This disclosure relates generally to excavator machines having articulating ground-engaging implements and counteracting thumbs and, in particular, to structure support in the counteracting thumb for withstanding forces and stresses in the thumb during operation of the excavator machine to operate on work material.
Mining and construction machines such as backhoe loaders and excavators employ various implements, such as buckets, rams, forks, grapples, thumbs, and the like, to perform different operations. For example, a machine may use a bucket and counteracting thumb to grasp, hold, and lift odd-shaped work material such as boulders, pipes, trees, structural components, and the like. These types of work material loads cause uneven weight distributions across the bucket and thumb and concentrated stresses on the components. A strong structure support that connects teeth of the thumb to the side plates and main body of the thumb may provide for more load transfer from one side of the thumb to the other. However, currently known structure supports for counteracting thumbs have structural and other limitations affecting their adaptation for various work environments in which the excavator machines may operate.
Some current thumb designs incorporate structure support that does not effectively transfer offset loads between the side plates of the thumb. For example, U.S. Pat. No. 5,813,822 to Pisco discloses a bucket and thumb combination for attachment to an excavator arm in which both the bucket and the thumb share a common axis of rotation relative to one another and relative to the excavator arm and are independently movable. The side plates and teeth of the thumb are connected by a structure support in the form of a flat plate. The flat plate is cheaper and easier to source worldwide than other types of structure supports such as circular and square tubes discussed below that can be dimensionally dependent on the region of sourcing. However, the flat connecting plate is not effective in transferring torque loads from the side plate with high concentration of loading to the side plate on the opposite side of the thumb. As a result, high stress concentrations occur on the loaded side of the thumb, thereby requiring thicker side plates on each side that add weight and cost to the thumb design.
Other thumb designs provide additional structure support but have other limitations that can compromise the design and integrity of the thumb. For example, U.S. Pat. No. 7,818,901 to Zeno et al. discloses a dipper stick, tool and thumb combination including a progressive linkage for connecting the thumb to a thumb actuator. The thumb disclosed in the Zeno et al. patent includes a circular tube as the structure support connecting the teeth of the thumb to the side plates. The tube may provide better load transfer between the side plates under offset load conditions than a flat plate, but the circular outer surface to which the side plates and the teeth are attached can present issues in supporting torsion loads that are created about the longitudinal axis of the circular tube. Torsion loads can occur when the bucket and thumb clamp down around work material with the teeth of the thumb engaging the work material. Due to the round surface of the tube, the amount of weld length between the circular tube and the side plates and teeth may not be sufficient given the space constraints of the design, and the torsion loads and resulting stresses may be concentrated at the welds connecting the teeth to the circular tube, and the circular tube to the side plates, making failures in the welds problematic.
Square tubes have been used in thumbs as an alternative to the circular tubes shown in the Zeno et al. patent. The square tubes may provide comparable load transfer between the side plates as the circular tubes, but create additional issues in designing and assembling the thumb. For example, in many implementations, the side plates and the teeth may mount on shared sides of the square tube causing an overlap in the structures. With the side plates infringing on the space for the teeth, interference with the side plates may inhibit the ability to place the teeth in the optimal locations along the tube. The square tube may also encroach the space within the thumb and interfere with the movement of the linkages that open and close the thumb.
For these reasons, a need exists for an improved structure support in a counteracting thumb of an excavation machine that assists in distributing unbalanced loads between the side plates of the thumb and bearing the loads and stresses on the teeth and side plates of the thumb without interfering with the free movement of the linkages controlling the location of the thumb.
In one aspect of the present disclosure, a thumb for a machine is disclosed. The thumb may include a first side plate having an outer surface, an inner surface oppositely disposed from the outer surface, a first end having a connection for pivotally connecting the first side plate to a linkage assembly of the machine, and a second end oppositely disposed from the first end, a second side plate having an outer surface, an inner surface oppositely disposed from the outer surface, a first end having a connection for pivotally connecting the first side plate to a linkage assembly of the machine, and a second end oppositely disposed from the first end, and a plurality of teeth each having a work material engaging end and a structure support end oppositely disposed from the work material engaging end. The thumb may also include a thumb structure support having a first structure support plate having oppositely disposed first and second end edges, oppositely disposed first and second lateral edges, an outer surface having a convex curvature as the outer surface extends from the first end edge to the second end edge, and an inner surface opposite the outer surface, the second end of the first side plate being connected to the outer surface of the first structure support plate proximate the first lateral edge of the first structure support plate, the second end of the second side plate being connected to the outer surface of the first structure support plate proximate the second lateral edge, and a second structure support plate having oppositely disposed first and second end edges, oppositely disposed first and second lateral edges, an outer surface having a convex curvature as the outer surface extends from the first end edge to the second end edge, and an inner surface opposite the outer surface. The first end edge of the first structure support plate may be connected to the second structure support plate proximate the first end edge of the second structure support plate, the second end edge of the second structure support plate may be connected to the first structure support plate proximate the second end edge of the first structure support plate, and the structure support end of each of the plurality of teeth may be connected to the outer surface of the second structure support plate
In another aspect of the present disclosure, a thumb structure support is disclosed for connecting first and second side plates of a thumb of a machine to a plurality of teeth of the thumb. The thumb structure support may include a first structure support plate having oppositely disposed first and second end edges, oppositely disposed first and second lateral edges, an outer surface having a convex curvature as the outer surface extends from the first end edge to the second end edge, and an inner surface opposite the outer surface, the outer surface of the first structure support plate having the first side plate and the second side plate of the thumb connected thereto proximate the first lateral edge and the second lateral edge, respectively. The thumb structure support may further include a second structure support plate having oppositely disposed first and second end edges, oppositely disposed first and second lateral edges, an outer surface having a convex curvature as the outer surface extends from the first end edge to the second end edge, and an inner surface opposite the outer surface. The first end edge of the first structure support plate may be connected to the second structure support plate proximate the first end edge of the second structure support plate, the second end edge of the second structure support plate may be connected to the first structure support plate proximate the second end edge of the first structure support plate, and the outer surface of the second structure support plate may have the plurality of teeth of the thumb connected thereto.
In a further aspect of the present disclosure, a thumb for a machine is disclosed. The thumb may include a thumb structure support having a first structure support plate having oppositely disposed first and second end edges, oppositely disposed first and second lateral edges, a first planar portion extending inwardly from the first end edge and a second planar portion extending inwardly from the second end edge, the first planar portion and the second planar portion being oriented with respect to each other at an obtuse angle, an outer surface and an inner surface opposite the outer surface. The thumb structure support may also include a second structure support plate having oppositely disposed first and second end edges, oppositely disposed first and second lateral edges, a first planar portion extending inwardly from the first end edge and a second planar portion extending inwardly from the second end edge, the first planar portion and the second planar portion being oriented with respect to each other at an obtuse angle, an outer surface and an inner surface opposite the outer surface. The first end edge of the first structure support plate may be connected to the second structure support plate proximate the first end edge of the second structure support plate, and the second end edge of the second structure support plate may be connected to the first structure support plate proximate the second end edge of the first structure support plate. The thumb may also include a first side plate having an outer surface, an inner surface oppositely disposed from the outer surface, a first end having a connection for pivotally connecting the first side plate to a linkage assembly of the machine, and a second end oppositely disposed from the first end, the second end of the first side plate having a shape corresponding to a shape of the outer surface of the first structure support plate and being connected to the outer surface of the first structure support plate proximate the first lateral edge of the first structure support plate, and a second side plate having an outer surface, an inner surface oppositely disposed from the outer surface, a first end having a connection for pivotally connecting the first side plate to a linkage assembly of the machine, and a second end oppositely disposed from the first end, the second end of the second side plate having a shape corresponding to a shape of the outer surface of the first structure support plate and being connected to the outer surface of the first structure support plate. Still further, the thumb may include a plurality of teeth each having a work material engaging end and a structure support end oppositely disposed from the work material engaging end, the structure support end having a shape corresponding to a shape of the outer surface of the second structure support plate and being connected to the outer surface of the second structure support plate
In a still further aspect of the present disclosure, a support structure for connecting two components together is disclosed. The support structure may include a first plate having oppositely disposed first and second end edges, an outer surface having a convex curvature as the outer surface extends from the first end edge to the second end edge, and an inner surface opposite the outer surface, and a second plate having oppositely disposed first and second end edges, an outer surface having a convex curvature as the outer surface extends from the first end edge to the second end edge, and an inner surface opposite the outer surface. The first and second plates may be connected and overlap at opposite ends so that the first end edge of the second plate extends beyond the first end edge of the first plate and the second end edge of the first plate extends beyond the second end edge of the second plate.
Additional aspects are defined by the claims of this patent.
Although the following text sets forth a detailed description of numerous different embodiments of the, it should be understood that the legal scope of protection is defined by the words of the claims set forth at the end of this patent. The detailed description is to be construed as exemplary only and does not describe every possible embodiment since describing every possible embodiment would be impractical, if not impossible. Numerous alternative embodiments could be implemented, using either current technology or technology developed after the filing date of this patent, which would still fall within the scope of the claims defining the scope of protection.
It should also be understood that, unless a term is expressly defined in this patent using the sentence “As used herein, the term ‘______’ is hereby defined to mean . . . ” or a similar sentence, there is no intent to limit the meaning of that term, either expressly or by implication, beyond its plain or ordinary meaning, and such term should not be interpreted to be limited in scope based on any statement made in any section of this patent (other than the language of the claims). To the extent that any term recited in the claims at the end of this patent is referred to in this patent in a manner consistent with a single meaning, that is done for sake of clarity only so as to not confuse the reader, and it is not intended that such claim term be limited, by implication or otherwise, to that single meaning Finally, unless a claim element is defined by reciting the word “means” and a function without the recital of any structure, it is not intended that the scope of any claim element be interpreted based on the application of 35 U.S.C. §112, sixth paragraph.
During operation of the machine 10, the bucket 14 and thumb 20 in combination may be used to pick up odd-sized loads of work material. For example, the operator of the machine 10 may pick up a boulder by scooping the boulder into the bucket 14 and the actuating the thumb actuator 30 to close the thumb 20 down over the bucket 14 and engage the boulder to hold the boulder therein until the boulder is dumped. Elongated work material, such as tree trunks and piping may be picked up by surrounding the material with the bucket 14 and thumb 20, close the bucket 14 and thumb 20 down on the work material and lift the material off the ground. Manipulating these types of materials can cause unbalanced loads of the bucket 14 and thumb 20 such that more weight is loaded on one side of the bucket 14 and thumb 20.
The plurality of teeth 44 may each have a first work material engaging end 58 and an oppositely disposed second structure support end 60 connected to the thumb structure support 46. The teeth 44 may be evenly spaced across the width of the thumb structure support 46, or may be unevenly placed at appropriate locations for engaging the work material. A gusset plate 62 may be provided to unitize the teeth 44 and to provide additional strength to withstand lateral loads on the teeth 44 acting generally parallel to the axis defined by the openings 54. The thumb 20 may have a separate gusset plate 62 between each pair of teeth 44, or may have a single gusset plate 62 extending across the width of the thumb structure support 46 and interconnecting all of the teeth 44 as illustrated and described more fully below. The thumb 20 may further include a bottom support plate 64 having oppositely disposed first and second end edges and oppositely disposed first and second lateral edges. The first lateral edge of the bottom support plate 64 may connected to the inner surface 50 of the first side plate 40, and the second lateral edge of the bottom support plate 64 may be connected to the inner surface 50 of the second side plate 42. The first end edge of the bottom support plate 64 may be connected to the thumb structure support 46 between the side plates 40, 42 and opposite the teeth 44.
The bottom support plate 64 may provide an attachment platform for components to which the linkage 34 may be attached. The attachment platform may include a pair of spaced yoke plates 66, 68 having openings 70 through which a pivot pin (not shown) may extend to pivotally connect the linkage 34 to the thumb 20 between the yoke plates 66, 68. The yoke plates 66, 68 may be further reinforced by yoke support plates 72, 74 having oppositely disposed lateral edges connected to the inner surface 50 of the corresponding side plate 40, 42 and the outer surface of the corresponding yoke plate 66, 68. The bottom support plate 64 and the yoke support plates 72, 74 may have complimentary bends therein so that oppositely disposed front and rear end edges of the yoke support plates 72, 74 may be connected to a top surface of the bottom support plate 64.
In the exploded view of
As shown in the enlarged view of
The first structure support plate 80 may include a first planar portion 108 extending inwardly from the first end edge 84, and second planar portion 110 extending inwardly from the second end edge 86, and an intermediate curved portion 112 between the planar portions 108, 110 orienting the planar portions 108, 110 at an obtuse angle θ1. Similarly, the second structure support plate 82 may include a first planar portion 114 extending inwardly from the first end edge 94, and second planar portion 116 extending inwardly from the second end edge 96, and an intermediate curved portion 118 between the planar portions 114, 116 orienting the planar portions 114, 116 at a second obtuse angle θ2. In various embodiments, the obtuse angles θ1, θ2 may be equal, and may be equal to approximately 120° to provide sufficient structural support to transmit offset loads between the side plates 40, 42.
The first end edge 84 may be disposed more inwardly into the thumb structure support 46 than the first end edge 94. In this configuration, the teeth 44 may only contact the first planar portion 114 of the structure support plate 82 proximate the first end edge 94, and no part of the structure support plate 80 proximate the first end edge 84 contacts the teeth 44. With this configuration, as the teeth 44 are loaded during operation and tend to rotate backward, the teeth 44 are in full contact with the structure support plate 82, and rotation of the structure support plate 82 is resisted by the structure support plate 80 and side plates 40, 42. To achieve this configuration, the first planar portion 108 may be relatively shorter than the second planar portion 110, and the second planar portion 116 may be relatively shorter than the first planar portion 114. The shorter first planar portion 108 is adjacent to the longer first planar portion 114, and similarly the shorter second planar portion 116 is adjacent to the longer second planar portion 110. The second end edge 96 contacts the inner surface 106 in a similar manner as the first end edge 84 contacts the inner surface 104. Dimensioned in this way, a first line L1 connecting the centers of the radiuses of the intermediate curved portions 112, 118 may be approximately perpendicular to a second line L2 drawn through the points of contact between the inner surfaces 104, 106.
Returning to
The counteracting thumb 20 having the thumb structure support 46 in accordance with the present disclosure provides effective load transfer of offset loads between the side plates 40, 42, improved resistance to torsion loads on the teeth 44 and side plates 40, 42, and efficient packaging of the structure support 46 for storage and assembly of the thumb 20. The configuration of the structure support plates 80, 82 allows the thumb structure support 46 provide structural and design improvements over previously know flat plate support structures such as that shown in the Pisco patent discussed above. The increased depth of the thumb structure support 46 connecting the teeth 44 to the side plates 40, 42 and the bottom support plate 64 of the thumb 20 allows for more load transfer from one side plate 40, 42 of the thumb 20 to the other side plate 40, 42. The redistribution and transfer of loads is especially important during unevenly distributed tooth loading. Better side-to-side load transfer allows for less steel to be used in the thumb side plates 40, 42, which reduces cost and weight.
The two-piece construction also creates more design flexibility over the flat plate supports to provide the required section strength in the thumb structure support 46. The thumb structure support 46 allows variations in three dimensions (length, height, width and angle θ), where the flat plate only allows for variation of length, height and width. In addition, the connections between the thumb structure support 46 and the side plates 40, 42 and the teeth 44 are improved over the flat plate structures. In flat plates, the side plates and teeth are connected by welding along a single plane that may provide an area of weakness when subjected to lateral loads and other types of loading during use. In the thumb structure support 46 in accordance with the present disclosure, the outer surfaces 92, 102 of the structure support plates 80, 82, respectively, provide two non-parallel planes for attachment of the side plates 40, 42 and the teeth 44. The second ends 56 of the side plates 40, 42 and structure support ends 60 are provided with shapes corresponding to the outer surfaces 92, 102, respectively, so that the ends 56, 60 face and abut the outer surfaces 92, 102 for welding along both the first planar portions 108, 114 and the second planar portions 110, 116.
This configuration also provides increased strength against torsion loads over circular tube-type structure supports as shown in the Zeno et al. patent. Instead of bearing predominantly torsion stresses at the points of connection, the connections between the ends 56, 60 and the outer surfaces 92, 102 will also have the torsion loads distributed among compressive and tensile stresses to better allow the thumb 20 to withstand the torsion loads. The use of the circular tube requires a higher dependence on the welds to transfer the load between the circular tube and the side plates 40, 42, which can be problematic. The thumb structure support 46 allows for a larger area of direct force transfer between the teeth 44 and the structure support 46 compared to a circular tube or the square tube.
The formed section of the present thumb structure support 46 provides benefits in design and manufacturing over prior square tube structure supports without compromising the benefits of square tubes over flat plates and circular tubes, such as providing welds on two planes between the side plates 40, 42 and teeth 44 and the thumb structure support 46 as discussed above. Despite this benefit in square tube structures, the 90° bends at the corners of the square tubes result in small radii that make creating a good quality robotic weld difficult. The larger radii provided by the obtuse angles θ1, θ2 and corresponding gradual weld seam curves allow for the formation of higher quality robotic welds.
Whereas the side plates and teeth may be partially mounted on share sides of the structure support in the square tube design and cause interference with the side plates that may interfere with locating the teeth at optimal positions, the side plates 40, 42 in the present design of the thumb 20 do not interfere with positioning the teeth 44 along the outer surface 102 of the second structure support plate 82. As seen in
The construction of the thumb structure support 46 facilitates flexibility in designing the thumb structure support 46 with the required section strength to withstand the loads anticipated to be encountered by the thumb 20 and bucket 14. The square tube by definition is limited to having the same length on all four sides, and to have 90° corners. The side lengths and the obtuse angles θ1, θ2 can be varied in the thumb structure support 46 as necessary to provide the necessary strength and to fit within a design envelope that will allow the thumb 20 be manipulated properly.
The present design for the thumb structure support 46 may provide additional storage and assembly benefits over the square tube supports. The hollow square tube stock can take up considerable storage space compared to the bent structure support plates 80, 82 from which the thumb structure support 46 is assembled. The structure support plates 80, 82 may be stacked with minimal wasted space versus the empty space taken up by the hollow section within the square tubes. Moreover, in some embodiments, the structure support plates 80, 82 may have generally the same configuration so that the same part may be used for both structure support plates 80, 82. For example, the design may call for the dimensions of the first planar portion 108 of the first structure support plate 80 to be equal to the dimensions of the second planar portion 116 of the second structure support plate 82, the dimensions of the second planar portion 110 of the first structure support plate 80 to be equal to the dimensions of the first planar portion 114 of the second structure support plate 82, and the obtuse angle θ1 of the first structure support plate 80 to be equal to the obtuse angle θ2 of the second structure support plate 82. In this design, a single part number may be stored prior to assembly, and two pieces of that part number may be selected and connected as illustrated and described herein to form the thumb structure support 46.
While the preceding text sets forth a detailed description of numerous different embodiments, it should be understood that the legal scope of protection is defined by the words of the claims set forth at the end of this patent. The detailed description is to be construed as exemplary only and does not describe every possible embodiment since describing every possible embodiment would be impractical, if not impossible. Numerous alternative embodiments could be implemented, using either current technology or technology developed after the filing date of this patent, which would still fall within the scope of the claims defining the scope of protection.
Number | Date | Country | |
---|---|---|---|
Parent | 13543504 | Jul 2012 | US |
Child | 14673040 | US |