second annular protrusion to oppose the annular lower surface of the upper annular planar portion with a predetermined interval therebetween, while the first cylindrical suspended portion is disposed in the lower outer annular groove so as to radially overlap with the second annular protrusion and the third annular protrusion.
According to the above-described thrust sliding bearing, since the upper casing is combined with the lower casing by resiliently fitting the annular engaging portions such that the second annular protrusion is disposed in the upper outer annular groove, and the first cylindrical suspended portion is disposed in the lower outer annular groove so as to radially overlap with the second and third annular protrusions, sealed portions based on labyrinth action are formed at radially overlapping portions of the first cylindrical suspended portion and the second and third annular protrusions and at resiliently fitting portions of the engaging portions, thereby further preventing the entry of foreign objects such as dust onto the thrust sliding bearing surface between the upper and lower casings.
In still another preferred embodiment of the thrust sliding bearing in accordance with the present invention, the upper casing further includes a second cylindrical suspended portion formed integrally on the annular lower surface of the upper annular planar portion in such a manner as to be radially inwardly spaced apart a predetermined interval from an inner peripheral surface of the first cylindrical suspended portion, so as to form a wide upper annular recess in cooperation with the inner peripheral surface and the annular lower surface of the upper annular planar portion, the first annular protrusion being radially outwardly adjacent to the insertion hole with a predetermined interval therebetween, the upper casing being combined with the lower casing such that a lower end face of the second cylindrical suspended portion opposes the annular upper surface of the lower annular planar portion with a predetermined interval therebetween, and such that the second cylindrical suspended portion radially overlaps with the first annular protrusion.
According to the above-described thrust sliding bearing, since the upper casing is combined with the lower casing by causing the annular engaging portions to be resiliently fitted to each other such that the second cylindrical suspended portion radially overlaps with the first annular protrusion of the lower casing, and such that the first cylindrical suspended portion disposed in the lower outer annular groove radially overlaps with the second and third annular protrusions, sealed portions based on labyrinth action are formed at overlapping portions of the second cylindrical suspended portion and the first annular protrusion, at overlapping portions of the first cylindrical suspended portion and the second and third annular protrusions, and at resiliently fitting portions of the engaging portions, thereby further preventing the entry of foreign objects such as dust onto the thrust sliding bearing surface between the upper and lower casings.
In the thrust sliding bearing in accordance with the present invention, the second cylindrical suspended portion may have an inner peripheral surface with a diameter identical to that of the circular hole in the central portion of the upper annular planar portion. Alternatively, the second cylindrical suspended portion may be radially outwardly adjacent to the circular hole in the central portion of the upper annular planar portion with a predetermined interval therebetween, in which case the lower casing may further include a fourth annular protrusion which is integrally formed on the upper surface of the lower annular planar portion in such a manner as to be radially inwardly spaced apart a predetermined interval from the first annular protrusion, so as to form at an outer peripheral surface thereof a lower inner annular groove in cooperation with the inner peripheral surface of the first annular protrusion, and the upper casing may be combined with the lower casing such that the lower end face of the second cylindrical suspended portion opposes the annular upper surface of the lower annular planar portion with a predetermined interval therebetween, and the second cylindrical suspended portion is disposed in the lower inner annular groove so as to radially overlap with the first annular protrusion and the fourth annular protrusion.
According to the above-described thrust sliding bearing in accordance with the present invention, since the upper casing is combined with the lower casing such that the second cylindrical suspended portion is disposed in the lower inner annular groove to radially overlap with the first annular protrusion and the fourth annular protrusion, sealed portions based on labyrinth action are further formed at radially overlapping portions of the second cylindrical suspended portion and the first and fourth annular protrusions, with the result that the entry of foreign objects such as dust between the upper casing and the lower casing, particularly from the inner peripheral surface side, onto the thrust sliding bearing surface is further prevented.
In the thrust sliding bearing in accordance with the present invention, the fourth annular protrusion may have an inner peripheral surface with a diameter identical to that of the insertion hole formed in the central portion of the lower annular planar portion. Alternatively, the fourth annular protrusion may be integrally formed on the upper surface of the lower annular planar portion in such a manner as to be radially outwardly spaced apart a predetermined interval from the insertion hole in the central portion of the lower annular planar portion. In this case, the upper casing may further include a third cylindrical suspended portion which is integrally formed on the annular lower surface of the upper annular planar portion and has an inner peripheral surface with a diameter identical to that of the circular hole in the central portion of the upper annular planar portion so as to form at an outer peripheral surface thereof an upper inner annular groove in cooperation with an inner peripheral surface of the second cylindrical suspended portion, and the upper casing may be combined with the lower casing such that a lower end face of the third cylindrical suspended portion opposes the annular upper surface of the lower annular planar portion with a predetermined interval therebetween, and the third cylindrical suspended portion radially overlaps with the fourth annular protrusion, and such that an upper end face of the fourth annular protrusion opposes the annular lower surface of the upper annular planar portion with a predetermined interval therebetween, and the fourth annular protrusion is disposed in the upper inner annular groove to cause the fourth annular protrusion to radially overlap with the second cylindrical suspended portion and the third cylindrical suspended portion.
According to the above-described thrust sliding bearing in accordance with the present invention, since the upper casing is combined with the lower casing such that the third cylindrical suspended portion radially overlaps with the fourth annular protrusion, the fourth annular protrusion is disposed in the upper inner annular groove, and the second cylindrical suspended portion is disposed in the lower inner annular groove so as to radially overlap with the first and fourth annular protrusions, sealed portions based on labyrinth action are formed at radially overlapping portions of the second and third cylindrical suspended portions and the first and fourth annular protrusions, with the result that the entry of foreign objects such as dust between the upper casing and the lower casing, particularly from the inner peripheral surface side, onto the thrust sliding bearing surface is further prevented.
In the present invention, the lower casing may further include a hollow cylindrical portion which is integrally formed on the annular lower surface of the lower annular planar portion and has an inner peripheral surface with a diameter identical to the insertion hole in the central portion.
According to the thrust sliding bearing having the hollow cylindrical portion which is integrally formed on the annular lower surface of the lower annular planar portion of the lower casing and has an inside diameter identical to the insertion hole, the mounting operation can be performed very easily by inserting the hollow cylindrical portion into a mounting hole formed in a mounting member for mounting the thrust sliding bearing.
In the thrust sliding bearing in accordance with the present invention, the upper casing may further include a hollow cylindrical portion which is integrally formed on the annular lower surface of the upper annular planar portion and has an inner peripheral surface with a diameter identical to the circular hole in the central portion of the upper annular planar portion, the lower casing may further include a hollow cylindrical portion which is integrally formed on the annular lower surface of the lower annular planar portion and has an inner peripheral surface with a diameter identical to the insertion hole, and the upper casing may be combined with the lower casing such that an outer peripheral surface of the hollow cylindrical portion is brought into sliding contact with the inner peripheral surface of the hollow cylindrical portion of the lower casing.
According to the above-described thrust sliding bearing in accordance with the present invention, in allowing smooth sliding under a thrust load, the sliding under a radial load can be smoothly allowed by the sliding of the synthetic resins in the radial bearing portion formed between the outer peripheral surface of the hollow cylindrical portion of the upper casing and the inner peripheral surface of the hollow cylindrical portion of the lower casing.
In the thrust sliding bearing in accordance with the present invention, the upper annular planar portion may have an annular upper surface, in which case the annular upper surface may have a circular belt-shaped flat surface formed with a predetermined width in a radially outward direction from the outer peripheral edge of the circular hole in the central portion and a truncated conical surface sloping downwardly from an outer peripheral edge of the circular belt-shaped flat surface to a cylindrical outer peripheral surface of the cylindrical engaging suspended portion. In addition, the upper casing may further include a circular belt-shaped projecting portion which integrally projects axially upwardly from the annular upper surface. In the case where the upper casing further has such a circular belt-shaped projecting portion, the annular upper surface may have a truncated conical surface sloping downwardly from an axial lower end of an outer peripheral surface of the circular belt-shaped projecting portion to a cylindrical outer peripheral surface of the cylindrical engaging suspended portion.
According to the thrust sliding bearing in accordance with the above-described aspect, in a case where a fluctuating load such as an inclination has acted on the vehicle body-side mounting member, it is possible to more reliably avoid interference at least at the resiliently fitting portions of the engaging portion of the cylindrical engaging suspended portion and the engaging portion of the cylindrical engaging projecting portion.
In the present invention, the synthetic resin for forming upper casing and the lower casing should preferably excel in mechanical properties, such as wear resistance, shock resistance, sliding properties including creep resistance, and rigidity. Specifically, as the synthetic resin for forming the upper casing and the lower casing, a thermoplastic synthetic resin such as polyacetal resin, polyamide resin, and polyester resin is suitably used. In addition, as the synthetic resin for forming the thrust sliding bearing piece, a thermoplastic synthetic resin such as polyamide resin, polyolefin resin such as a polyethylene resin, and polyester resin, which excel in the sliding characteristics with respect to the thermoplastic synthetic resin for forming the upper and lower casings, is suitably used.
According to the present invention, the lubricating oil such as grease filled in the annular recessed grooves is constantly fed to the thrust sliding bearing surface, i.e., the sliding surface, during the relative rotation of at least one of the upper casing and the lower casing and the thrust sliding bearing piece, with the result that the lubricating oil is constantly present at the thrust sliding bearing surface during the relative rotation. Thus, it is possible to provide a thrust sliding bearing which is capable of exhibiting further lower frictional properties at the thrust sliding bearing surface by virtue of this lubricant.
Hereafter, a more detailed description will be given of the present invention with reference to the preferred embodiments shown in the drawings. It should be noted that the present invention is not limited to these embodiments.
In
The upper casing 100 includes an upper annular planar portion 102 having a circular hole 101 in a central portion thereof; a cylindrical engaging suspended portion 104 formed integrally on an outer peripheral edge of an annular lower surface 103 of the upper annular planar portion 102; and an annular engaging portion 106 formed integrally on an end portion of an inner peripheral surface 105 of the cylindrical engaging suspended portion 104.
The lower casing 200, which is superposed on the upper casing 100 so as to be rotatable about an axis O of the upper casing 100 in a circumferential direction R, includes a lower annular planar portion 202 which opposes the upper annular planar portion 102 of the upper casing 100 and has in a central portion thereof an insertion hole 201 identical in diameter and concentric with the circular hole 101 of the upper annular planar portion 102; an annular protrusion 204 which is integrally formed on an annular upper surface 203 of the lower annular planar portion 202 and has an inner peripheral surface with a diameter identical to that of the insertion hole 201; an annular protrusion 208 which is integrally formed on an outer peripheral edge of the annular upper surface 203 of the lower annular planar portion 202 concentrically with the annular protrusion 204 in such a manner as to be radially outwardly spaced apart a predetermined interval from the annular protrusion 204, and which forms at an inner peripheral surface 205 a wide lower annular recess 207 in cooperation with an outer peripheral surface 206 of the annular protrusion 204 and the annular upper surface 203 of the lower annular planar portion 202; and an annular engaging portion 209 formed integrally on an outer peripheral surface of a lower end of the annular protrusion 208. The lower annular recess 207 surrounded by the annular protrusions 204 and 208 is defined by the outer peripheral surface 206 of the annular protrusion 204, the inner peripheral surface 205 of the annular protrusion 208, and the annular upper surface 203 of the lower annular planar portion 202.
The thrust sliding bearing piece 300 has a circular hole 302 defined by an inner peripheral surface 301 having a diameter (inside diameter) larger than the diameter (outside diameter) of the outer peripheral surface 206 of the annular protrusion 204 of the lower casing 200; an outer peripheral surface 303 having a diameter (outside diameter) smaller than the inside diameter of the inner peripheral surface 205 of the annular protrusion 208 of the lower casing 200; an annular upper surface 304 serving as an annular thrust sliding bearing surface; and an annular lower surface 305. The thrust sliding bearing piece 300 is interposed between the upper casing 100 and the lower casing 200 by being disposed in the wide lower annular recess 207 while maintaining annular clearances between the inner peripheral surface 301 and the outer peripheral surface 206 of the annular protrusion 204 and between the outer peripheral surface 303 and the inner peripheral surface 205 of the annular protrusion 208, respectively, such that the upper surface 304 projects above an opening portion 210 of the lower annular recess 207 and is brought into sliding contact with the annular lower surface 103 of the upper annular planar portion 102, while the lower surface 305 is brought into sliding contact with the annular upper surface 203 defining a bottom surface 211 of the lower annular recess 207.
As particularly shown in
The inner annular recessed groove 306 and the outer annular recessed groove 307, which are formed on the annular upper surface 304 of the thrust sliding bearing piece 300 along the circumferential direction R on the inner and the outer side in the radial direction X, are formed such that the ratio of a total area of opening surfaces 308 of the inner annular recessed groove 306 and the outer annular recessed groove 307 in the surfaces combining the opening surfaces 308 of the inner annular recessed groove 306 and the outer annular recessed groove 307 and the annular upper surface 304 of the thrust sliding bearing piece 300, i.e., the thrust sliding bearing surface, is set to 20 to 50%, preferably 30 to 40%, i.e., to 30% in the embodiment shown in
The upper casing 100 is combined with the lower casing 200 such that respective upper end faces of the annular protrusions 204 and 208 oppose the annular lower surface 103 with a predetermined interval therebetween, and such that the annular engaging portion 106 formed on the inner peripheral surface of the end portion of the cylindrical engaging suspended portion 104 is resiliently fitted to the annular engaging portion 209 formed on the outer peripheral surface of the lower end of the annular protrusion 208 of the lower casing 200.
In the thrust sliding bearing 1 thus formed, by virtue of the inner annular recessed groove 306 and the outer annular recessed groove 307 formed on the annular upper surface 304 of the thrust sliding bearing piece 300, in the relative rotation about the axis O in the circumferential direction R between the annular upper surface 304 of the thrust sliding bearing piece 300 and the annular lower surface 103 of the upper annular planar portion 102 of the upper casing 100, the area of contact between, on the one hand, the annular upper surface 304 constituting the thrust sliding bearing surface and serving as the sliding surface and, on the other hand, the mating member, i.e., the annular lower surface 103 of the upper annular planar portion 102 of the upper casing 100, is reduced, and the thrust load is borne by the lubricating oil filled in the inner annular recessed groove 306 and the outer annular recessed groove 307. Thus, it is possible to attain further reduction of frictional resistance through the combination of the reduction of frictional resistance in friction among synthetic resins and the reduction of frictional resistance derived from the presence at the sliding surfaces of the lubricating oil filled in the inner annular recessed groove 306 and the outer annular recessed groove 307.
As shown in
According to the thrust sliding bearing 1 having the cylindrical portion 213 on the annular lower surface 212 of the lower casing 200, the operation of mounting the thrust sliding bearing 1 is facilitated when, as shown in
In this case, an upper portion of the piston rod 42 is inserted into the circular hole 101 of the upper casing 100 and the insertion hole 201 of the lower casing 200 in the thrust sliding bearing 1 such as to be rotatable about the axis O in the R direction with respect to the upper casing 100 and the lower casing 200.
With the strut-type suspension installed by means of the thrust sliding bearing 1, as shown in
In addition, as shown in
In the above-described upper casing 100 and lower casing 200, the upper casing 100 is combined with the lower casing 200 such that the respective upper end faces of the annular protrusions 204 and 208 oppose the annular lower surface 103 with a predetermined interval therebetween and the annular protrusion 208 is disposed in the upper outer annular groove 108, while the lower end face of the cylindrical suspended portion 109 opposes the annular upper surface 203 with a predetermined interval therebetween and the cylindrical suspended portion 109 is disposed in the lower outer annular groove 215 so as to overlap with the annular protrusion 216 and the annular protrusion 208 in the radial direction X, whereby the annular engaging portion 106 formed on the inner peripheral surface of the end portion of the cylindrical engaging suspended portion 104 is resiliently fitted to the annular engaging portion 209 formed on the outer peripheral surface of the lower end of the annular protrusion 208 of the lower casing 200.
Also with the thrust sliding bearing 1 shown in
According to the thrust sliding bearing 1 shown in
Furthermore, as shown in
In the thrust sliding bearing 1 shown in
According to the thrust sliding bearing 1 shown in
In addition, as shown in
In the thrust sliding bearing 1 shown in
According to the thrust sliding bearing 1 shown in
In addition, with the thrust sliding bearing 1 in accordance with the present invention, as shown in
In the thrust sliding bearing 1 shown in
Furthermore, as shown in
Also with the thrust sliding bearing 1 shown in
According to the thrust sliding bearing 1 shown in
In each of the above-described thrust sliding bearings 1, the upper annular planar portion 102 of the upper casing 100 may include an annular upper surface 125 having an annular circular belt-shaped flat surface 126 formed with a predetermined width in the radially outward direction from the outer peripheral edge of the circular hole 101 and a truncated conical surface 128 sloping downwardly from an outer peripheral edge of the circular belt-shaped flat surface 126 to a cylindrical outer peripheral surface 127 of the cylindrical engaging suspended portion 104, as shown in
As shown in
As shown in
The inner annular recessed groove 306, the intermediate annular recessed groove 309, and the outer annular recessed groove 307, which are formed on the annular upper surface 304 of the thrust sliding bearing piece 300 along the circumferential direction R on the inner side, the intermediate side, and the outer side in the radial direction X, are formed such that the ratio of a total area of the opening surfaces 308 and an opening surface 310 in the surfaces combining the opening surfaces 308 of the inner annular recessed groove 306 and the outer annular recessed groove 307 and the opening surface 310 of the intermediate annular recessed groove 309, and the upper surface 304 is set to 20 to 50%, preferably 30 to 40%, i.e., to 40% in the embodiment shown in
In the thrust sliding bearing 1 having the thrust sliding bearing piece 300 shown in
Also with the thrust sliding bearings 1 in the embodiments shown in
As described above, with the thrust sliding bearing 1 in accordance with the present invention, since a plurality of (a plurality of rows) of annular recessed grooves which are spaced apart at least in the radial direction X, e.g., the inner annular recessed groove 306 and the outer annular recessed groove 307 which are two (two rows of) annular recessed grooves, are formed on at least one surface of the annular upper surface 304 and the lower surface 305 of the thrust sliding bearing piece 300, which is interposed between the upper casing 100 and the lower casing 200, by being arranged along the circumferential direction R, the lubricating oil such as grease filled in the inner annular recessed groove 306 and the outer annular recessed groove 307 receives the thrust load together with the upper surface 304 and is constantly fed to the sliding surfaces during the relative sliding in the circumferential direction R among the upper casing 100, the lower casing 200, and the thrust sliding bearing piece 300. In consequence, it is possible to obtain a thrust sliding bearing which is capable of exhibiting further lower frictional properties through the combination of the reduction of friction by virtue of the fact that the lubricating oil receives the thrust load, the reduction of friction by virtue of the presence of the lubricating oil at the sliding surfaces during sliding, and the reduction of friction in the sliding among synthetic resins through the reduction of the contact area, with respect to the mating member, of at least one of the upper surface 304 and the lower surface 305 serving as the sliding surfaces of the thrust sliding bearing piece 300.
Number | Date | Country | Kind |
---|---|---|---|
2012-007374 | Jan 2012 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2013/000056 | 1/10/2013 | WO | 00 | 7/11/2014 |